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Abstract

Mendelian randomization (MR) leverages genetic information to examine the causal relation-
ship between phenotypes allowing for the presence of unmeasured confounders. MR has been
widely applied to unresolved questions in epidemiology, making use of summary statistics
from genome-wide association studies on an increasing number of human traits. However,
an understanding of essential concepts is necessary for the appropriate application and inter-
pretation of MR. This review aims to provide a non-technical overview of MR and demon-
strate its relevance to psychiatric research. We begin with the origins of MR and the
reasons for its recent expansion, followed by an overview of its statistical methodology. We
then describe the limitations of MR, and how these are being addressed by recent methodo-
logical advances. We showcase the practical use of MR in psychiatry through three illustrative
examples – the connection between cannabis use and psychosis, the link between intelligence
and schizophrenia, and the search for modifiable risk factors for depression. The review con-
cludes with a discussion of the prospects of MR, focusing on the integration of multi-omics
data and its extension to delineating complex causal networks.

Introduction

Mendelian randomization (MR) has become an increasingly popular tool for inferring causal
relationships in the health sciences, to enable the formulation of effective health-promotion
and disease-prevention strategies. MR leverages genetic data to overcome the critical issue of
unmeasured confounding in using observational data for causal inference (see Box 1). The pro-
liferation of genome-wide association studies (GWAS) on a wide range of traits and health out-
comes has fuelled a boom in MR studies. However, the validity of MR depends on critical
assumptions which are difficult to ensure. Thus, while the testing of a wide array of
exposure-outcome pairs offers an exciting opportunity for etiological discoveries, there is also
a serious risk that uncritical application will generate numerous invalid causal inferences and
lead to confusion rather than clarity.

In this review, we first provide a brief history of MR, followed by an overview of its prin-
ciples, key assumptions, and statistical methodology, as well as its major limitations and recent
methodological developments aimed at addressing these limitations. We give three examples to
illustrate how MR has been used in psychiatric research, and conclude with a discussion of
future research directions, including the integration of MR with multi-omics data and the
use of MR in deciphering the complex causal networks of risk factors and disorders.

Box 1. Classic MR in a nutshell

• MR is a method for inferring causal effects from observational data by using genetic variants (typically
SNPs) as IVs to control for unmeasured confounding variables

• A valid IV needs to be (1) associated with the exposure, and (2) independent of the outcome, except
through the exposure

• MR only requires (summary) data from genetic association studies on two phenotypes (exposure and
outcome), either from the same sample (one-sample MR) or from two different samples (two-sample MR)

• MR can be thought of as nature’s RCT: Mendel’s laws of inheritance mimic randomization to treatment arms
in an RCT. The law of segregation provides for the random assignment of exposure-associated alleles during
meiosis from (heterozygous) parents, while the law of independent assortment ensures that these alleles
are independent of other heritable traits (as long as potential genetic confounders are not linked to the IV)

Note. MR, Mendelian randomization; RCT, randomized controlled trial; IV, instrumental variable; SNP, single nucleotide
polymorphism.
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Causal inference and instrumental variable analysis

The randomized controlled trial (RCT) is widely regarded as the
gold standard for establishing causality (Fisher, 1925, 1926) but
is often expensive, impractical, or unethical in humans. Thus, in
mental health and across other fields, researchers have relied heav-
ily on observational studies for testing causal relationships.
However, causal inference from observational data is subject to
multiple sources of bias, including unmeasured confounders, colli-
ders, and non-random sampling. While there were early attempts at
causal inference from observational data, such as the work by John
Snow and others on the link between cholera outbreaks and the
water supply in mid-19th century London (Davey Smith, 2002),
formal statistical methodologies were not developed until the
1920s, when Sewall Wright developed path analysis in population
genetics to test alternative causal models with correlations derived
from observational data (Wright, 1921; see also Pearl, 2022; Stock
& Trebbi, 2003). Later, Bradford Hill proposed empirical criteria to
evaluate putative causal relationships from observational studies
(Doll & Hill, 1950; Hill, 1965). Over time, multiple causal inference
frameworks have been developed, including the Potential Outcome
(aka. Counterfactual) framework (Rubin, 1974; Splawa-Neyman,
Dabrowska, & Speed, 1990), the Campbell Causal Model
(Campbell, 1957), the Sufficient-Component Cause model
(Rothman, 1976), and the Causal Graph (aka. Bayesian Network)
framework (Pearl, 1995).

Derived from path analysis, instrumental variable (IV) ana-
lysis is an important tool for causal inference. Wright (1928,
p. 312) conceived of IV when he suggested introducing add-
itional variables ‘which (A) affect demand conditions without
affecting cost conditions or which (B) affect cost conditions
without affecting demand conditions’ to overcome the difficul-
ties in estimating supply and demand elasticities. By its nature,
an IV is unlikely to affect the outcome other than through its
influence on the putative exposure. An example is cigarette
sales tax, which is unlikely to affect health outcomes other
than through its effect on smoking behavior. Identifying a
valid IV is critical, as noted by Wright (1928, p.314): ‘Success
with this method depends on success in discovering factors of
type A and B’.

In IV analysis, the causal effect of an exposure on an outcome is
estimated by the ratio of two regression coefficients: the outcome
regressed on the IV and the exposure regressed on the IV
(Durbin, 1954). IV estimation has evolved to incorporate informa-
tion from multiple instruments (Basmann, 1957; James & Singh,
1978; Theil, 1953), to use data from different samples (Angrist &
Krueger, 1992a, 1992b; Inoue & Solon, 2010), and for binary out-
comes (Foster, 1997; Palmer et al., 2011). Since the 1990s IV ana-
lysis has been applied to economics, clinical trials, and public
health (Angrist, Imbens, & Rubin, 1996; Imbens & Angrist,
1994). A landmark study used birthdate as IV to study the impact
of schooling on income in countries where students must have
reached a certain age at the start of their first academic year; the
rationale being that children born soon after the beginning of an
academic year would start school at a later age and receive less
compulsory education than children born later in the academic
year (Angrist & Keueger, 1991). Other notable applications used
treatment assignment as IV to allow for non-compliance in
estimating treatment effect in clinical trials (Greenland, 2000;
Robins & Greenland, 1996), and cigarette tax as an IV for maternal
smoking to investigate its effect on fetal health (Ringel &
Evans, 2001).

