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A Bott–Borel–Weil Theorem for
Diagonal Ind-groups

Ivan Dimitrov and Ivan Penkov

Abstract. A diagonal ind-group is a direct limit of classical affine algebraic groups of growing rank

under a class of inclusions that contains the inclusion

SL(n) → SL(2n), M 7→

(

M 0

0 M

)

as a typical special case. If G is a diagonal ind-group and B ⊂ G is a Borel ind-subgroup, we consider

the ind-variety G/B and compute the cohomology Hℓ(G/B,O
−λ) of any G-equivariant line bundle

O
−λ on G/B. It has been known that, for a generic λ, all cohomology groups of O

−λ vanish, and

that a non-generic equivariant line bundle O
−λ has at most one nonzero cohomology group. The

new result of this paper is a precise description of when H j (G/B,O
−λ) is nonzero and the proof of

the fact that, whenever nonzero, H j (G/B,O
−λ) is a G-module dual to a highest weight module. The

main difficulty is in defining an appropriate analog WB of the Weyl group, so that the action of WB

on weights of G is compatible with the analog of the Demazure “action” of the Weyl group on the

cohomology of line bundles. The highest weight corresponding to H j (G/B,O
−λ) is then computed

by a procedure similar to that in the classical Bott–Borel–Weil theorem.

Introduction

The classical Bott–Borel–Weil theorem is a cornerstone of geometric representation

theory. In the late 1990’s Joseph A. Wolf and his collaborators became interested in

extending the theorem to direct limit Lie groups, and since then have made essential

progress; see [NRW, W]. In the context of direct limit algebraic groups, i.e., ind-

groups, the problem has been addressed in our joint paper [DPW]. In that paper a

general theorem has been proved (concerning infinite-rank equivariant bundles on

locally proper homogeneous ind-varieties) under the condition that the ind-group

considered is root reductive (see the definition in Section 1). The known results be-

come much sketchier when this condition is dropped. The purpose of this paper is to

consider in detail the most interesting class of ind-groups beyond the root reductive

ones: diagonal ind-groups.

Recall that a locally affine ind-group G is the direct limit of embeddings of con-

nected affine algebraic groups

G1 → G2 → · · · .
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The Bott–Borel–Weil paradigm for ind-groups is concerned with the computation of

the cohomology of a G-equivariant line bundle O−µ on the ind-variety G/B, where

B = lim
−→

Bn is the direct limit of Borel subgroups Bn ⊂ Gn with Bn−1 = Bn ∩ Gn−1.

In the classical case G is a connected affine algebraic group, and the result (due to

Borel–Weil [S] and Bott [B], see also [D1,D2]) is that the simple (finite-dimensional)

G-module VB(λ)∗ with B-highest weight λ occurs as the unique nonzero cohomology

group of each of the sheaves O−w·λ, where w runs over the Weyl group W and · stands

for the “dot action” of w on λ. More precisely, VB(λ)∗ occurs as the cohomology

group of O−w·λ in degree ℓ(w), where ℓ(w) is the length of w with respect to the

simple roots of B.

In contrast with this result, in the infinite-dimensional case it is not difficult to see

that a generic equivariant line bundle O−µ is acyclic, i.e., all its cohomology groups

vanish. Wolf has introduced the condition of cohomological finiteness of a weight µ
(see [W] and compare with [DPW]), which is equivalent to the condition that O−µ
has a unique non-vanishing cohomology group. If µ is dominant, then this cohomol-

ogy group is H0(G/B,O−µ), and in this case it is easy to show that H0(G/B,O−µ) is

the (algebraic) dual of the simple B-highest weight G-module VB(µ).

