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Introduction

The term neural networks historically refers to networks of neurons in the mam-
malian brain. Neurons are its fundamental units of computation, and they are
connected together in networks to process data. This can be a very complex task.
The dynamics of such neural networks in response to external stimuli is therefore
often quite intricate. Inputs and outputs of each neuron vary as functions of time in
the form of spike trains, but the network itself also changes over time: we learn and
improve our data-processing capabilities by establishing new connections between
neurons.

Neural-network algorithms for machine learning are inspired by the architecture
and the dynamics of networks of neurons in the brain. The algorithms use highly
idealised neuron models. Nevertheless, the fundamental principle is the same: arti-
ficial neural networks learn by changing the connections between their neurons.
Such networks can perform a multitude of information-processing tasks.

Neural networks can for instance learn to recognise structures in a data set and, to
some extent, generalise what they have learnt. A training set contains a list of input
patterns together with a list of corresponding labels, or target values, that encode
the properties of the input patterns the network is supposed to learn. Artificial neu-
ral networks can be trained to classify such data very accurately by adjusting the
connection strengths between their neurons, and can learn to generalise the result
to other data sets – provided that the new data is not too different from the training
data. A prime example for a problem of this type is object recognition in images,
for instance in the sequence of camera images taken by a self-driving car. Recent
interest in machine learning with neural networks is driven in part by the success
of neural networks in visual object recognition.

Another task at which neural networks excel is machine translation with dynami-
cal or recurrent networks. Such networks take sentences as inputs. As one feeds
word after word, the network outputs the words in the translated sentence. Recur-
rent networks can be efficiently trained on large training sets of input sentences
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and their translations. Google translate works in this way. Recurrent networks have
also been used with considerable success to predict chaotic dynamics. These are
all examples of supervised learning, where the networks are trained to associate a
certain target, or label, with each input.

Artificial neural networks are also good at analysing large sets of unlabelled,
often high-dimensional data – where it may be difficult to determine a priori which
questions are most relevant and rewarding to ask. Unsupervised-learning algo-
rithms organise the unlabelled input data in different ways. They can, for instance,
detect familiarity and similarity (clusters) of input patterns, or other structures in
the input data. Unsupervised-learning algorithms work well when there is redun-
dancy in the input data, and they are particularly useful for large, high-dimensional
data sets, where it may be a challenge to detect clusters or other data structures by
inspection.

Many problems lie between these two extremes of supervised and unsupervised
learning. Consider how an agent may learn to navigate a complex environment, in
order to get from one location to another as quickly as possible, or expending as
little energy as possible. The method of reinforcement learning allows the agent to
do just that, by optimising its behaviour in response to environmental cues in the
shape of penalties and rewards. In short, the agent learns to act in such a way that
it receives positive feedback (reward) more often than a penalty.

The tools for machine learning with neural networks were developed long ago,
most of them during the second half of the last century. In 1943, McCulloch and
Pitts [6] analysed how networks of neurons can process information. Using an
abstract model for a neuron, they demonstrated how such units can be coupled
together to represent logical functions (Figure 1.1). Their analysis and conclusions
are formulated using Carnap’s logical syntax [7], not in terms of algebraic equa-
tions as we are used to today. Nevertheless, their neuron model is essentially the
binary threshold unit, closely related to the fundamental building block of most
neural-network algorithms for machine learning to this date. In this book, we there-
fore refer to this model as the McCulloch-Pitts neuron. The purpose of this early

Figure 1.1 Logical OR function represented by three neurons. Neuron 3 fires
actively if at least one of the neurons 1 and 2 is active. After Figure 1b by
McCulloch and Pitts [6]
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research on neural networks was to explain neuro-physiological mechanisms [8].
Perhaps the most significant advance was Hebb’s learning principle, describing
how neural networks learn by strengthening connections between neurons that are
active simultaneously. The principle is described in Hebb’s book The Organization
of Behavior: A Neuropsychological Theory [9], published in 1949.