Beginnings and expansion of MR

Decades before MR was introduced, Fisher (1952, p.7) recognized
the value of genetic information in causal inference, drawing par-
allels between Mendelian segregation during meiosis and ran-
domization in RCTs:

‘The different genotypes possible from the same mating have been beau-
tifully randomized by the meiotic process. A more perfect control of con-
ditions is scarcely possible, than that of different genotypes appearing in
the same litter.’

Katan (1986) was the first to propose using a genetic marker
(APOE gene variants), as a proxy for a phenotype (serum choles-
terol) to investigate its underlying causal relationship with another,
statistically correlated, phenotype (cancer). Gray and Wheatley
(1991) coined the term ‘Mendelian Randomization’ when studying
sibling bone marrow transplants for the treatment of leukemia.
Later, Davey Smith and Ebrahim (2003, 2004) popularized the con-
cept of MR in a causal inference context, showing how the parent–
offspring design is more analog to the RCT than population-based
cohort or case–control association studies, while recognizing the
generally greater statistical power of the latter. Eventually, MR was
recognized as being equivalent to IV analysis using genetic instru-
ments (Didelez & Sheehan, 2007; Lawlor, Harbord, Sterne,
Timpson, & Davey Smith, 2008; Wehby, Ohsfeldt, & Murray, 2008).

Early MR analyses used individual-level data on single candi-
date variants. Today, MR is usually applied to GWAS summary
statistics, where the exposure and outcome are typically measured
in different samples. The rapid growth of MR applications is
spurred by three factors: widespread data sharing from published
GWASs, the rise of MR methods requiring only summary statis-
tics, and the availability of convenient software packages. A simple
PubMed search using relevant keywords (Fig. 1) shows a surge in
psychiatry-related MR publications since 2010. While two-sample
MR takes advantage of the growth of GWASs on specific pheno-
types, one-sample MR is making a resurgence with the advent of
large-scale cohorts with measures on multiple phenotypes (e.g.
the UK Biobank), which offer analytic possibilities not available
from single-phenotype summary statistics, such as Bayesian cau-
sal network analysis (Howey, Shin, Relton, Davey Smith, &
Cordell, 2020).

Classic MR methodology

MR is often conceptualized as nature’s RCT, where Mendel’s laws
of segregation and independent assortment provide ‘random
assignment’ of alternative exposures to individual subjects. In
meiosis, the two haplotypes at a locus are randomly distributed
to two daughter gametes. Thus, genotypes formed by the union
of parental gametes are unlikely to be associated with confounders
in a randomly mating population. Reverse causation from pheno-
type to genotype is also unlikely since the germline genotype is
fixed at conception and most genetic variation is inherited rather
than acquired. Genetic variants are thus strong candidates to be
used as IV (for a review, see Richmond and Smith, 2022).

Fundamental assumptions

MR leverages genetic instruments (GIVs) to make causal infer-
ences. As illustrated in Fig. 2, a valid GIV needs to satisfy three
assumptions (Didelez & Sheehan, 2007):
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① Relevance assumption: GIV is associated with the exposure.
② Independence assumption: GIV is independent of any

confounder.
③ Exclusion restriction: GIV is independent of the outcome

except through the exposure.

A valid GIV is usually thought of as being causal for the expos-
ure, but a SNP in very high linkage disequilibrium (LD) with a
causal SNP could also constitute a valid instrument.

Causal effect estimation

Conceptually, the diagram in Fig. 2a implies that the effect of GIV
on Y (βGY) is equal to the effect of GIV on X (βGX) multiplied by
the effect of X on Y (βXY). Rearranging the equation to solve for
βXY gives the simple IV ratio estimator (Durbin, 1954):
b̂XY = b̂GY/b̂GX , where the denominator and numerator are
obtained from two separate regression analyses. An alternative
approach is two-stage least squares (2SLS), which first regresses
X on GIV, followed by a second regression of Y on the predicted
X based on the first regression (Basmann, 1957; Theil, 1953). In a
single-GIV one-sample scenario, these two approaches are
equivalent (Inoue & Solon, 2010).

When there are multiple independent GIVs, the ratio estimator
can be applied to each GIV; the resulting multiple estimates can
then be combined in various ways analogous to meta-analysis.
Estimates can be combined most simply by inverse variance weight-
ing (IVW), where each estimate is weighted by the inverse of its
sampling variance divided by the sum of these inverses across

GIVs (Burgess, Butterworth, & Thompson, 2013). Instead of taking
a weighted mean, some have proposed taking a weighted median
(Bowden, Davey Smith, Haycock, & Burgess, 2016) or weighted
mode (Hartwig, Davey Smith, & Bowden, 2017) of the ratio esti-
mates to reduce the influence of outliers arising from invalid
GIVs or genotyping errors. The IVW method is equivalent to a
weighted meta-regression of the GIV-outcome associations on
GIV-exposure associations through the origin. While these
approaches only require GWAS summary statistics, 2SLS requires
individual-level data but can include GIVs that are in LD (Angrist
& Krueger, 1992b). When applied directly to a multi-GIV two-
sample setting, 2SLS tends to produce more precise estimates than
the generalized ratio estimator (TSIV) (Inoue & Solon, 2010). An
extended IVW method accounts for LD by leveraging external ref-
erence panel information, providing a summary data counterpart to
2SLS (Burgess, Davies, & Thompson, 2016a). Bowden et al. (2017)
have discussed the subtle differences between various approaches.
Other statistical approaches have been proposed for IV andMR ana-
lyses, including limited information maximum likelihood (LIML;
Anderson & Rubin, 1949; Fuller, 1977), Bayesian models, and semi-
parametric methods (see Boehm & Zhou, 2022; Burgess, Small, &
Thompson, 2017 for statistical reviews).