It is not known in general whether all higher cohomology groups H j(G/B,O−µ)

are also dual to B-highest weight modules. This problem has been open since the

late 1990’s, and the main result of this paper is that for any locally simple diago-

nal ind-group G (see the definition in Section 1), all nonzero cohomology groups

H j(G/B,O−λ) are indeed dual to simple B-highest weight modules. The proof is a

mixture of combinatorics and geometry. The most important new idea is to consider

the intermediate algebraic groups G̃n
∼= Gn × Gn × · · · × Gn,

Gn → G̃n → Gn+1,

introduced in Section 1. They arise naturally from the diagonal embeddings Gn →

Gn+1. The corresponding homogeneous spaces G̃n/B̃n, where B̃n = Bn+1 ∩ G̃n, play

a key role in the proof. More precisely, the realization of O−λ as a line bundle on

both G/B and on lim
−→

G̃n/B̃n enables us to reduce the problem of studying the co-

homologies H j(G/B,O−λ) to two finite-dimensional problems: one concerns the

embeddings Gn → G̃n and the other one concerns the embeddings G̃n → Gn+1. For

the second problem we use a recent result of Valdemar Tsanov, which allows us to

obtain a strong condition on the weight λ so that H j(G/B,O−λ) 6= 0; under this

condition we then apply a result of Mike Roth and the first author to the embedding

Gn → G̃n. The final result, Theorem 4.2, is absolutely similar to the classical Bott–

Borel–Weil Theorem with the only exception that the “Weyl group” WB, relevant for

G/B, depends on the choice of Borel ind-subgroup B.

1 Diagonal Ind-groups: Definitions and Notation

We work over an algebraically closed field K of characteristic 0. If V is a vector space,

we set

V⊕k
= V ⊕ · · · ⊕V︸ ︷︷ ︸

k times

.
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Throughout this paper, classical group will be an abbreviation for a connected

(affine) algebraic group G whose Lie algebra is a simple classical Lie algebra. An

embedding G → G ′ of classical groups is diagonal if the induced injection of Lie al-

gebras g→ g ′ has the following property: the natural representation of g ′ considered

as a g-module is isomorphic to a direct sum of copies of the natural representation of

g, of its dual, and of the trivial representation. (If g = so, sp, the natural representa-

tion is self-dual, hence in this case the natural representation of g ′ must simply be a

direct sum of copies of the natural and trivial representations.) If g and g ′ are reduc-

tive Lie algebras, an injective Lie algebra homomorphism g→ g ′ is a root injection, if

for any Cartan subalgebra h ⊂ g there exists a Cartan subalgebra h ′ ⊂ g ′ containing

the image of h and such that any h-root space of g is mapped to precisely one h ′-root

space of g ′. An embedding G → G ′ of reductive, affine, algebraic groups is a root

embedding if the corresponding injection g→ g ′ is a root injection.

By definition a diagonal ind-group G is the direct limit of a sequence of diagonal

embeddings of classical groups

(1.1) G1 → · · · → Gn → Gn+1 → · · · .

The group G is called pure if, for large enough n, the natural representation of gn+1

contains no trivial gn-constituents. The Lie algebras of diagonal ind-groups have

been classified by Baranov and Zhilinskii [BZh].

Example 1.1 A diagonal embedding of classical groups G → G ′ of type A can be

realized in matrix form as

M 7−→




M
. . .

M

(M⊺)−1

. . .

(M⊺)−1

1
. . .

1




with k copies of M, l copies of (M⊺)−1, and z copies of the one-by-one matrix with

entry one. Therefore, any diagonal ind-group of type A is obtained by iterating such

embeddings with varying parameters k, l, and z. In particular, the ind-group SL(∞)

can be defined as a diagonal ind-group of type A with k = z = 1, l = 0 at each step.

To define the diagonal ind-group SL(2∞) we set G1 := SL(2) and then put k = 2,

l = z = 0 at each step. It is easy to check that, up to isomorphism, SL(∞) does

not depend on the choice of n1, where G1 = SL(n1). The ind-group SL(2∞) is pure,

while SL(∞) is not.
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In this paper we consider two kinds of G-modules, defined respectively as direct

or inverse limits of finite-dimensional Gn-modules. Fix G = lim
→

Gn, and let

(1.2) V1 → · · · → Vn → Vn+1 → · · ·

(respectively,

(1.3) · · · → Yn+1 → Yn → · · · → Y1 )

be a direct (respectively, inverse) system of finite-dimensional Gn-modules. A

G-module will mean the direct limit of a system (1.2) endowed with Gn-module

structures for all n, up to an isomorphism, and a dual G-module will mean the pro-

jective limit of a system (1.3) endowed with Gn-module structures. It is clear that if

V = lim
−→

Vn is a G-module, then V ∗ = lim
←−

V ∗n is a dual G-module. Conversely, if

Y = lim
←−

Yn is a dual G-module, then lim
−→

Y ∗n is a G-module.

