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NOTES ON AUTOMORPHISMS OF SURFACES OF
GENERAL TYPE WITH pg = 0 AND K2 = 7

YIFAN CHEN

Abstract. Let S be a smooth minimal complex surface of general type with

pg = 0 and K2 = 7. We prove that any involution on S is in the center of the

automorphism group of S. As an application, we show that the automorphism

group of an Inoue surface with K2 = 7 is isomorphic to Z2
2 or Z2 × Z4. We

construct a 2-dimensional family of Inoue surfaces with automorphism groups

isomorphic to Z2 × Z4.

§1. Introduction

The birational automorphism groups of projective varieties are exten-

sively studied. Nowadays we know that, for a projective variety of general

type X over an algebraically closed field of characteristic zero, the number

of birational automorphisms of X is bounded by cd · vol(X, KX), where cd
is a constant which only depends on the dimension d of X, and vol(X, KX)

is the volume of the canonical divisor KX (cf. [13]). Furthermore, we know

that c1 = 42 and c2 = 422 according to the classical Hurwitz theorem and

to Xiao’s theorem (cf. [25] and [26]). However, even in low dimensions, it is

usually nontrivial to calculate the automorphism groups of explicit varieties

of general type (for example, see [15], [23], [8] and [17]).

We focus on automorphisms of minimal smooth complex surfaces of

general type with pg = 0 and K2 = 7. Involutions on such surfaces have

been studied in [16] and [24]. All the possibilities of the quotient surfaces

and the fixed loci of the involutions are listed. In order to find new examples,

we have tried to classify such surfaces with commuting involutions in [10]

and succeeded in constructing a new family of surfaces in [9]. We briefly

recall the main results of [10]. Throughout the article, S denotes a minimal

smooth surface of general type with pg = 0 and K2 = 7 over C.
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Theorem 1.1. [10, Theorem 1.1] Assume that the automorphism group

Aut(S) contains a subgroup G= {1, g1, g2, g3}, which is isomorphic to

Z2
2. Let Rgi be the divisorial part of the fixed locus of the involution gi

for i= 1, 2, 3. Then the canonical divisor KS is ample and R2
gi =−1 for

i= 1, 2, 3. Moreover, there are only three numerical possibilities for the

intersection numbers (KSRg1 , KSRg2 , KSRg3): (a) (7, 5, 5), (b) (5, 5, 3) and

(c) (5, 3, 1). The intersection numbers (Rg1Rg2 , Rg1Rg3 , Rg2Rg3) have the

following values: (a) (5, 9, 7), (b) (7, 5, 1) and (c) (1, 3, 1), respectively.

In the above theorem, we adopt the convention that KSRg1 >KSRg2 >
KSRg3 , Rg1Rg2 6Rg1Rg3 in case (a) and Rg1Rg3 >Rg2Rg3 in case (b).

Actually, we have completely classified the surfaces in case (a) and case

(b) in [10]. But we do not know any example of the surfaces in case (c). One

may ask whether there are noncommutative involutions on S. Here we give

a negative answer.

Theorem 1.2. If α is an involution of S, then α is contained in the

center of Aut(S).

We prove the above theorem in Section 3. The key step is Theorem 3.1

which shows that any two involutions on S commute. Theorem 3.1 also has

the following corollary.

Corollary 1.3. Assume that (S, G) is a pair satisfying the assumption

of Theorem 1.1. Then g1, g2 and g3 are exactly all the involutions of Aut(S).

The corollary immediately implies that if Aut(S) contains a nontrivial

subgroup which is isomorphic to Zr2, then r = 1 or r = 2. We remark

that there are surfaces of general type with pg = 0, K2 = 8 and their

automorphism groups contain subgroups which are isomorphic to Z3
2 (cf.

[19, Example 4.2–4.4]).

As an application, we calculate the automorphism groups of the surfaces

in the case (a) of Theorem 1.1. These surfaces are those constructed by

Inoue in [14] who found the first examples of surfaces of general type with

pg = 0 and K2 = 7. They can be described as finite Galois Z2
2-covers of the

4-nodal cubic surface (see Example 4.1, which is from [19, Example 4.1]).

Theorem 1.4. Let S be an Inoue surface. Then Aut(S)∼= Z2
2 or

Aut(S)∼= Z2 × Z4. If S is a general Inoue surface, then Aut(S)∼= Z2
2.

Inoue surfaces form a 4-dimensional irreducible connected component

in the Gieseker moduli space of canonical models of surfaces of general
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type (cf. [3]). The proof of Theorem 1.4 actually shows that Aut(S)∼= Z2
2

for S outside a 2-dimensional irreducible closed subset of this connected

component (see Remark 4.3). We also exhibit a 2-dimensional family of

Inoue surfaces with Aut(S)∼= Z2 × Z4 (see Section 5). They are finite Galois

Z2 × Z4-covers of a 5-nodal weak Del Pezzo surface of degree two, which is

the minimal resolution of one node of the 6-nodal Del Pezzo surface of degree

two.

§2. Preliminaries

2.1 Fixed point formulas and rational curves

Let X be a smooth projective surface over the complex number field.

We only consider surfaces with pg(X) = q(X) = 0. In this case, X has

Picard number ρ(X) = 10−K2
X by Noether’s formula and the Hodge

decomposition. Also the expotential cohomology sequence gives Pic(X)∼=
H2(X, Z). Poincaré duality implies that the intersection form on Num(X) =

Pic(X)/Pic(X)Tors is unimodular.

Assume that X has a nontrivial automorphism τ . Denote by Fix(τ) the

fixed locus of τ . Let kτ be the number of isolated fixed points of τ and let Rτ
be the divisorial part of Fix(τ). Then Rτ is a disjoint union of irreducible

smooth curves. We denote by τ∗ :H2(X, C)→H2(X, C) the induced linear

map on the second singular cohomology group (note that Hk(X, C) = 0 for

k = 1, 3). The following proposition follows directly from the topological

and holomorphic Lefschetz fixed point formulas (cf. [1, p. 567]; see also

[11, Lemma 4.2]). The automorphism τ is called an involution if it is of

order 2.

Proposition 2.1. If τ is an involution, then kτ =KXRτ + 4 and

tr(τ∗) = 2−R2
τ . If τ is of order 3, then kτ = r1 + r2 = tr(τ∗) + 2 +KXRτ +

R2
τ and r1 + 2r2 = 6 + 3

2KXRτ − R2
τ

2 , where rj is the number of isolated fixed

points of τ of type 1
3(1, j) for j = 1, 2.