Limitations of MR

Invalid instruments

The inclusion of invalid GIVs violating one or more of the three
assumptions illustrated in Fig. 2 can lead to biased causal

Figure 1. Growth in MR studies related to psychiatry.
Note. This figure shows the number of publications per
year indexed by PubMed using the search terms
‘Mendelian randomization’ OR ‘Mendelian randomiza-
tion’ AND ‘psychiatry’ as of January 2023.
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estimates. The relevance assumption requires that the GIV-expos-
ure association is genuine rather than a chance finding or spuri-
ous association. The exclusion restriction is violated when the
GIV has a direct pleiotropic effect on the outcome, or when a
SNP in LD with the GIV directly affects the outcome (Davey
Smith & Ebrahim, 2003). Finally, the independence assumption
is violated when the GIV is associated with both exposure and
outcome through a confounder.

In general, MR is invalidated by biased associations from
either the exposure or the outcome GWAS. Despite extensive
quality control and stringent statistical corrections, residual arti-
facts in GWAS are still present. Population stratification is a com-
mon violator of the relevance assumption by producing
non-random placement of the GIVs and the outcome in the
environment. Other factors, such as cryptic relatedness, familial
effects, assortative mating, and subtle batch differences in geno-
typing calls, can also cause biased association estimates. For
instance, multi-center GWAS samples might be subject to granu-
lar population differences in the distributions of exposure, out-
come, and SNP allele frequency (Brumpton et al., 2020).
Familial effects such as genetic nurture, where parents exert an
effect on offspring’s phenotype through the shared environment
(Bates et al., 2018; Kong et al., 2018; Tubbs, Porsch, Cherny, &

Sham, 2020), and assortative mating, which introduces a genetic
correlation between parents (Robinson et al., 2017; Young,
Benonisdottir, Przeworski, & Kong, 2019), can also cause biased
association estimates. Other potential sources of bias include
genotyping errors, phenotype classification or measurement
errors, gene–environment interaction (VanderWeele, Tchetgen
Tchetgen, Cornelis, & Kraft, 2014), participant overlap across
GWAS studies (Burgess et al., 2016a), selection bias arising
from unrepresentative sampling or differential participation
(Gkatzionis & Burgess, 2019; Munafò & Smith, 2018; Munafò,
Tilling, Taylor, Evans, & Smith, 2018; Pirastu et al., 2021), and
survival bias due to competing risk before recruitment
(Schooling et al., 2021).

Although MR is often assumed to be immune to bias due to
reverse causation, since it utilizes genetic instruments fixed at
conception, several situations may still introduce bias due to
reverse causation. Burgess, Swanson, & Labrecque (2021) discuss
three such situations: when the true causal exposure is upstream
to the putative exposure, the presence of feedback loops, and
cross-generational effects. The biasing effect of feedback loops is
not often considered when conducting MR, even though many
bi-directional MR studies have identified significant effects in
both directions. One proposed solution to allow for feedback
loops in MR estimation procedures is to utilize structural equation
modeling (Zheng et al., 2017).

Pleiotropy

Pleiotropy refers to the situation where one SNP affects multiple
traits. It is ubiquitous in human complex traits (see Solovieff,
Cotsapas, Lee, Purcell, and Smoller, 2013 for a review), with over
90% of trait-associated loci, 80% of associated genes, and 60% of
associated SNPs discovered by GWAS being pleiotropic across mul-
tiple traits (Watanabe et al., 2019). For psychiatric disorders, plei-
otropy is pervasive, with few risk alleles that are specific to a
single diagnostic category (O’Donovan & Owen, 2016), resulting
in widespread genetic correlations across disorders (Cross-
Disorder Group of the Psychiatric Genomics, 2019). Horizontal
pleiotropy, where a SNP directly influences multiple phenotypes,
gives rise to invalid GIVs (Davey Smith & Hemani, 2014;
Verbanck, Chen, Neale, & Do, 2018). MR Egger was introduced
to allow for horizontal pleiotropy but is not valid when the pleio-
tropic effects on exposure and outcome are correlated due to com-
mon biological mechanisms linking the GIVs to the exposure and
outcome (Morrison, Knoblauch, Marcus, Stephens, & He, 2020).
Thus, even if MR researchers have access to well-executed and
adequately powered GWAS, pleiotropy remains a challenging issue.

Weak instruments

The estimation accuracy and statistical power of MR depend on
the strength of the GIV-exposure association (Brion,
Shakhbazov, & Visscher, 2013; Burgess, 2014; Freeman,
Cowling, & Schooling, 2013). Weak GIVs can lead to significant
small-sample bias and unstable estimates in MR (from having a
close-to-zero denominator in the ratio), known as ‘weak instru-
ment bias’ (Bound, Jaeger, & Baker, 1995; Hahn & Hausman,
2003; Staiger & Stock, 1997). In general, one-sample MR causal
estimates are biased toward residual exposure-outcome associ-
ation from unmeasured confounders (Burgess & Thompson,
2011b), whereas two-sample estimates are biased toward the
null (Angrist & Krueger, 1995; Lawlor, 2016). Having many

Figure 2. The MR framework and assumptions.
Note.
a. Diagram for classic MR that aims to estimate the causal effect of exposure X on
outcome Y using a genetic instrument GX to control for any unmeasured confounders
U, illustrating the three MR assumptions: ① relevance: GX is strongly associated with X
(the blue path), ② independence: Gx is not correlated with U, and ③ exclusion restric-
tion: GX is not correlated with Y except through X. Assumptions ② and ③ (absence of
the red dotted paths) together ensure that the correlation between GX and Y can be
entirely attributed to their direct relationships with X. The presence of a feedback
loop, indicated by the red dotted arrow from Y to X, can bias causal effect estimates,
but only when a causal effect is present.
b. Diagram for bidirectional MR on two phenotypes X and Y, where GU and GXY
represent pleiotropic SNPs which would violate assumptions ② and ③ respectively,
if used as genetic instruments for either X or Y. GX and GY, when uncorrelated with
both GU and GXY, represent valid instruments for X and Y, respectively.
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weak GIVs increases the variation in causal effect estimates across
GIVs; such heterogeneity can be tested by an adapted Cochran’s
Q statistic and allowed for by modifying the weights in IVW esti-
mation (Bowden et al., 2019).