For the rest of the paper we fix an exhaustion G = lim
−→

Gn of G by simply-con-

nected classical groups of the same type A,B,C , or D. In particular, every direct

system (1.1) we consider has a well-defined type. In general G may have exhaustions

of different type, however we will use the term type of G to refer to the type of the

fixed exhaustion. The corresponding exhaustion of g is then g = lim
−→

gn. We denote

the rank of gn by rn.

For the purposes of this paper, we define a Cartan subgroup H of G as a direct

limit of Cartan subgroups Hn ⊂ Gn. The corresponding Lie algebra h is then the

direct limit of Cartan subalgebras hn ⊂ gn such that hn = hn+1 ∩ gn. We fix once and

for all a Cartan subgroup H = lim
−→

Hn of G with corresponding Cartan subalgebra

h = lim
−→

hn of g. The weights of gn are expressed in terms of the standard functions

ε1
n, . . . , ε

rn+1
n ⊂ h∗n if G is of type A or ε1

n, . . . , ε
rn
n ⊂ h∗n otherwise. These functions

are determined by the choice of the Cartan subalgebra hn ⊂ gn. The weights of the

natural representation of gn are as follows: for G of type A they are ε1
n, . . . , ε

rn+1
n ; for G

of type B they are±ε1
n, . . . ,±ε

rn
n , 0; and for G of type C or D they are±ε1

n, . . . ,±ε
rn
n .

Since hn ⊂ hn+1, the hn+1-weight spaces of the natural representation of gn+1 restrict

to hn-weight spaces. In particular, εi
n+1 restricts to±ε

j
n for some j, or to 0.

Denote the injection gn → gn+1 by δn. We will now define a subalgebra g̃n
∼=

g⊕sn
n of gn+1, where sn is the total multiplicity of all nontrivial simple constituents

of the natural representation of gn+1 considered as a gn-module. Note first that the

hn+1-weight decomposition of the natural representation of gn+1 determines a unique

decomposition of each nontrivial isotypic gn-component as a direct sum of simple

constituents. To define the subalgebra g̃n it suffices to define its simple ideals:

(i) if G is of type A, each simple ideal of g̃n equals the traceless endomorphisms of

a simple nontrivial constituent of the natural representation of gn+1;

(ii) if G is of type B,C , or D, each simple ideal of g̃n is the Lie algebra of orthogonal

or respectively symplectic endomorphisms of a simple nontrivial constituent of

the natural representation of gn+1.

In all cases, there is an obvious injective homomorphism ϕn : gn → g̃n such that the
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diagram

(1.4) gn

δn

//

ϕn ��@
@@

@@
@@

gn+1

g̃n

κn

==||||||||

is commutative, κn being the inclusion. Moreover, if G is of type A,C , or D, the map

κn is a root injection.

If G is of type B and sn > 1, κn is no longer a root injection; however, we can still

factor κn as

g̃n

ψn

−→ ḡn

θn

−→ gn+1

so that θn is a root injection and ψn is “close” to a root injection. To construct this

factorization, recall that gn
∼= Brn

, g̃n
∼= B⊕sn

rn
, gn+1

∼= Brn+1
, and assume that the nat-

ural representation Vn+1 of gn+1 when considered as a gn-module contains sn copies

of the natural representation of gn and zn copies of the trivial representation. Note

that 2rn+1 + 1 = sn(2rn + 1) + zn, hence sn and zn are distinct modulo 2. The smallest

interesting case is when sn = 2 and zn = 1. In this case the gn-module decomposition

of the natural representation of gn+1 is Vn+1 = V 1 ⊕ V 2 ⊕ K, where V 1 and V 2 are

the two copies of the natural representation of gn. We set

ḡn := so(V 1 ⊕V 2) ∼= D2rn+1

and consider the natural injections g̃n
ψn
→ ḡn

θn→ gn+1. The assumption that hn is

contained in hn+1 ensures that hn+1 is contained in ḡn and, consecutively, θn is a root

injection. Furthermore, for each long root of g̃n, the corresponding root space is