About 10 years later, research in artificial neural networks had intensified,
sparked by the influential work of Rosenblatt. In 1958, he formulated a learning
rule for the McCulloch-Pitts neuron, related to Hebb’s rule, and demonstrated that
the rule converges to the correct solution for all problems this model can solve [10].
He coined the term perceptron for layered networks of McCulloch-Pitts neurons
and showed that such neural networks could in principle solve tasks that a single
McCulloch-Pitts neuron could not. However, there was no general learning rule for
perceptrons at the time. The work of Minsky and Papert [11] emphasised the geo-
metric aspects of learning. This allowed them to prove which kinds of problems
perceptrons could solve, and which not. In 1969, they summarised these results in
their elegant book Perceptrons: An Introduction to Computational Geometry.

Perceptrons are classifiers that output a label for each input pattern. A perceptron
represents a mathematical function, an input-output mapping. A breakthrough
in perceptron learning was the paper by Rumelhart et al. [12]. The authors
demonstrated in 1986 that perceptrons can be trained by gradient descent. This
means that the connection strengths between the neurons are iteratively changed
in small steps, to eventually minimise the output error. For a single McCulloch-
Pitts neuron, this gives essentially Hebb’s rule. The important point is that gradient
descent allows one to efficiently train perceptrons with many layers (backpropaga-
tion for multilayer perceptrons). A second contribution of Rumelhart et al. is the
idea to use local feature maps for object recognition with neural networks. The cor-
responding mathematical operation is a convolution. Therefore such architectures
are now known as convolutional networks.

The work of Hopfield popularised an entirely different approach, also based on
Hebb’s rule. In 1982, Hopfield analysed the properties of a dynamical, or recurrent,
network that functions as a memory [13]: the dynamics is designed to find stored
patterns by converging to a corresponding steady state. Such Hopfield networks
were especially popular amongst physicists because there are close connections
to the statistical physics of spin glasses that made it possible to derive a precise
mathematical understanding of such artificial neural networks. Hopfield networks
are the basis for important developments in computer science. More general recur-
rent networks, for example, are trained like perceptrons for language processing.
Hopfield networks with hidden neurons, so-called Boltzmann machines [14], are
generative models that allow one to sample from a distribution the neural network
learned. The training algorithm for Boltzmann machines with many hidden
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layers [15], published in 1986, is one of the first algorithms for training networks
with many layers, so-called deep networks.

An important problem in behavioural psychology is to understand how we learn
from experience. One hypothesis is that desirable behaviours are reinforced by
positive feedback. Around the same time as researchers began to analyse percep-
trons, a different line of neural-network research emerged: to find learning rules
that allow neural networks to learn by reinforcement. In many problems of this
kind, the positive feedback or reward is not immediate but is received at some time
in the future, as in a board game, for example. Therefore it is necessary to under-
stand how to estimate the future reward for a certain behaviour, and how to find
strategies that optimise the future reward. Reinforcement learning [16] is designed
for this purpose. In 1995, an early application of this method demonstrated how a
neural network could learn to play the board game backgammon [17].

A related research field originated from the neuro-physiological question: how
do we learn to map visual or sensory stimuli to spatio-temporal patterns of neural
activity in the brain? In 1992, Kohonen described a self-organising map [18] that
suggests how neurons might create meaningful geometric representations of inputs.
At the same time, Kohonen’s algorithm is one of the first methods for non-linear
dimensionality reduction for large data sets.

There are many connections between neural-network algorithms for machine
learning and methods used in mathematical statistics, such as for instance Markov-
chain Monte-Carlo algorithms and simulated-annealing methods. Certain unsuper-
vised learning algorithms are related to principal-component analysis, others to
clustering algorithms such as K-means clustering. Supervised learning with deep
networks is essentially regression analysis, trying to fit an input-output function
to the training data. In other words, this is just function fitting – and usually with
a very large number of fitting parameters. Recent convolutional neural networks
have millions of parameters. To determine so many parameters requires very large
and accurate data sets. This makes it clear that neural networks are not a solu-
tion for everything. One of the difficult problems is to understand when machine
learning with neural networks is called for and when it is not. Therefore we need
a detailed understanding of how the algorithms work, and in particular when and
how they fail.