Winner’s curse

Selecting significant SNPs from an exposure GWAS as GIVs and
using the same GWAS to obtain GIV-exposure association esti-
mates can lead to an upward bias of these estimates, known as
the ‘winner’s curse’ (Kraft, 2008; Xiao & Boehnke, 2009), and
result in biased MR estimates (Davey Smith & Hemani, 2014;
Lawlor, 2016). Winner’s curse bias is most severe in underpow-
ered GWAS of highly polygenic phenotypes and remains
non-negligible at the typical sample sizes of current GWAS. In
two-sample MR without sample overlap, the GIV-outcome asso-
ciation estimates are not subject to the winner’s curse, causing the
ratio estimates to be biased toward the null (Deng, Zhang, Song, &
Yu, 2020). However, when there is sample overlap between expos-
ure and outcome GWAS, phenotypic correlation between expos-
ure and outcome may introduce winner’s curse bias to
SNP-outcome associations, possibly resulting in false-positive
causal inferences (Minelli et al., 2021). To avoid winner’s curse,
GIVs should ideally be selected a priori based on existing knowl-
edge or a preliminary independent GWAS on the exposure
(Burgess et al., 2019).

Recent methodological developments in MR

MR has traditionally been used to evaluate the causality of candi-
date risk factors for specific health outcomes, such as HDL for
heart disease and vitamin D for type-2 diabetes. However, the
recent trend of using MR more exploratively on GWAS summary
statistics has increased the risk of false causal inferences due to
multiple testing and the limitations mentioned above. This has
motivated methodological developments which aim to improve
the robustness and statistical power of MR. These methods
address issues such as identifying invalid GIVs due to pleiotropy,
adjusting for weak GIVs, accounting for measurement errors, and
correcting for sample overlap, ‘winner’s curse’, and selection bias.
A selection of these methods is summarized in Table 1 (see
Sanderson et al., 2022 for a review).

Addressing widespread pleiotropy

Recent methodological advancements have focused on reducing
biases caused by widespread pleiotropy in complex phenotypes.
Common approaches include weighting schemes, identifying
and then removing pleiotropic GIVs, leveraging gene-by-environ-
ment (G × E) interactions, or explicitly modeling GIV-outcome
pleiotropic effects.

IVW produces consistent MR estimates only when the pleio-
tropic effects of invalid GIVs on the outcome are uncorrelated
with their effects on exposure (the InSIDE assumption) and
have an average of zero. MR-Egger adds an intercept term to
the weighted meta-regression to capture non-zero average pleio-
tropic effects (Bowden, Davey Smith, & Burgess, 2015; Burgess
& Thompson, 2017) and can model the heterogeneity of pleio-
tropic effects by introducing a random effect, but still depends
on the InSIDE assumption for valid causal inference (Bowden
et al., 2017). Methods based on the identification and exclusion
of GIVs with outlying causal effect estimates include Cochran’s

Q statistics (Bowden et al., 2019), MR-PRESSO (Verbanck et al.,
2018), and GSMR (Zhu et al., 2018).

The presence of an interacting covariate that modifies the effect
of GIV on exposure offers an opportunity for detecting and adjust-
ing for pleiotropy, since there is a covariate value at which the GIV
has no effect on exposure, so that the GIV-outcome association at
this covariate value would estimate pleiotropy. When the interact-
ing covariate is measured, MR-GxE estimates the causal effect by
the regression coefficient of GIV-outcome associations on
GIV-exposure associations, across different observed values of the
covariate (Spiller, Slichter, Bowden, & Davey Smith, 2019). When
it is not measured, MR-GENIUS leverages the heteroscedasticity
induced by the G × E to estimate the causal effect on exposure
on outcome (Tchetgen, Sun, & Walter, 2021). However, MR-G ×
E assumes that all pleiotropic effects of GIVs on outcome are inde-
pendent of the covariate, while MR-GENIUS involves even stronger
assumptions (Spiller, Hartwig, Sanderson, Davey Smith, & Bowden,
2022).

Some recent MR methods explicitly model and control for
correlated horizontal pleiotropy. LCV (O’Connor & Price,
2018) introduces a latent causal mediator that links GIVs to
both exposure and outcome, and infers an exposure-outcome
causation when the latent causal mediator is almost perfectly
correlated with the exposure. MRMix (Qi & Chatterjee, 2019)
and contamination mixture (Burgess, Foley, Allara, Staley, &
Howson, 2020) assume a normal mixture model to allow for
pleiotropic SNPs among selected GIVs; the latter was found to
outperform other existing methods in simulations (Slob &
Burgess, 2020). In contrast, CAUSE (Morrison et al., 2020)
models correlated pleiotropy across all SNPs after LD pruning,
whilst MRAID (Yuan et al., 2022) includes all GWAS hits that
are in LD and enables automatic GIV selection. Three recent
methods, LHC-MR (Darrous, Mounier, & Kutalik, 2021),
MR-APSS (Hu et al., 2022), and MRCI (Liu et al., 2023),
account for sample overlap (between exposure and outcome
GWAS) as well as correlated pleiotropy, by adopting an struc-
tural equation model (SEM) with a latent heritable confounder,
a mixture foreground-background model, and a mixture
bi-directional causation model, respectively. MR-APSS requires
the selection of nearly independent GIVs, whereas LHC-MR
and MRCI use all available SNPs. Since different methods
have their own strengths and weaknesses, researchers often
apply multiple analytic approaches to the same dataset to assess
the strength of evidence for causality based on the consistency
of results.