Throughout this article, we denote by S a smooth minimal complex

surface of general type with pg = 0 and K2
S = 7. Then ρ(S) = 3 and S

contains at most one (−2)-curve (this follows from Poincaré duality; cf. [10,

Lemma 2.5]). Here an m-curve (for m6 0) on a smooth surface stands for

an irreducible smooth rational curve with self-intersection number m. We

have a similar result for (−3)-curves.

Lemma 2.2. The surface S contains at most one (−3)-curve.
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Proof. Assume by contradiction that S contains two distinct (−3)-curves

C1 and C2. Then the intersection matrix of KS , C1 and C2 has determinant

−7(C1C2)2 + 2C1C2 + 69. Since KSC1 =KSC2 = 1, the algebraic index

theorem yields C1C2 6 3. Because the intersection form on Num(S) is

unimodular and ρ(S) = 3, −7(C1C2)2 + 2C1C2 + 69 is a square number.

Then we have C1C2 = 1 since C1C2 > 0.

The divisor KS + C1 + C2 has Zariski decomposition (see [21, Section 3])

P +N with P :=KS + 1
2(C1 + C2) the positive part and N := 1

2(C1 + C2)

the negative part. According to [21, Theorem 1.1], we have c2(S)− e(C1 +

C2)− 1
3P

2 − 1
4N

2 > 0. Here e(C1 + C2) denotes the topological Euler num-

ber of C1 + C2 and c2(S) denotes the second Chern number of S. It is clear

that e(C1 + C2) = 3 and the Noether formula gives c2(S) = 5. The inequality

above yields − 5
12 > 0, a contradiction.

Lemma 2.3. (See also the table in [16]) Let τ be an involution on S.

Then KSRτ ∈ {1, 3, 5, 7} and R2
τ =±1. If R2

τ = 1, then KS is ample and

Rτ is irreducible with KSRτ = 3.

Proof. For R2
τ =±1, see the proof of [4, Proposition 3.6]. According to

[2, Lemma 3.2 and Proposition 3.3(v)], kτ is an odd integer and kτ 6 11. So

KSRτ ∈ {1, 3, 5, 7} by Proposition 2.1.

Assume that R2
τ = 1. If KS is not ample, then S has a unique (−2)-curve

C. The intersection number matrix of KS , Rτ and C has determinant −14 +

2(KSRτ )2 − 7(RτC)2. The determinant equals 0, for, otherwise, the Chern

classes of KS , Rτ and C form a basis of H2(S, C) and they are τ∗-invariant,

a contradiction to tr(τ∗) = 2−R2
τ = 1 by Proposition 2.1. It follows that

KSRτ = 7 and (RτC)2 = 12. This is impossible. So KS is ample.

The algebraic index theorem gives (KSRτ )2 >K2
SR

2
τ = 7 and thus

KSRτ ∈ {3, 5, 7}. Let πτ : S→ Στ := S/〈τ〉 be the quotient morphism. We

have KS = π∗τ (KΣτ ) +Rτ .

If KSRτ = 5, then kτ =KSRτ + 4 = 9 and K2
Στ

= 1
2(KS −Rτ )2 =−1. So

Σ has 9 nodes. The minimal resolution Wτ of Στ has Picard number

11 and it contains 9 disjoint (−2)-curves. If Στ has Kodaira dimension

κ(Στ ) > 0, by [11, Proposition 4.1], Wτ is minimal. This contradicts

K2
Wτ

=−1. So κ(Στ ) =−∞ and Wτ is a rational surface. This contradicts

[11, Theorem 3.3]. Hence KSRτ 6= 5.

In the same manner we see that KSRτ 6= 7 (see also [20]). So KSRτ = 3.

Because KS is ample and Rτ is a disjoint union of smooth irreducible curves,

the algebraic index theorem shows that Rτ is irreducible.
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2.2 Abelian covers

We briefly recall some facts from the theory of abelian covers from [22].

Assume that π :X → Y is a finite abelian cover between projective varieties

with X normal and Y smooth. Let S be the Galois group of π and let S∗

be the group of characters of S. Then the action of S induces a splitting:

π∗(OX) =
⊕

χ∈S∗L−1
χ , where Lχ ∈ Pic(Y ) and L1 =OX . For each nontrivial

cyclic subgroup C of S and each generator ψ ∈ C∗, there is a unique effective

divisor DC,ψ of Y associated to the pair (C, ψ). The cover π is determined

by Lχ and DC,ψ with some specified relations (cf. [22, Theorem 2.1]). We

mainly apply this theory when S∼= Z2 × Z4 or S∼= Z2
2.

We set up some notation and conventions. Denote by H = 〈g1〉 × 〈g〉 a

group isomorphic to Z2 × Z4, where g1, g are generators of H, g1 is of order

2 and g is of order 4. Denote by H∗ = 〈χ〉 × 〈ρ〉 the group of characters of

H, where χ(g1) =−1, ρ(g) = i and χ(g) = ρ(g1) = 1. The group H contains a

unique subgroup G= {1, g1, g2, g3} which is isomorphic to Z2
2, where g2 = g2

and g3 = g1g2. Denote by χi ∈G∗ the nontrivial character orthogonal to gi
for i= 1, 2, 3.

When S =G, we simply set Li := Lχi and ∆i :=D〈gi〉,ψ, where ψ is the

unique nontrivial character of 〈gi〉. Similarly, when S =H, we set Di :=

D〈gi〉,ψ for 1 6= ψ ∈ 〈gi〉∗. For the cyclic group 〈g〉 ∼= Z4, we set Dg,±i :=D〈g〉,ψ
for ψ ∈ 〈g〉∗ with ψ(g) =±i. We adopt a similar convention for the cyclic

group 〈g1g〉 ∼= Z4.

In what follows, the indices i ∈ {1, 2, 3} should be understood as residue

classes modulo 3. Also linear equivalence and numerical equivalence between

divisors are denoted by ≡ and
num∼ , respectively.

Proposition 2.4. (cf. [6], [22, Theorem 2.1 and Corollary 3.1]) Let π :

X → Y be a finite abelian cover between projective varieties. Assume that

X is normal and Y is smooth.

(a) If the Galois group of π is G, then π is determined by the following

data: Divisors ∆i and Li (i= 1, 2, 3) such that

2Li ≡∆i+1 + ∆i+2, Li + ∆i ≡ Li+1 + Li+2 for i= 1, 2, 3,

(2.1)

and moreover the divisors ∆i are effective and ∆ := ∆1 + ∆2 + ∆3 is

reduced.