There were some early successes of machine learning with neural networks, but
these methods were not widely used in the last century. During the past decade,
by contrast, machine learning with neural networks has become increasingly suc-
cessful and popular. For many applications, neural-network-based algorithms are
now regarded as the method of choice, for example for predicting how proteins
fold [19]. What caused this paradigm shift? After all, the methods are essentially
those developed forty or more years ago. A reason for the new success is perhaps

https://doi.org/10.1017/9781108860604.001 Published online by Cambridge University Press

https://doi.org/10.1017/9781108860604.001


1.1 Neural Networks 5

that industry, in acute need of machine-learning algorithms for large data sets, has
invested time and effort into generating larger and more accurate training sets than
previously available. Computer hardware has improved too, so that networks with
many layers containing many neurons can now be efficiently trained, making the
recent progress possible.

This book is based on notes for lectures on artificial neural networks I have
given for more than 15 years at Gothenburg University and Chalmers University of
Technology in Gothenburg, Sweden. When I prepared these lectures, my primary
source was Introduction to the Theory of Neural Computation by Hertz, Krogh, and
Palmer [1]. The material is organised into three parts: Hopfield networks, super-
vised learning of labelled data, and learning for unlabelled data sets (unsupervised
and reinforcement learning). One reason for starting with Hopfield networks is that
there is an elegant mathematical theory that describes how these neural networks
learn, making it possible to understand their strengths and weaknesses from first
principles. This is not the case for most of the other algorithms discussed in this
book. The analysis of Hopfield networks sets the scene for the later parts of the
book. Part II describes supervised learning with multilayer perceptrons and convo-
lutional neural networks, starting from the simple geometrical picture emphasised
by Minsky and Papert, and leading to the recent successes of convolutional net-
works in object recognition and recurrent networks in language processing. Part
III explains what neural networks can learn about data that is not labelled, with
particular emphasis on reinforcement learning. The overall goal is to explain the
fundamental principles that allow neural networks to learn, emphasising ideas and
concepts that are common to all three parts.

1.1 Neural Networks

Different regions in the mammalian brain perform different tasks. The cerebral
cortex is the outer part of the mammalian brain, one of its largest and best devel-
oped segments. We can think of the cerebral cortex as a thin sheet (about 2 to
5 mm thick) that folds upon itself to form a layered structure with a large sur-
face area that can accommodate large numbers of nerve cells, neurons. The human
cerebral cortex contains about 1010 neurons. They are linked together by nerve
strands (axons) that branch and end in synapses. These synapses are the connec-
tions to other neurons. The synapses connect to dendrites, branches extending
from the neural cell body that are designed to collect input from other neurons
in the form of electrical signals. A neuron in the human brain may have thousands
of synaptic connections with other neurons. The resulting network of connected
neurons in the cerebral cortex is responsible for processing visual, audio, and
sensory data.
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Figure 1.2 Neurons in the cerebral cortex, a part of the mammalian brain. Draw-
ing by Santiago Ramón y Cajal, the Spanish neuroscientist who received the
Nobel Prize in Physiology and Medicine in 1906 together with Camillo Golgi ‘in
recognition of their work on the structure of the nervous system’ [20]. Courtesy
of the Cajal Institute, ‘Cajal Legacy’, Spanish National Research Council (CSIC),
Madrid, Spain. Original in colour

Figure 1.2 shows neurons in the cerebral cortex. This drawing was made by
Santiago Ramón y Cajal more than 100 years ago. By microscope he studied
the structure of neural networks in the brain and documented his observations by
ink-on-paper drawings like the one reproduced in Figure 1.2. One can distinguish
the cell bodies of the neural cells, their axons ( f ), and their dendrites. The axons of
some neurons connect to the dendrites of other neurons, forming a neural network
(see Ref. [21] for a slightly more detailed description of this drawing).

A schematic image of a neuron is drawn in Figure 1.3. Information is processed
from left to right. On the left are the dendrites that receive signals and connect to
the cell body of the neuron where the signal is processed. The right part of the
figure shows the axon, through which the output is sent to other neurons. The axon
connects to their dendrites via synapses.