Addressing other limitations

Progress has also been made in addressing other limitations
beyond horizontal pleiotropy. To reduce weak instrument bias,
early approaches include selecting variants with F statistic > 10,
controlling for covariates, and combining data from multiple stud-
ies (Burgess et al., 2013; Burgess & Thompson, 2011a). Another
approach involves combining multiple weak GIVs into a single,
stronger GIV by polygenic scoring (Burgess, Dudbridge, &
Thompson, 2016b). However, polygenic scores are prone to
include pleiotropic GIVs and violate MR assumptions. Modified
weights in an IVW framework (Bowden et al., 2019) and weighted
meta-regression (Cai, Hartley, Mahmoud, Tilling, & Dudbridge,
2022) are alternative ways for ameliorating the bias introduced
by multiple weak GIVs. MR-RAPS (Zhao, Wang, Hemani,
Bowden, & Small, 2019) is another method for robust inference
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that first screens out extremely weak GIVs, and then down-weights
the contributions of the remaining weak GIVs.

As GWAS sample size increases, and with some phenotypes
having large measurement errors, there is increasing risk of
selecting instruments that are primarily associated with outcome
rather than exposure. Since a valid GIV should correlate more
strongly with exposure than outcome, the Steiger Z test has
been proposed to orientate causation direction between pheno-
types and filter out invalid GIVs (Hemani, Tilling, & Smith,
2017).

To address the winner’s curse bias, prior statistical adjustment
of GIV-exposure association statistics (e.g. MRlap by Mounier &
Kutalik, 2023) or explicit modeling by their joint distribution with

GIV-outcome association statistics (e.g. MRCI; Liu et al., 2023)
have been suggested.

Genetic nurture stemming from correlated offspring genotypes
and family environment can be addressed by directly estimating
causal maternal effects on offspring phenotypes (Evans, Moen,
Hwang, Lawlor, & Warrington, 2019). Family-based genetic asso-
ciation data (e.g. from parent–offspring trio or sibship designs) can
be leveraged to account for assortative mating, population stratifi-
cation, familial effects, and horizontal pleiotropy in MR studies
(Brumpton et al., 2020; Davies et al., 2019). Typically, within-
family association is free from many of the potential biases of asso-
ciation studies on unrelated individuals (Hwang, Davies,
Warrington, & Evans, 2021), which may explain the often reported

Table 1. Recent methodological developments that address the limitations of classic MR

Method Reference Outline

MR-Egger Bowden et al. (2015,
2017)

Performs a weighted meta-regression of GIV-exposure associations against GIV-outcome associations,
with an intercept term to model average direct GIV-outcome influences. It assumes uncorrelated
horizontal pleiotropy and can be extended to allow for over-dispersion of causal estimates across GIVs
with a random effect term to model pleiotropy variation

Weighted median Bowden et al. (2016) Gives a weighted median of causal effect estimates from multiple GIVs, where the weight is typically
proportional to the inverse of an estimate’s sampling variance. It assumes that valid GIVs account for
>50% of the total weights

MBE Hartwig et al. (2017) Constructs a mode-based estimator (MBE) of a weighted kernel density function of causal effect estimates
from multiple GIVs. It requires the Zero Modal Pleiotropy Assumption (ZEMPA) that there are enough valid
GIVs to produce the highest peak of the density function

MR Steiger Hemani et al. (2017) Performs Steiger’s Z test for difference of dependent correlations to orient the direction of causality or
identify the stronger bidirectional effects using summary data. The orientation helps to select valid GIVs
from large GWAS by assuming them to explain more variance in exposure than outcome, and filer out
non-conforming GIVs

MR-PRESSO Verbanck et al.
(2018)

Performs a global test for the presence of outliers (likely invalid GIVs) in IVW followed by a local test to
identify specific outliers. Outlier influences are then quantified using a distortion test.

GSMR Zhu et al. (2018) Proposes a generalized summary data-based model that accounts for LD. Pleiotropic GIVs are detected by
the HEIDI-outlier (heterogeneity in dependent instruments) test and then removed

MR-DoC Minică et al. (2018) Integrates MR with the direction of causation model in classical twin design, relaxing the ‘no pleiotropy’
assumption and allowing for the use of polygenic scores as strong IVs, at the price of assuming no latent
confounding from unique environmental effects

MR-RAPS Zhao et al. (2019) Allows for systematic uncorrelated pleiotropy by leveraging adjusted profile likelihood (APS), and for
idiosyncratic pleiotropy by increasing robustness of the APS

LCV O’Connor and Price
(2018)

Introduces a latent causal variable (LCV) that partially mediates the genetic correlation between GIVs and
exposure/outcome, inferring causation when the exposure-LCV correlation is close to 1.

MRMix Qi and Chatterjee
(2019)

Proposes a four-component normal-mixture model for the joint distribution of summary statistics of GIVs
on exposure and outcome, where pleiotropic GIVs are represented as one of the components

CAUSE Morrison et al.
(2020)

Allows a proportion of GIVs also to have correlated pleiotropy by utilizing a mixture of bivariate normal
distributions to model summary statistics of GIVs

Contamination
mixture

Burgess et al. (2020) Performs profile likelihood estimation under a mixture model of causal effect estimates with two
modalities, one arising from valid GIVs and another from invalid GIVs

LHC-MR Darrous et al. (2021) Introduces a latent heritable confounder (LHC) to model correlated pleiotropy and simultaneously
estimates the bi-directional causal effects between two traits using genome-wide summary statistics,
allowing for sample overlap. GIVs can independently influence exposure, outcome and the LHC.

MRAID Yuan et al. (2022) Performs automated GIV selection from all GWAS hits that are in potentially high LD based on the
estimated GIV-exposure causal effects in a point-normal-based joint likelihood framework, which also
explicitly models both uncorrelated and correlated horizontal pleiotropy

MR-APSS Hu et al. (2022) Proposes joint modeling of summary statistics to account for correlated/uncorrelated pleiotropy and
sample structure simultaneously. LD clumping is needed but more relaxed P-value threshold for GIV
inclusion could be applied

MRCI Liu et al. (2023) Performs bidirectional causal inference between two traits simultaneously in a four-component
normal-mixture framework to handle pleiotropy. It uses genome-wide summary statistics combined with
LD reference information and thus avoids explicitly selecting GIVs
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smaller effect size estimates from family-based association studies
(Howe et al., 2022). Recent advances in integrating MR with the
direction of causation modeling in the classical twin design have
enabled the use of polygenic scores as strong IVs to improve causal
effect estimation in a unidirectional (MR-DoC; Minică, Dolan,
Boomsma, de Geus, & Neale, 2018) and bidirectional setting
(MR-DoC2; Castro-de-Araujo et al., 2023).