(b) If the Galois group of π is H, then π is determined by the following

reduced data (see [22, Proposition 2.1]): Divisors Lχ, Lρ, D1, D2, D3,
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Dg,i, Dg,−i, Dg1g,i and Dg1g,−i such that

2Lχ ≡ D1 +D3 +Dg1g,i +Dg1g,−i,

4Lρ ≡ 2D2 + 2D3 +Dg,i + 3Dg,−i +Dg1g,i + 3Dg1g,−i,(2.2)

and moreover the divisors D1, D2, D3, Dg,i, Dg,−i, Dg1g,i and Dg1g,−i are

effective and

D :=D1 +D2 +D3 +Dg,i +Dg,−i +Dg1g,i +Dg1g,−i

is reduced.

§3. Two involutions commute

We first deduce Corollary 1.3 and Theorem 1.2 from the following

theorem.

Theorem 3.1. Let S be a smooth minimal surface of general type with

pg(S) = 0 and K2
S = 7. Assume that Aut(S) contains two distinct involutions

α and β. Then αβ = βα.

Proof of Corollary 1.3. On the contrary, suppose that α is an involu-

tion of Aut(S) other than g1, g2, g3. Theorem 3.1 implies 〈α, g1, g2〉 ∼= Z3
2.

Therefore, there are seven involutions θ in 〈α, g1, g2〉 and seven numbers

KSRθ ∈ {1, 3, 5, 7} by Lemma 2.3. Since any two involutions generate a

subgroup of type Z2
2, by Theorem 1.1, we conclude that each of the three

numbers 1, 3 and 7 occurs at most once. Furthermore, Theorem 1.1(a) also

implies that if 7 occurs, then the other six numbers are all equal to 5. Hence

there are at least five involutions θ for which KSRθ = 5. There must be

a subgroup of type Z2
2 containing three of these five, a contradiction to

Theorem 1.1.

Proof of Theorem 1.2. We may assume that Aut(S) contains at least

two involutions. These two involutions generate a subgroup G∼= Z2
2 by The-

orem 3.1. We still denote by g1, g2 and g3 the involutions of G. Let τ be any

automorphism of S. Corollary 1.3 gives τGτ−1 =G. Since τ(Rgi) =Rτgiτ−1 ,

we have KSRgi =KSRτgiτ−1 and RgiRgi+1 =Rτgiτ−1Rτgi+1τ−1 for i= 1, 2, 3.

From this observation and Theorem 1.1, we conclude that τgiτ
−1 = gi for

i= 1, 2, 3 and complete the proof.

The remaining of this section is devoted to prove Theorem 3.1. We

assume by contradiction that αβ 6= βα. We will deduce a contradiction
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through a sequence of lemmas and propositions. We use the same notation

as Section 2. Recall that tr(α∗) = 2−R2
α, R2

α =±1 and kα =KSRα + 4 (see

Proposition 2.1 and Lemma 2.3).

Lemma 3.2. The order of αβ is an odd integer.

Proof. Assume by contradiction that the order of αβ is 2k and k > 2. Let

γ := (αβ)k = (βα)k. Then γ is an involution and γα= (αβ)kα= α(βα)k =

αγ. Therefore, 〈γ, α〉 ∼= Z2
2. Then R2

α =R2
γ =−1 by Theorem 1.1. Similarly,

γβ = βγ and R2
β =R2

γ =−1. So tr(α∗) = tr(β∗) = 3.

Let ι := αβα. Note that α, β and ι are three distinct involutions in Aut(S)

and

α(Rι) =Rβ, α(Rβ) =Rι, α(Rα) =Rα.(3.1)

Recall that dimH2(S, C) = ρ(S) = 3. Now c1(Rα), c1(Rβ) and c1(Rι) are

not a basis of H2(S, C), for otherwise, (3.1) implies tr(α∗) = 1, which is a

contradiction to tr(α∗) = 3.

So the intersection number matrix of Rα, Rβ and Rι has determinant zero.

That is 2x2y + 2x2 + y2 − 1 = 0, where x :=RαRι =RαRβ (see (3.1)) and

y :=RβRι. Observe that y > 0; otherwise, Rβ =Rι and β = ι, a contradic-

tion to αβ 6= βα. It follows that x= 0, y = 1 and the nontrivial linear relation

among c1(Rα), c1(Rβ) and c1(Rι) is c1(Rβ) + c1(Rι) = 0. This contradicts

the fact that the divisor Rβ +Rι is strictly effective. Hence the order of αβ

is an odd integer.

Recall that our aim is to deduce a contradiction from the assumption

αβ 6= βα. According to the previous lemma, from now on, we may assume

that the order r of αβ is an odd prime. In fact, if r = p(2t+ 1) for some

prime p> 3 and some integer t > 0, then α′ := (αβ)tα and β′ := (βα)tβ are

involutions and the order of α′β′ is p. In particular, we have α′β′ 6= β′α′. We

may replace α, β by α′, β′ and continue our discussion.

The subgroup 〈α, β〉 of Aut(S) is isomorphic to the dihedral group of

order 2r. Let Dr denote this subgroup. Since r is a prime, all the involutions

in Dr are pairwise conjugate and Dr has exactly one nontrivial normal

subgroup 〈αβ〉, which is the commutator subgroup. Any irreducible linear

representation of Dr has dimension at most two, and any irreducible 2-

dimensional representation of Dr is isomorphic to the matrix representation

given by (
0 1
1 0

)
and

(
c 0
0 c−1

)
for some c 6= 1 and cr = 1.
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Lemma 3.3. With the same assumption as above, we have

(a) the canonical KS is ample;

(b) the curves Rα and Rβ generate a pencil |F | of curves with F 2 = 1 and

KSF = 3, and |F | has a simple base point p;

(c) the group Dr acts faithfully on |F |.

Proof. Set k := 1
2(r − 1) and set γ := α(βα)k = β(αβ)k. Then α, β and

γ are three distinct involutions and they are pairwise conjugate. Therefore,

KSRα =KSRβ =KSRγ and R2
α =R2

β =R2
γ . Since γα= βγ and γβ = αγ,

γ(Rα) =Rβ, γ(Rβ) =Rα, γ(Rγ) =Rγ .(3.2)

We claim that R2
γ =R2

α =R2
β = 1. Otherwise, as in the proof of

Lemma 3.2, we could deduce a contradiction by calculating the determinant

of the intersection number matrix of Rα, Rβ and Rγ and by calculating

tr(γ∗).

Then (a) follows from Lemma 2.3. Lemma 2.3 also gives KSRα =KSRβ =

3. The algebraic index theorem implies (Rα +Rβ)2 6 62

7 and thus RαRβ 6 1.