Information is transmitted as an electrical signal. Figure 1.4 shows an example of
the time series of the electric potential for a pyramidal neuron in fish [22]. The time
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Figure 1.3 Schematic image of a neuron. Dendrites receive input in the form of
electrical signals, via synapses. The signals are processed in the cell body of the
neuron. The cell nucleus is shown as a white blob. The output travels from the
neural cell body along the axon which connects via synapses to other neurons

Figure 1.4 Spike train in electro-sensory pyramidal neuron of a fish. The time
series is from Ref. [22]. It is reproduced by permission of the publisher. The labels
were added

series consists of an intermittent series of electrical-potential spikes. Quiescent peri-
ods without spikes occur when the neuron is inactive, during spike-rich periods we
say that the neuron is active.

1.2 McCulloch-Pitts Neurons

In artificial neural networks, the ways in which information is processed and sig-
nals are transferred are highly idealised. McCulloch and Pitts [6] modelled the
neuron, the computational unit of the neural network, as a binary threshold unit. It
has only two possible outputs, or states: active or inactive. To compute the output,
the unit sums the weighted inputs. If the sum exceeds a given threshold, the state of
the neuron is said to be active, otherwise inactive. A slightly more general model
than the original one is illustrated in Figure 1.5. The model performs repeated com-
putations in discrete time steps t = 0, 1, 2, 3, . . .. The state of neuron number j at
time step t is denoted by

sj (t) =
{
−1 inactive,

1 active.
(1.1)
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Figure 1.5 Schematic diagram of a McCulloch-Pitts neuron. The index of the
neuron is i ; it receives inputs from N neurons. The strength of the connection
from neuron j to neuron i is denoted by wi j . The threshold value for the neuron
is denoted by θi . The index t = 0, 1, 2, 3, . . . labels the discrete time sequence
of computation steps, and sgn(b) stands for the signum function [Figure 1.6 and
Equation (1.3)]

Given the states sj (t), neuron number i computes

si (t + 1) = sgn

( N∑
j=1

wi j sj (t)− θi

)
≡ sgn[bi (t)]. (1.2)

Here sgn(b) is the signum function (Figure 1.5):

sgn(b) =
{
−1, b < 0,

+1, b ≥ 0.
(1.3)

The argument of the signum function,

bi (t) =
N∑

j=1

wi j s j (t)− θi , (1.4)

is called the local field. We see that the neuron performs a weighted average of the
inputs sj (t). The parameters wi j are called weights. Here the first index, i , refers
to the neuron that does the computation, and j labels the neurons that connect to
neuron i . In general weights between different pairs of neurons assume different
numerical values, reflecting different strengths of the synaptic couplings. Weights
can be positive or negative, and we say that there is no connection when wi j = 0.

In this book, we refer to the model described in Figure 1.5 as the McCulloch-Pitts
neuron, although their original model had additional constraints on the weights.
The threshold1 for neuron i is denoted by θi .

Finally, note that the computation (1.2) is performed for all neurons i in parallel,
given the states sj (t) at time step t . The outputs si (t+1) are the inputs to all neurons

1 In the deep-learning literature [4], the thresholds are called biases, defined as the negative of θi , with a plus
sign in Equation (1.4). In this book, we use the convention (1.4), with the minus sign.
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Figure 1.6 Signum function [Equation (1.3)]

at the next time step. Therefore the outputs have the time argument t + 1. These
steps are repeated many times, resulting in time series of the activity levels of all
neurons in the network.

1.3 Activation Functions

The McCulloch-Pitts model approximates the patterns of spiking activity in Fig-
ure 1.4 in terms of two states, −1 and +1, representing the inactive and active
periods shown in the figure. For many computation tasks this is sufficient, and
for our purposes it does not matter that the dynamics of electrical signals in
the cortex is quite different in detail. The aim after all is not to model the
neural dynamics in the brain but to construct computation models inspired by
these dynamics.

It will become apparent later that the simplest model described above must be
generalised somewhat for certain tasks and questions. For example, the jump in
the signum function at b = 0 may cause large fluctuations in the activity levels
of a network of neurons, caused by infinitesimal changes of the local fields across
b = 0. To dampen this effect, one allows the neuron to respond continuously to its
inputs, replacing Equation (1.2) by

si (t + 1) = g

(∑
j

wi j s j (t)− θi

)
. (1.5)

Here g(b) is a continuous activation function. It could just be a linear function,
g(b) ∝ b. But we shall see that many tasks require non-linear activation functions,
such as tanh(b) (Figure 1.7). When the activation function is continuous, the neuron
states assume continuous values too, not just the discrete values −1 and +1 given
in Equation (1.1).