Standard MR uses average causal effect estimates across popu-
lation strata or interacting risk factors. Recent methods such as
the residual collider-stratified approach Coscia et al. (2022) take
account of such cross-group heterogeneity when predicting the
effect of altering an exposure in an individual.

MR best practices

Clinicians and applied researchers should be aware of the benefits
and limitations of MR, which deserve scrutiny given the import-
ance of causal inference for mechanistic understanding, clinical
practice, and wider policy recommendations. Davies, Holmes,
and Smith (2018) and Burgess et al. (2019) provide excellent
guidelines geared toward clinicians, with checklists for assessing
MR studies. Researchers should follow established quality control
pipelines to address metadata errors or analytical issues (Haycock
et al., 2023). Agreement between multiple MR analyses using vari-
ous methodologies, combined with triangulation of other relevant
experimental (e.g. RCT), epidemiological, or genetic evidence (e.g.
colocalization), is needed strengthen the confidence in a causal
finding and avoid false discoveries (see Lawlor, 2016; Sobczyk,
Zheng, Smith, & Gaunt, 2022; Zuber et al. 2022).

Recent advances have encouraged the widespread application
of MR. Many classical MR methods and recent developments
have been integrated into convenient packages, such as the
‘MendelianRandomization’ R package (Broadbent et al., 2020;
Yavorska & Burgess, 2017). The proliferation of large biobanks
and GWAS consortia has provided the genetic data needed for
using MR to examine the causal relations between numerous
exposure-outcome pairs. For example, MRbase (Hemani et al.,
2018) allows performing MR in a web browser by combining
results across around 40 000 sets of summary statistics ranging
from proteomics to brain region volumes, enabling ‘high-
throughput’ research such as an MR screen for putative causes
of Parkinson’s disease using over 5000 GWAS datasets and com-
piling the results in an online repository (Noyce et al., 2019).
Some have even adopted a hypothesis-free phenome-wide MR
approach (Evans et al., 2013; Evans & Davey Smith, 2015), search-
ing for causal effects of BMI on a wide range of phenotypes
(Millard et al., 2015; Millard, Davies, Gaunt, Smith, & Tilling,
2018). However, studies examining many exposure-outcome
pairs are susceptible to p-hacking and publication bias.
Therefore, researchers need to employ rigorous control for mul-
tiple testing (e.g. by Bonferroni or false discovery rate adjustment)
and report all results of MR tests performed regardless of signifi-
cance, while journals should consider publishing null findings
from rigorous studies.

The concept of gene–environment (G–E) equivalence adds
complexity to interpreting positive MR results, which states that
‘changes in an exposure by either a hypothetical change in geno-
type or by a change in the environment should produce the same
downstream effect on an outcome’ (Sanderson et al., 2022, p. 26).
It is suggested that this criterion needs to be fulfilled to assert
causality, in addition to the three MR assumptions. Indeed, viola-
tion of G–E equivalence suggests that the exposure is not truly

causal despite significant MR evidence, but represents a closely
correlated proxy of a true cause. However, under this scenario,
the GIVs are correlated with the true cause, which acts as a con-
founder for exposure-outcome association, violating the second
MR assumption. Thus, the caveat of G–E equivalence reflects
the inherent difficulties in ensuring that a significant MR result
is not due to the violation of MR assumptions by a confounder
that has a strong genetic correlation with the exposure. For
example, while MR may support a causal effect of BMI on dia-
betes risk (Corbin et al., 2016), the true cause could be some
trait with a strong genetic correlation with BMI, such as body
fat (Jo & Mainous, 2018).

A closely related issue arises when the exposure is categorical or
binary; the question being whether we should infer the exposure
itself, or the genetic liability to the exposure, to be causal.
Considering the genetic liability to be causal allows for the possibil-
ity that the true cause may be some unmeasured variable that has a
strong genetic correlation with the exposure, rather than the expos-
ure itself. For instance, a recent study found evidence for causal
links between educational attainment (EA) and health outcomes
using a within-sibship MR design, but interpreted these results
with caution, citing the possible involvement of EA-correlated cog-
nitive and non-cognitive pathways (Howe et al., 2023).

MR applications in psychiatry

The application of MR in psychiatry has become increasingly
common (Pingault, Cecil, Murray, Munafò, & Viding, 2017).
Saccaro, Gasparini, and Rutigliano (2022) systematically reviewed
published MR studies on schizophrenia, major depression, bipolar
disorder, autism spectrum disorders, and ADHD, demonstrating
the methodology, findings, and flaws in existing literature of over
50 articles. Here, we will highlight three examples: (1) using MR
to examine the contentious causal relationship between cannabis
use and psychosis, (2) using MR to clarify the potentially
bi-directional relationship between intelligence and schizophre-
nia, (3) using MR to screen candidate modifiable risk factors
for a causal effect on depression. These examples demonstrate
the usefulness of MR in following up on myriad association find-
ings and providing initial evidence for plausible causal risk factors
that are often not conducive to a RCT.