Since R2
α =R2

β = 1, the equality holds and Rα
num∼ Rβ. Similarly, we have

Rγ
num∼ Rα.

Let p be the unique intersection point of Rα and Rγ . Then (3.2) implies

that Rα, Rβ and Rγ pairwise intersect transversely at the point p. Recall

that Pic(S)∼=H2(S, Z) and Num(S) = Pic(S)/Pic(S)Tors. Let m be the

smallest positive integer such that mRα ≡mRγ ≡mRβ. Let ε : S̃→ S be

the blowup at p, let E be the exceptional curve and let R̃α be the strict

transform of Rα, and so forth. Then |mR̃α| induces a fibration f : S̃→ P1

and mR̃γ , mR̃α and mR̃β are fibers of f .

The fibration f has E as a m-section. If m> 2, we easily obtain a

contradiction by applying the Hurwitz formula for f |E : E→ P1. Therefore,

m= 1, Rα ≡Rγ ≡Rβ and h0(S,OS(Rα)) = 2. And (b) is proved.

For (c), first note that p is a fixed point of Dr. So Dr acts faithfully

on the tangent space TpS of S to the point p. According to the discussion

before the lemma, this action is irreducible. Because r is an odd number,

the corresponding action of Dr on P(TpS) is faithful. Since F 2 = 1, p is a

smooth point of F and thus TpF is a 1-dimensional linear subspace of TpS

for any F ∈ |F |. From this, we conclude that Dr acts faithfully on |F |.
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Because Dr acts faithfully on |F | ∼= P1, every automorphism has exactly

two invariant curves in |F |. For every involution θ ∈Dr, one of the two θ-

invariant curves in |F | is Rθ. Denote the other one by Fθ. Then Fθ contains

the seven isolated fixed points of θ. Denote by F0 one of the two αβ-invariant

curves in |F |. Then the other one is α(F0)(= β(F0)) and Fix(αβ)⊆ F0 ∪
α(F0). We shall show that F0 is not 2-connected. But first we need the

following lemma about the action of Dr on the singular cohomology group.

Lemma 3.4. The automorphism αβ acts trivially on H2(S, C). In

particular, the quotient surface S/Dr has Picard number 2.

Proof. We have seen that α, β and thus Dr act trivially on the 2-

dimensional linear subspace generated by c1(KS) and c1(F ). Because

H2(S, C) is 3-dimensional and αβ is contained in the kernel of any 1-

dimensional representation of Dr, αβ acts trivially on H2(S, C). Hence the

invariant subspace of H2(S, C) for the Dr-action is 2-dimensional and S/Dr

has Picard number 2.

We analyze the members of the pencil |F | which are not 2-connected.

This will help us to determine the base locus of the linear system |KS + F |
in the proof of Proposition 3.6 and to find a basis of Num(S). We continue

to use the fact that S has Picard number 3.

Lemma 3.5. Assume that |F | contains a curve which is not 2-connected.

Then

(a) the curves in |F | which are not 2-connected are exactly the αβ-invariant

curves F0 and α(F0);

(b) F0 =A+B, where A and B are irreducible curves, and KSA=

2, KSB = 1, A2 = 0, B2 =−1 and AB = 1. Moreover, A contains the

base point p of |F |.

Proof. Assume that A+B ∈ |F |, A> 0, B > 0 and AB 6 1. Because KS

is ample and KSF = 3, we may assume KSA= 2 and KSB = 1. Then B is

irreducible. The algebraic index theorem and the adjunction formula imply

A2 6 0 and B2 6−1. In particular, by Lemma 3.4, αβ(B).B =B2 < 0 and

thus αβ(B) =B. Hence A+B is one of the αβ-invariant curves F0 and

α(F0).

Because A2 +B2 = F 2 − 2AB >−1, the argument above yields A2 = 0,

B2 =−1 and AB = 1. Then FA= 1 and FB = 0. So the simple base point

p of |F | belongs to A. It remains to show that A is irreducible.
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Assume A=A1 +A2 with A1 > 0 and A2 > 0. Because KSA= 2 and

KS is ample, KSA1 =KSA2 = 1 and both A1 and A2 are irreducible. We

now calculate the intersection numbers A2
1, A

2
2 and A1A2. For i= 1, 2, the

algebraic index theorem and the adjunction formula imply A2
i ∈ {−1,−3}.

Note that A2
i =−3 if and only if Ai is a (−3)-curve. Since α(F0) ∩ F0 consists

of one point p, α(Ai) 6=Ai for i= 1, 2. We conclude that A2
1 =A2

2 =−1 by

Lemma 2.2. Then A1A2 = 1
2(A2 −A2

1 −A2
2) = 1.

Because FA= 1, we may assume FA1 = 1 and FA2 = 0. It follows

that p ∈A1, p 6∈A2 and A2B =A2(F −A1 −A− 2) = 0. Since p 6∈A2 ∪B,

S contains four disjoint curves B, α(B), A2 and α(A2), all with self-

intersection number (−1), a contradiction to ρ(S) = 3. Therefore A is

irreducible.

The following proposition determines the order of the automorphism αβ.

Proposition 3.6. The pencil |F | contains a curve which is not 2-

connected and the automorphism αβ is of order 3.

Proof. Let F be any curve in |F |. The long exact sequence of cohomology

groups associated to the exact sequence 0→OS(KS)→OS(KS + F )→
OF (KF )→ 0 shows that h0(S,OS(KS + F )) = h0(F,OF (KF )) = pa(F ) = 3

and the trace of |KS + F | on F is complete. Thus |KS + F | defines a rational

map h : S 99K P2 and h is defined on F whenever |KF | is base point free. In

particular, h is defined on the smooth curve Rα (∈ |F |) and h(Rα) is the

canonical image of Rα. The same statement holds by replacing α by β.

Because there is a Dr-linearization on OS(KS + F ), the rational map h

is Dr-equivariant. Therefore, h(Rα) is contained in the fixed locus of the

action of α on P2. Note that an involution on P2 has a line and a point

as the fixed locus. It follows that α acts trivially on P2 because h(Rα) is a

conic curve or a quartic curve. Similarly, β and thus Dr act trivially on P2.

Therefore, h : S 99K P2 factors through the quotient morphism S→ S/Dr.

Note that KS is ample, F is nef and (KS + F )2 = 14. First assume that

h is a morphism. Then it is finite and it has degree 14. We thus get |Dr|=
deg h and r = 7. It follows that the induced morphism h′ : S/Dr→ P2 is

an isomorphism. So the invariant linear subspace of H2(S, C) for the Dr-

action is isomorphic to H2(P2, C), which is 1-dimensional. This contradicts

Lemma 3.4 and thus h is not a morphism.