Alternatively, one may use a piecewise linear activation function (Figure 1.8).
This is motivated in part by the response curve of the leaky integrate-and-fire neu-
ron, a model for the relation between the electrical current I through the cell mem-
brane into the neuron cell, and the membrane potential U . The simplest model for
the dynamics of the membrane potential represents the neuron as a capacitor. In the

https://doi.org/10.1017/9781108860604.001 Published online by Cambridge University Press

https://doi.org/10.1017/9781108860604.001


10 Introduction

Figure 1.7 Continuous activation function g(b) = tanh(b)

Figure 1.8 (a) Firing rate f (I ) of a leaky integrate-and-fire neuron as a function
of the electrical current I through the cell membrane, Equation (1.7) for τ = 25
and Uc/R = 2. (b) Piecewise linear activation function, g(b) = max{0, b}

leaky integrate-and-fire neuron, leakage is modelled by adding a resistor R in
parallel with the capacitor C , so that

I = U

R
+ C

dU

dt
. (1.6)

For a constant current, the membrane potential grows from zero as a function of
time, U (t) = RI [1−exp(−t/τ)], where τ = RC is the time constant of the model.
One says that the neuron produces a spike when the membrane potential exceeds
a critical value, Uc. Immediately after, the membrane potential is set to zero (and
begins to grow again). In this model, the firing rate f (I ) is thus given by t−1

c , where
tc is the solution of U (t) = Uc. It follows that the firing rate exhibits a threshold
behaviour. In other words, the system works like a rectifier:

f (I ) =
{

0 for I ≤ Uc/R,[
τ log

(
RI

RI−Uc

)]−1
for I > Uc/R.

(1.7)

This response curve is illustrated in Figure 1.8 (a). The main point is that there is
a threshold below which the response is strictly zero. The response function looks
qualitatively like the piecewise linear function

g(b) = max{0, b}, (1.8)

shown in panel (b). Neurons with this activation function are called rectified linear
units, and the activation function (1.8) is called the ReLU function.
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1.4 Asynchronous Updates

Equations (1.2) and (1.5) are called synchronous update rules, because all neurons
are updated in parallel: at time step t all inputs sj (t) are stored. Then all neurons i
are simultaneously updated using the stored inputs. An alternative is to update only
a single neuron per iteration, for example the one with index m:

si (t + 1) =
{

g
(∑

j wmj s j (t)− θm
)

for i = m,

si (t) otherwise.
(1.9)

This is called an asynchronous update rule. Different schemes for choosing neurons
are used in asynchronous updating. One possibility is to arrange the neurons into
a two-dimensional array and to update them one by one, in a certain order. In the
typewriter scheme, for example, one updates the neurons in the top row of the array
first, from left to right, then the second row from left to right, and so forth. A second
possibility is to choose randomly which neuron to update.

If there are N neurons, then one synchronous step corresponds to N asynchro-
nous steps, on average. This difference in time scales is not the only difference
between synchronous and asynchronous updating. The asynchronous dynamics
can be shown to converge to a definite state in certain cases, while the synchro-
nous dynamics may fail to do so, resulting in periodic cycles that persist forever.

1.5 Summary

Artificial neural networks use a highly idealised model for the fundamental com-
putation unit: the McCulloch-Pitts neuron (Figure 1.5) is a binary threshold unit,
very similar to the model introduced originally by McCulloch and Pitts [6]. The
units are linked together by weights wi j , and each unit computes a weighted aver-
age of its inputs. The network performs these computations in sequence. Most
neural-network algorithms are built using the model described in this chapter.

1.6 Further Reading

Two accounts of the history of artificial neural networks are especially recom-
mended. First, the early history of the field is summarised in the introduction to
the second edition of Perceptrons: An Introduction to Computational Geometry by
Minsky and Papert [11], which came out in 1988. This book also contains a concise
bibliography, with comments by Minsky and Papert. Second, in a short note, Kanal
[23] reviews the work of Rosenblatt and puts it into context.
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