Cannabis use and psychosis

Several MR studies have been conducted to examine the contro-
versial association between cannabis use and psychosis. Using
two-sample IVW MR, Gage et al. (2017) found evidence of a
weak but significant causal effect of cannabis initiation on schizo-
phrenia risk and a strong effect in the opposite direction. Vaucher
et al. (2018) also found significant evidence for a causal effect of
ever-use of cannabis on schizophrenia risk. In contrast, Pasman
et al. (2018) found no support for a causal effect of lifetime can-
nabis use on schizophrenia risk but reported a strong effect in the
opposite direction. Johnson et al. (2021) used the LCV method
and found no evidence of causal effect of cannabis use disorder
on schizophrenia, but reached the opposite conclusion when
they used multivariate MR to control for pleiotropic effects
through cigarette smoking phenotypes. Using one-sample MR
in the UK Biobank, B. D. Lin et al. (Lin et al. 2022) found evi-
dence to support a causal effect of risk for psychosis on cannabis
use, but no causal effect in the reverse direction. Together, these
studies provide strong evidence of a causal link between
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schizophrenia and cannabis use behaviors, but only mixed evi-
dence for a causal effect in the opposite direction. Gillespie and
Kendler (2021), reviewing the earliest three studies along with evi-
dence from other study designs, concluded that while there is evi-
dence for true causality, non-causal factors such as shared genetic
and familial influences and other environmental confounders also
contribute to the association between cannabis use and schizo-
phrenia. Such complexities increase the likelihood of pleiotropy
and other violations of MR assumptions. In addition, the effect
of cannabis use may vary depending on the pattern of use and
the potency of the cannabis. Thus, future MR studies should
use more nuanced definitions of cannabis use, as well as more
robust study designs and analytic strategies (Table 2).

Intelligence and schizophrenia

Cognitive impairment is a core feature of schizophrenia
(McCutcheon, Keefe, & McGuire, 2023), with premorbid intelli-
gence consistently shown to be a strong predictor of future risk
(Khandaker, Barnett, White, & Jones, 2011). Furthermore, schizo-
phrenia and intelligence show strong evidence for shared genetic
effects (Savage et al., 2018; Smeland et al., 2019). Three MR studies
have been conducted to test for their causal links. The first used
GSMR, finding statistically significant bi-directional causal relation-
ships such that higher intelligence was protective against schizo-
phrenia and schizophrenia leads to decreased intelligence (Savage
et al., 2018). A subsequent study using different summary statistics
for intelligence also found evidence from IVW and MR-Egger for a
causal effect of higher intelligence on reduced risk for schizophre-
nia but did not examine the reverse causal direction (Adams, 2020).
The most recent MR study (Ohi et al., 2021), which applied GSMR,
found evidence that low intelligence was causally associated with
schizophrenia-specific risk as well as shared schizophrenia and
bipolar risk. Evidence in the reverse direction indicated that only
the shared risk component is causally linked to decreasing intelli-
gence. As opposed to the MR-based findings on cannabis use
and schizophrenia, the MR evidence for a causal effect of intelli-
gence on schizophrenia is strong and consistent. Indeed, other
study designs have also supported a causal link between pre-morbid
intelligence and schizophrenia (Kendler, Ohlsson, Sundquist, &
Sundquist, 2015; Toulopoulou et al., 2015).

Modifiable causal risk factors for depression

MR was recently used to identify modifiable causal risk factors for
depression from UK Biobank data. Out of 26 candidate risk factors,

the study reported significant risk-increasing causal effects of TV
use and multivitamin use, a bidirectional causal relationship
between depression and daytime napping, and a protective effect
of confiding in others. However, only a small number of GIVs
were used in analyzing the effect of multivitamin use, and it is
also unclear whether the effect of TV use is specific or related gen-
erally to media consumption/sedentary behavior. The results sup-
port the strong existing literature linking sleep dysregulation to
depression (Fang, Tu, Sheng, & Shao, 2019; Riemann, Krone,
Wulff, & Nissen, 2020), as well as the protective effects of social
support shown by previous prospective studies (Santini,
Koyanagi, Tyrovolas, Mason, & Haro, 2015). However, these risk
factors are themselves determined by a multitude of biopsychoso-
cial influences, and there is likely widespread pleiotropy between
them and with depression, undermining the confidence in MR
results. Nevertheless, if replicated by further studies employing
independent samples and complementary methodologies, these
findings would provide valuable insights with potential implica-
tions for the prevention and treatment of mood disorders.

Future prospects

MR is now firmly established as a powerful and rapidly advancing
tool for etiological research. Two promising directions for its future
development are: (1) integrating multi-omics data to elucidate the
intricate biological mechanisms driving disease and disorder, and
(2) generalizing its use to construct complex causal networks con-
necting multiple phenotypes. These developments could enable
researchers to dissect mechanistic relationships, identify novel etio-
logical pathways, and inform disease prevention and intervention
efforts. Yazdani et al. (2022) reviewed the extension from classical
MR to causal networks capable of integrating large-scale omics data
and provided a detailed discussion of the assumptions, identifica-
tion, evaluation, and utility of causal networks.

MR with multi-omics data

Advances in multi-omic technologies have empowered the utiliza-
tion of MR in exploring the causal links between molecular path-
ways and disease development. The possibility of mining the
‘phenome’ for disease associations was suggested by Evans et al.
(2013), who proposed the use of GWAS to construct genome-
wide allelic scores as composite proxies for numerous biological
intermediate variables and to screen these scores for association
with health outcomes. However, as genome-wide allelic scores
are likely to have widespread effects on multiple phenotypes,

Table 2. MR studies examining the causal effects of cannabis use on psychosis risk

Exposure Outcome Instruments Significant causal Effect? Reference

Cannabis initiation Schizophrenia 21 SNPs Yes (weak) Gage et al. (2017)

Schizophrenia Cannabis Initiation 107 SNPs Yes (strong) Gage et al. (2017)

Cannabis use Schizophrenia 10 SNPs Yes Vaucher et al. (2018)

Cannabis use Schizophrenia 109 SNPs No Pasman et al. (2018)

Schizophrenia Cannabis Use 69 SNPs Yes Pasman et al. (2018)

Cannabis use disorder Schizophrenia Varied by methodology Mixed evidence Johnson et al. (2021)

Ever taken cannabis Psychotic Experiences 5 SNPs No Lin et al. (2022)