We now analyze the base locus of h. If F is 2-connected, |KF | is base

point free by [5, Theorem 3.3] and h is defined on F . Hence the base locus

of |KS + F | is contained in the curves of |F |, which are not 2-connected.
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According to Lemma 3.5, |F | contains exactly two such curves F0 =A+B

and α(F0). Similar arguments as above show that the trace of |KS +A|
(respectively |KS +B|) on A (respectively B) is complete. Since pa(A) = 2

and pa(B) = 1, |KA| and |KB| are base point free by [5, Theorem 3.3].

Because |KS + F | ⊇ |KS +A|+B, |KS +B|+A, |KS + F | has exactly two

base points q :=A ∩B and α(q) = α(A) ∩ α(B).

Therefore, h is a finite morphism outside the base locus and deg h=

(KS + F )2 − 2 = 12. Since h factors through S/Dr, we have |Dr|= 6 and

r = 3.

According to Lemma 3.5 and Proposition 3.6, the αβ-invariant curve F0

has A and B as irreducible components with AB = 1. It is easy to check that

F, A and α(A) generate Num(S) and KS
num∼ F +A+ α(A). We shall show

that KS is indeed linearly equivalent to F +A+ α(A), hence contradict

pg(S) = 0 and complete the proof of Theorem 3.1. For this purpose, we turn

to the quotient surface S/D3 and analyze Fix(αβ).

Proposition 3.7. The automorphism αβ has B ∪ α(B) as the diviso-

rial part of the fixed locus and it has five isolated fixed points p, q1, q2, α(q1)

and α(q2), where q1 and q2 are contained in A. Each isolated fixed point of

αβ is of type 1
3(1, 2).

Proof. We have seen that F0 and α(F0) are αβ-invariant and Fix(αβ)⊆
F0 ∪ α(F0). Moreover, the curves A, α(A), B and α(B) are αβ-invariant.

Also note that a point q is a fixed point (respectively an isolated fixed

point) of αβ if and only if so is the point α(q)(= β(q)).

We claim that neither A nor α(A) is contained in Fix(αβ). Otherwise,

both A and α(A) are contained in Fix(αβ). Since A ∩ α(A) = p, this

contradicts the fact that the divisorial part of αβ is a disjoint union of

smooth curves. The claim is proved.

Now assume by contradiction that B is not contained in Fix(αβ). Then

nor is α(B) and Fix(αβ) consists of isolated fixed points. Then Fix(αβ) has

five fixed points by Proposition 2.1 and Lemma 3.4. Three of these points

are p, q :=A ∩B and α(q). Denote the other two by p1(∈ F0) and by α(p1).

We must have p1 ∈B. Otherwise, the nontrivial automorphism αβ|B has

exactly one fixed point q, which is a smooth point of B since AB = 1. This

is impossible because pa(B) = 1. Therefore, p1 ∈B. It follows that αβ|A has

exactly two fixed points p and q, which are smooth points of A. Note that A

has at most two singular points since pa(A) = 2. Because the singular locus

of A is αβ-invariant and αβ|A has order 3, we conclude that A is indeed
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smooth. However, the Hurwitz formula shows that αβ|A has either one or

four fixed points, a contradiction.

So B and α(B) are contained in Fix(αβ). In particular, B and α(B)

are smooth curves. Then Fix(αβ) \ {B ∪ α(B)} consists of five isolated

fixed points and each fixed point is of type 1
3(1, 2) by Proposition 2.1 and

Lemma 3.4. These points must be contained in A ∪ α(A).

Now we are able to describe the quotient map π : S→ Y := S/D3, where

D3 = {1, α, β, γ, αβ, βα} and γ := αβα= βαβ. The divisorial parts and

isolated fixed points of cyclic subgroups of D3 are as follows (see the

discussion before Lemma 3.4 and Proposition 3.7):

cyclic subgroups divisorial part isolated fixed points
〈α〉 (resp. 〈β〉, 〈γ〉)∼= Z2 Rα (resp. Rβ, Rγ) 7 points on Fα (resp. Fβ, Fγ)

〈αβ〉 ∼= Z3 B, α(B) p, q1, q2, α(q1), α(q2)

Note that p is the unique point with the stabilizer D3. From the action

of D3 on the tangent space TpS (see the proof of Lemma 3.3(c)), it is easily

seen that π(p) is a smooth point of Y . We conclude that Y has seven nodes

and two A2-singularities π(q1) and π(q2). In particular, Y is Gorenstein.

The ramification formula gives

KS = π∗KY +Rα +Rβ +Rγ + 2B + 2α(B)≡ π∗KY + 3F + 2B + 2α(B)

(3.3)

and thus K2
Y = 1

6(KS − 3F − 2B − 2α(B))2 =−3.

Let B′ = π(B). Then B′ is contained in the smooth locus of Y . Note

that B′ is a smooth elliptic curve and π∗B′ = 3B + 3α(B). So B′2 =−3

and KYB
′ = 3. Since −KYB

′ =K2
Y =B′2, −KY

num∼ B′ by Lemma 3.4.

This implies that H0(mKY ) = 0 for m> 1. As the quotient of S, Y has

irregularity q(Y ) = 0. Therefore, Y is a rational surface. Note that linear

equivalence and numerical equivalence between divisors are the same on a

smooth rational surface. Since Y contains only rational double points and

B′ is contained in the smooth locus of Y , we have −KY ≡B′ indeed. Then

by (3.3),

KS ≡ π∗(−B′) + 3F + 2B + 2α(B)

≡ (−3B − 3α(B)) + 3F + 2B + 2α(B)

≡ F +A+ α(A).

We obtain a contradiction to pg(S) = 0 and complete the proof of Theo-

rem 3.1.
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Figure 1.

Configurations of the points p1, . . . , p
′
3.

§4. Inoue surfaces

As mentioned in the introduction, Inoue surfaces have been the first

examples of surfaces of general type with pg = 0 and K2 = 7 (cf. [14]). Here

we describe them as finite Galois Z2
2-covers of the 4-nodal cubic surface,

following [19, Example 4.1]. At the end of this section, we prove Theorem 1.4.

Example 4.1. Let σ :W → P2 be the blowup of the six vertexes

p1, p2, p3, p
′
1, p
′
2, p
′
3 of a complete quadrilateral on P2 (see Figure 1). Denote

by Ei (respectively E′i) the exceptional curve of W over pi (respectively

p′i) and denote by L the pullback of a general line by σ. Then Pic(W ) =

ZL⊕
⊕3

i=1(ZEi ⊕ ZE′i).
The surface W has four disjoint (−2)-curves. They are the proper

transforms of the four sides of the quadrilateral and their divisor classes

are

Zi ≡ L− Ei − E′i+1 − E′i+2, Z ≡ L− E1 − E2 − E3.

Let η :W → Σ be the morphism contracting there curves. Then Σ is the

4-nodal cubic surface.

Let Γ1, Γ2 and Γ3 be the proper transforms of the three diagonals of the

quadrilateral, that is, Γi ≡ L− Ei − E′i for i= 1, 2, 3. Note that they are

exactly the (−1)-curves which are disjoint from any (−2)-curve. For each

i= 1, 2, 3, W has a pencil of rational curves |Fi| := |2L− Ei+1 − Ei+2 −
E′i+1 − E′i+2|. Observe that −KW ≡ Γ1 + Γ2 + Γ3 ≡ Γi + Fi for i= 1, 2, 3.

We define three effective divisors on W

∆1 := Γ1 + F2 + Z1 + Z3, ∆2 := Γ2 + F3,

∆3 := Γ3 + F1 + F ′1 + Z2 + Z.(4.1)
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We require that Fi (i= 1, 2, 3) and F ′1 are smooth 0-curves such that the

divisor ∆ := ∆1 + ∆2 + ∆3 has only nodes. It is directly shown that there

are divisors L1, L2 and L3 satisfying (2.1) in Proposition 2.4. Then there is

a smooth finite G-cover π : V →W branched on the divisors ∆1,∆2 and ∆3.

The (set theoretic) inverse image of a (−2)-curve under π is a disjoint union

of two (−1)-curves. Let ε : V → S be the blowdown of these eight (−1)-

curves. Then there is a finite G-cover π : S→ Σ such that the following

diagram (4.2) commutes.

(4.2)

The surface S is a smooth minimal surface of general type with pg(S) = 0

and K2
S = 7. It is called an Inoue surface. When the curves F1, F

′
1, F2 and

F3 vary, we obtain a 4-dimensional family of Inoue surfaces.

Lemma 4.2. Let W be as in Example 4.1.

(a) Let α be an automorphism on W . If the induced map α∗ :H2(W, C)→
H2(W, C) is the identity, then α= IdW .

(b) Let αP2 be the involution on P2 such that αP2(pk) = p′k for k = 1, 3. It

induces an involution α0 on W . Then Fix(α0) consists of the (−1)-

curve Γ2 and three isolated fixed points Γ1 ∩ Γ3, E2 ∩ F ∗3 and E′2 ∩ F ∗3 ,

where F ∗3 is the unique smooth α0-invariant curve in the pencil |F3|=
|2L− E1 − E′1 − E2 − E′2|.

Proof. For (a), the assumption implies that the (−1)-curves Ei and E′i
(i= 1, 2, 3) are α-invariant. So α comes from an automorphism on P2 which

has p1, . . . , p
′
3 as fixed points and thus it is the identity morphism.

For (b), note that Fix(αP2) = p2p′2 ∪ {p13 := p1p′1 ∩ p3p′3} and

σ(Fix(α0)) = Fix(αP2). Because σ−1(p2p′2) = E2 ∪ E′2 ∪ Γ2 and the divisorial

part of α0 is smooth, Fix(α0) has Γ2 as the divisorial part. Then α0 has

three isolated fixed points by Proposition 2.1. The point σ−1(p13) = Γ1 ∩ Γ3

is an isolated fixed point of α0. Note that α0 induces a nontrivial action

on the pencil |F3|. So |F3| contains exactly two α0-invariant curves Γ1 + Γ2

and F ∗3 . Since E2 and E′2 are also α0-invariant, the intersection points

E2 ∩ F ∗3 and E′2 ∩ F ∗3 are isolated fixed points of α0.
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Proof of Theorem 1.4. Let τ ∈Aut(S). By Theorem 1.2, Fix(gi) is τ -

invariant for i= 1, 2, 3 and τ induces an automorphism αΣ on the quotient

surface Σ = S/G. So the branch locus π(Fix(gi)) (for i= 1, 2, 3) of π : S→ Σ

is αΣ-invariant.

Assume that τ 6∈G, that is, αΣ 6= IdΣ. The automorphism αΣ lifts to the

minimal resolution W of Σ. Denote by α the induced automorphism on

W . Then ∆1,∆2,∆3 (see the diagram (4.2)) are α-invariant because ∆i

is the inverse image of π(Fix(gi)) under the morphism η :W → Σ. These

divisors are given by (4.1). It follows that the (−1)-curves Γ1, Γ2, Γ3, the 0-

curves F2, F3 and the curves F1 + F ′1, Z1 + Z3, Z2 + Z are α-invariant. Note

that the Chern classes of Γ1, Γ2, Γ3 and the Chern classes of Z1, Z2, Z3, Z

generate H2(S, C). The argument above implies that (α2)∗ = (α∗)2 is the

identity morphism. Then α is an involution by Lemma 4.2.

Since Fi ≡ Γi+1 + Γi+2, the fibration fi :W → P1 induced by |Fi| is α-

equivalent for i= 1, 2, 3. Note that f2 has three singular fibers Γ1 + Γ3, Z1 +

2E′2 + Z3 and Z2 + 2E2 + Z. According to the discussion above, these three

fibers are α-invariant. Because any nontrivial automorphism on P1 has at

most two fixed points, α respects the fibration f2, that is, f2 = f2α. In

particular, E2 and E′2 are α-invariant.

Note that f1 has three singular fibers Γ2 + Γ3, Z1 + 2E1 + Z and Z2 +

2E′1 + Z3. If f1 = f1α, then all the (−2)-curves Z1, Z2, Z3 and Z are α-

invariant since α also respects f2. Then α∗ is the identity morphism and

so is α by Lemma 4.2, a contradiction to our assumption. So α induces a

nontrivial action on |F1| ∼= P1. Since the singular Γ2 + Γ3 is α-invariant, α

must permute the other two singular fibers of f1. Hence α(E1) = E′1 and

α(E′1) = E1. Similarly, by considering the action of α on |F3|, we see that

α(E3) = E′3 and α(E′3) = E3.

We conclude that α is the involution α0 in Lemma 4.2. We actually prove

that if Aut(S) 6=G, then Aut(S)/G∼= 〈α0〉, and in the Equation (4.1), the

curve F3 in ∆2 is indeed the curve F ∗3 in Lemma 4.2(b) and F ′1 = α0(F1) in

∆3. Combining with Theorem 1.2 and Corollary 1.3, we complete the proof

of Theorem 1.4.