Psychotic experiences Ever Taken Cannabis 1–4 SNPs Yes Lin et al. (2022)
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they may not be ideal GIVs for MR studies (Evans et al., 2013;
Evans & Davey Smith, 2015). Subsequently, transcriptome-wide
association studies (TWAS) emerged, which use a regression
model developed from expression quantitative trait loci (eQTL)
data to impute gene expression levels from multiple SNP geno-
types; the imputed expression levels of numerous genes are then
analyzed for association with the phenotype (Gamazon et al.,
2015). SMR subsequently adapted this approach into a summary
statistics-based MR framework (Zhu et al., 2016), which was used
to prioritize 55 genes whose expression levels may be causally
linked to schizophrenia risk (Trubetskoy et al., 2022). MR-JTI
(Zhou et al., 2020) improved upon this by incorporating multiple-
tissue expression data to increase statistical power, while others
have leveraged prior fine mapping to enhance MR accuracy
(Zhu et al., 2021). Furthermore, MR is increasingly being applied
to a wide range of multi-omics data, including metabolomics (Liu
et al., 2017; Richardson et al., 2022), epigenetic markers (Alameda
et al., 2022; Jamieson et al., 2020; Richardson et al., 2019), single-
cell transcriptomics (Haglund et al., 2022), and the brain connec-
tome (Shen et al., 2020; Song, Qian, Wang, Yu, & Lin, 2021), as
exposures and/or outcomes. Omics-driven MR has the potential
to provide insights into the complex biological mechanisms
underlying disease occurrence.

MR and causal networks

Ultimately, MR could be used to construct causal networks of
numerous environmental and biological risk factors for complex
diseases across multiple inter-related phenotypes. Such a network
would be extremely informative for drug repositioning and target
screening, the identification of actionable clinical intervention
points, and the prediction of the multiple direct and indirect con-
sequences of any intervention.

An important development toward causal network modeling is
multivariable MR (MVMR; Burgess & Thompson, 2015;
Sanderson, Davey Smith, Windmeijer, & Bowden, 2019b),
which allows the joint estimation of the causal effects of multiple
exposures on an outcome, accounting for correlated pleiotropic
effects through the included exposures. MVMR was used to test
the association between educational attainment and smoking
after adjustment for general cognitive ability (Sanderson, Davey
Smith, Bowden, & Munafò, 2019a), and its adaptation
MVMR-cML was used to assess the causal relationships between
eight common cardiometabolic risk factors and coronary artery
disease (Lin et al., 2023). However, correct causal inference in
MVMR requires the selected covariates to include confounders
of the exposure–outcome relationship but exclude mediators of
the relationship and consequences of the outcome.

Another important development was the incorporating MR
into mediation analysis (Burgess, Daniel, Butterworth, &
Thompson, 2015; Carter et al., 2021; Relton & Davey Smith,
2012) to partition the overall causal effect of exposure X on out-
come Y into direct and indirect (via measured mediator Z ) com-
ponents, by using GIVs for X and GIVs for Z to estimate the
effects of X (on Z and Y ) and the effects of Z (on Y ), respect-
ively. The data can be fitted to a pre-specified SEM of all the vari-
ables, as suggested by Sanderson (2021). In principle, MR-based
mediation analysis can be extended to a general framework for esti-
mating causal relationships among multiple traits, where a trait can
be influenced by some variables and at the time exert influence on
other variables, blurring the distinction between exposure and
outcome.

An important strength of SEM methodology is its ability to
include latent variables to explain phenotypic correlations
among measured variables. With the development of methods
such as GCTA (Lee, Yang, Goddard, Visscher, & Wray, 2012)
and LDSC (Bulik-Sullivan et al., 2015) to estimate the genetic cor-
relations (as against phenotypic correlations) of phenotype pairs
using GWAS data, SEM has been extended to include latent gen-
etic factors to explain the pattern of genetic correlations among
multiple phenotypes (Genomic SEM: Grotzinger et al., 2019).
The incorporation of latent variables into MR-based causal infer-
ence could eventually lead to a general approach for constructing
and testing complex causal networks of multiple latent and mea-
sured phenotypes. In such a framework, SNP genotypes represent
‘external’ variables that help to clarify and estimate the causal rela-
tionships among the multiple phenotypes.

SEM is powerful and rigorous for comparing alternative causal
models but can be unwieldy for constructing data-driven models
with many measured variables. Directed acyclic graph (DAG) mod-
els, rooted in Bayesian principles, are more scalable. Typical DAG
algorithms start by linking variables via their pairwise correlations,
followed by eliminating non-causal links through conditional inde-
pendence, and then orientate causal directions of the remaining
edges using the collider and other principles. However, Bayesian
causal networks have their own limitations, prompting recent
efforts to integrate MR and DAG for more robust causal inference.
Howey et al. (2020) used MR-determined ‘genetic anchors’ to
resolve the directionality of edges in DAGs with greater confidence.
Amar, Sinnott-Armstrong, Ashley, and Rivas (2021) proposed a
method, cGAUGE, where DAG is employed to identify valid
GIVs for MR, to determine causal connections in phenotype net-
works. DAG-based methods are better suited for large biobanks
than for single-phenotype GWAS, given their requirements for
raw data on both genotypes and (multiple) phenotypes from the
same individuals. As standard DAGs do not permit causal loops,
they fall short in capturing feedback mechanisms in real-world cau-
sal networks, which can result in symptom escalation as well as sta-
bilization (e.g. the escalation of obesity and lack of exercise due to a
vicious cycle of mutually reinforcing effects).

Conclusion

Mendelian randomization leverages genetic data to overcome the
problem of unmeasured confounders in detecting and quantifying
causal relationships. With easily accessible GWAS summary sta-
tistics on an ever-increasing number of diseases and traits, as
well as user-friendly analytic tools, MR studies have become
increasingly easy to perform. Many published studies have already
applied MR to study the causes and consequences of psychiatric
disorders. However, there are important limitations to consider
when planning, implementing, and evaluating MR studies, to
counter possible violation of assumptions which can lead to
false positive causal inferences. Substantial methodological
advances have been made in addressing the widespread pleiotropy
observed across complex traits, but additional challenges remain.
Nevertheless, MR in the multi-omics era holds great promise for
elucidating some of the most pressing questions in psychiatry, and
ultimately in constructing evidence-based causal networks that
link biological and environmental risk factors to multiple inter-
mediate phenotypes and psychiatric disorders. Such causal net-
works can generate detailed predictions of the consequences of
different interventions, potentially guiding the identification of
new treatment targets and the formulation of public health policies.
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