Remark 4.3. When the curves F1 and F2 vary, the Inoue surfaces

corresponding to the branch divisors (4.1) with F3 = F ∗3 and F ′1 = α0(F1)

form a 2-dimensional irreducible closed subset of the total 4-dimensional

family of Inoue surfaces. Also Lemma 4.2 shows that W/〈α0〉 has three

nodes. Moreover, it contains three (−2)-curves in the smooth locus and

these curves are the images of Z1 + Z3, Z2 + Z and Γ2 under the quotient
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Figure 2.

Configurations of the points q, q1, . . . , q
′
3.

map from W to W/〈α0〉. This observation motivates us to construct some

special Inoue surfaces in the next section.

§5. Special Inoue surfaces

We construct a 2-dimensional family of Inoue surfaces with automorphism

groups isomorphic to Z2 × Z4. We use the notation in Section 2.2.

Let q, q1, q2, q3, q
′
1, q
′
2 and q′3 be seven points on P2 with the configuration

as in Figure 2.

Let ν : Y → P2 be the blowup of these points. Denote by Qi (respectively

Q′i, Q) the exceptional curve of Y over qi (respectively q′i, q) and by L the

pullback of a general line by ν. Then Pic(W ) = ZL⊕ ZQ⊕ (
⊕3

i=1ZQi ⊕
ZQ′i). The surface Y has six disjoint (−2)-curves and their divisor classes

are:

Mi = L−Q−Qi −Q′i, Ni = L−Q′i −Qi+1 −Qi+2 for i= 1, 2, 3.

Let Λi be the proper transform of the line q′i+1q
′
i+2, that is, Λi ≡ L−Q′i+1 −

Q′i+2 for i= 1, 2, 3.

We describe four base-point-free pencils of rational curves on Y . They are

|Φ| := |2L−Q−Q1 −Q2 −Q3| and |Φi| := |2L−Q−Qi −Q′i+1 −Q′i+2|
(i= 1, 2, 3). The singular members of |Φ| are M1 + 2Q′1 +N1, M2 + 2Q′2 +

N2, M3 + 2Q′3 +N3 and those of |Φi| (fixed i) are Λi +Mi +Q′i, Mi+1 +

2Qi+1 +Ni+2, Mi+2 + 2Qi+2 +Ni+1. Also note that Φi +Ni ≡−KY for

i= 1, 2, 3.

Let ζ : Y →Υ be the morphism contracting the five (−2)-curves

M1, M2, N2, M3 and N3. Then Υ has five nodes and contains a unique (−2)-

curve ζ(N1) in the smooth locus.
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Now we define the following effective divisors on Y :

D1 := Λ1 + Φ1 +M3, D2 := Λ2, D3 :=Q′1 + Φ +N3,

Dg,i :=N1 +N2, Dg,−i :=M2, Dg1g,i := 0, Dg1g,−i :=M1.(5.1)

We also define the following divisors:

Lχ := 4L− 2Q− 2Q1 −Q2 −Q′2 −Q3 − 2Q′3,

Lρ := 4L− 2Q− 2Q1 −Q′1 − 2Q2 −Q′2 −Q3 −Q′3.(5.2)

We require that Φ ∈ |Φ| and Φ1 ∈ |Φ1| are smooth curves such that the

divisor D =D1 + . . .+Dg1g,−i has only nodes. These divisors satisfy (2.2)

in Proposition 2.4. So there is a finite Galois H-cover π̂ :X → Y and X is

normal.

We use [22, Propositions 3.1 and 3.3] to analyze the singular locus of X.

Lemma 5.1. Let m := Λ2 ∩M2 and n := Λ2 ∩N2.

(a) The inverse image π̂−1(m) (resp. π̂−1(n)) consists of two points m̂1

and m̂2 (resp. n̂1 and n̂2), each of which has stabilizer 〈g〉.
(b) The points m̂1, m̂2, n̂1 and n̂2 are exactly the singularities of X and

they are nodes.

(c) The curve π̂−1(M2) is a disjoint union of two irreducible smooth curves

M̂21 and M̂22, and M̂2j has self-intersection number (−1
2) and m̂j ∈

M̂2j for j = 1, 2. The curve π̂−1(N2) consists of two irreducible smooth

curves N̂21 and N̂22, and N̂2j has self-intersection number (−1
2) and

n̂j ∈ N̂2j for j = 1, 2.

(d) The curve π̂−1(M3) is a disjoint union four (−1)-curves and so is

π̂−1(N3).

(e) The curve π̂−1(M1) is a (−1)-curve.

Proof. [22, Proposition 3.1] shows that X is smooth outside π̂−1(m)

and π̂−1(n). Note that M2 intersects only one irreducible component of

D −M2; that is M2Λ2 = 1. Because Λ2 =D2, M2 6Dg,−i and [H : 〈g〉] = 2,

we conclude that π̂−1(m) consists of two points, each of which has stabilizer

〈g〉. These two points are nodes of X according to [22, Proposition 3.3]. For

the same reason, we have π̂−1(M2) = M̂21 ∪ M̂22 with M̂21 ∩ M̂22 = ∅ and

π̂|
M̂2j

: M̂2j →M2 is an isomorphism. We also have π̂∗(M2) = 4M̂21 + 4M̂22.

Thus (a)–(c) follow from the discussion above. Similar arguments apply to

(d) and (e). For (d), just note that M3(6D1) and N3(6D3) are connected

irreducible components of D. And (e) follows from the observation that
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M1(=Dg1g,−i) intersects exactly two irreducible components of D −M1 and

M1D1 =M1D3 = 1.

Now we explain how to obtain the smooth minimal model of X. On the

minimal resolution X̃ of X, the strict transforms of M̂21, M̂22, N̂21 and N̂22

are (−1)-curves. Each of these (−1)-curves intersects transversely at one

point with exactly one of the four (−2)-curves over the nodes of X. So we

can contract the four curves M̂21, M̂22, N̂21 and N̂22 of X to smooth points

on another surface.

Let θ :X → S be the morphism contracting the disjoint union of the nine

(−1)-curves π̂−1(M3), π̂−1(N3), π̂−1(M1) and the four curves M̂21, M̂22, N̂21

and N̂22. Then there is a smooth H-cover π : S→Υ such that the outer

square of the following diagram (5.3) commutes.

(5.3)

We confirm that S is the smooth minimal model of X by the following

proposition.

Proposition 5.2. The surface S is an Inoue surface.

Proof. From [22, Theorem 2.1], we obtain Lρ2 = 2Lρ −D2 −D3 −
Dg,−i −Dg1g,−i. Then 2Lρ2 ≡Dg,i +Dg,−i +Dg1g,i +Dg1g,−i =M1 +N1 +

M2 +N2 by Proposition 2.4(b) and (5.2). Let π̂1 :X1→ Y be the double

cover branched along the four disjoint (−2)-curves M1, N1, M2 and N2. Note

that ρ2 is the unique character of H∗ which is trivial on G. So the Galois

group of π̂1 is H/G and the cover π̂ factors through a G-cover π̂2 :X →X1.

We have 2KX1 = π̂∗1(2KY +M1 +N1 +M2 +N2) and K2
X1

= 0. The

inverse images of M1, N1, M2 and N2 under π̂1 are (−1)-curves. Also

π̂−1
1 (M3) is a disjoint union of two (−2)-curves and so is π̂−1

1 (N3). Let

δ :X1→W be the morphism contracting three (−1)-curves π̂−1
1 M1, π̂

−1
1 M2

and π̂−1
1 N2. Then W is a weak Del Pezzo surface of degree three.

Let θ2 :X → V be the morphism contracting the curves π̂−1(M1),

π̂−1(M2) and π̂−1(N2). We obtain a smooth Galois finite G-cover π : V →W
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and a commutative diagram (5.3). The branch locus of π is

∆1 = Λ1 + Φ1 +M3, ∆2 =N1 + Λ2, ∆3 =Q′1 + Φ +N3.(5.4)

Here we denote by Λ1 = δπ̂−1
1 (Λ1), and so forth. We claim that

(i) Λ1, N1 and Q′1 are (−1)-curves;

(ii) Φ1 and Λ2 are 0-curves, and Φ is a disjoint union of two 0-curves in

the same linear system;

(iii) M3 (N3) is a disjoint union of two (−2)-curves; these two (−2)-curves

are disjoint from the (−1)-curves in (i);

(iv) Λ1 + 1
2Φ, N1 + Φ1 and Q′1 + Λ2 and are linearly equivalent to −KW .

For example, because the general member of |Φ| is disjoint from M1 +

N1 +M2 +N2, the curve π̂−1
1 (Φ) is a disjoint union of two 0-curves in the

same linear system and so is Φ. In particular, KWΦ =−4 and 1
2Φ is well

defined in Pic(W ). For the (−1)-curve Λ1 on Y , since Λ1M1 = Λ1N1 = 1

and Λ1M2 = Λ1N2 = 0, the curve π̂−1
1 (Λ1) is a (−2)-curve, and it intersects

with π̂−1
1 (M1) transversely at one point and it is disjoint from π̂−1

1 (M2) and

π̂−1
1 (N2). So Λ1 is a (−1)-curve. Moreover, we have Λ1Φ = π̂∗1(Λ1)π̂∗1(Φ) =

2Λ1Φ = 4. Finally, the algebraic index theorem yields Λ1 + 1
2Φ≡−KW .

Other statements can be proved in the same manner.

Comparing (5.4) to (4.1), we conclude that S is an Inoue surface.

When Φ and Φ1 vary, we obtain a 2-dimensional family of Inoue surfaces

with automorphism groups isomorphic to Z2 × Z4.

Remark 5.3. We may directly show that KS is ample, K2
S = 7 and

pg(S) = 0 for the surface S in (5.3). According to the proof of [22,

Proposition 4.2], we have

4KX = π̂∗(4KY + 2D1 + 2D2 + 2D3 + 3Dg,i + 3Dg,−i + 3Dg1g,i + 3Dg1g,−i)

= π̂∗(−KY + Φ + Φ1) + π̂∗(M1 + 2M2 + 2N2 + 2M3 + 2N3).

It follows that 4KS = π∗(−KΥ + φ+ φ1) and K2
S = 7, where |φ| and |φ1|

are base-point-free pencils on Υ induced by |Φ| and |Φ1|. The linear system

| −KY + Φ + Φ1| is base point free, and the corresponding morphism

contracts exactly the nodal curves M1, M2, N2, M3 and N3. Hence | −KΥ +

φ+ φ1| is ample and so is KS . For each ψ ∈H∗, we can calculate Lψ by

[22, Theorem 2.1] and then easily show that H0(Y,OY (KY + Lψ)) = 0. It

follows that pg(S) = pg(X) = 0 by [22, Proposition 4.1].
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Remark 5.4. We remark that Theorem 1.4 contributes to the study

of the moduli space of the Inoue surfaces. Let Mcan
1,7 be the Gieseker

moduli space of canonical models of surfaces of general type with χ(O) = 1

and K2 = 7 (cf. [12]). Let S be any Inoue surface. Denote by [S] the

corresponding point in Mcan
1,7 and by B(S) be the base of the Kuranishi

family of deformations of S. Recall the facts that the tangent space of

B(S) is H1(S,ΘS), where ΘS is the tangent sheaf of S, and that the germ

(Mcan
1,7 , [S]) is analytically isomorphic to B(S)/Aut(S). It has been shown

in [3] that the group G acts trivially on H1(S,ΘS) and B(S) is smooth of

dimension 4.

Now assume that S is a special Inoue surface constructed here. We can

use the same method as in the proof of [3, Theorem 5.1] to conclude that

the invariant subspace of H1(S,ΘS) for the H-action has dimension 2. Note

that Aut(S) =H and H/G∼= Z2. Combining the result of [3], we see that

(Mcan
1,7 , [S]) is analytically isomorphic to (C2 × Spec C[x, y, z]/(xz − y2), 0).

Acknowledgments. The author thanks Xiaotao Sun for all the support

during the preparation of the article. The author is greatly indebted to

Jinxing Cai for many discussions and helpful suggestions. The author also

would like to express his appreciation to the anonymous referee for his/her

valuable suggestions.

References

[1] M. F. Atiyah and I. M. Singer, The index of elliptic operators, III, Ann. of Math. (2)
87 (1968), 546–604.

[2] A. Calabri, C. Ciliberto and M. Mendes Lopes, Numerical Godeaux surfaces with an
involution, Trans. Amer. Math. Soc. 359(4) (2007), 1605–1632.

[3] I. Bauer and F. Catanese, “Inoue type manifolds and Inoue surfaces: a connected
component of the moduli space of surfaces with K2 = 7, pg = 0”, in Geometry and
Arithmetic, EMS Ser. Congr. Rep. Eur. Math. Soc., Zürich, 2012, 23–56.
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