mapped via ψn into a root space of ḡn. In the case when sn and zn are arbitrary, i.e.,

when V ′ = V 1⊕· · ·⊕V sn ⊕K
zn , we combine V 1, . . . ,V sn into pairs when sn is even,

and into pairs and a single element when sn is odd, and set

ḡn := so(V 1 ⊕V 2)⊕ · · · ⊕ so(V sn−1 ⊕V sn )

in the former case and

ḡn := so(V 1 ⊕V 2)⊕ · · · ⊕ so(V sn−2 ⊕V sn−1)⊕ so(V sn )

in the latter. The injections g̃n
ψn
→ ḡn

θn→ gn+1 are defined in the obvious way; θn is

a root injection, and ψn maps roots spaces corresponding to long roots of g̃n to root

spaces of ḡn. As a result of this construction, we obtain a refinement of diagram (1.4)

as follows:

(1.5) gn

δn

//

ϕn ��@
@@

@@
@@

gn+1

g̃n
ψn

//

κn

44jjjjjjjjjjjjjjjjjjjjjjj
ḡn

θn

==||||||||

.
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Remark 1.2 Note that for sn ≥ 3 the subalgebra ḡn depends on the way we combine

V 1, . . . ,V sn into pairs. In the proof of Corollary 4.4 we make use of different choices

for ḡn in the case when sn ≥ 3 is odd.

2 Borel Subalgebras, Dominant Weights, and Highest Weight
Modules

For the purposes of this paper we adopt the following definition of a Borel subgroup:

B is a Borel subgroup of G if B = lim
−→

Bn, where Bn is a Borel subgroup of Gn for every

n. All Borel subgroups we consider contain the fixed Cartan subgroup H. The cor-

responding Lie algebra b then contains h and is the direct limit of Borel subalgebras

bn ⊂ gn containing the fixed Cartan subalgebras hn. Note that we have bn = bn+1∩gn.

The Borel subalgebras of gn that contain hn correspond to linear orders on the

weights of the natural representation of gn. More precisely (see also [DP]), the Borel

subalgebras of gn correspond to

• linear orders on the set {ε1
n, . . . , ε

rn+1
n } for type A;

• linear orders compatible with multiplication by−1 on the set {±ε1
n, . . . ,±ε

rn
n , 0}

for type B;
• linear orders compatible with multiplication by −1 on the set {±ε1

n, . . . ,±ε
rn
n }

for type C ;
• linear orders compatible with multiplication by −1 on the set {±ε1

n, . . . ,±ε
rn
n }

for type D.

Here “compatible with multiplication by −1” means that εi
n < ±ε

j
n is equivalent to

∓ε
j
n < −εi

n. The above correspondence is a bijection in types A,B, and C ; in type D

each Borel subalgebra corresponds to exactly two orders as above, since the smallest

element ±εi
n such that ±εi

n > ∓εi
n can be interchanged with its opposite without

changing the Borel subalgebra.

The condition bn = bn+1∩gn is equivalent to the fact that the order on the weights

of the natural representation of gn+1 restricts to the order (or one of the two orders

in type D) on the weights of the natural representation of gn. In this way we can

say that a Borel subalgebra b = lim
−→

bn is determined by a projective system of linear

orders on the weights of the natural representations of gn. Note that in type A the

weights of gn+1 corresponding to constituents isomorphic to the dual of the natural

representation of gn restrict to−εi
n with 1 ≤ i ≤ rn + 1.

Example 2.1 (i) Let G = SL(2∞). Then gn = sl(2n) with weights {ε1
n, . . . , ε

2n

n } of

the natural representation. The weights εi
n+1 and ε2n+i

n+1 restrict to εi
n for 1 ≤ i ≤ 2n.

The projective system of orders

ε1
n > ε2

n > · · · > ε2n

n

defines the Borel subgroup of G consisting of upper triangular matrices in the real-

ization of G from Example 1.1. We will call this Borel subgroup the upper triangular

Borel subgroup of SL(2∞).
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(ii) A more interesting example of a Borel subgroup of SL(2n) is provided by the

projective systems of orders

ε1
n > ε2n−1+1

n > ε2
n > ε2n−1+2

n > · · · > ε2n−1

n > ε2n

n .

We will call this Borel subgroup the interlacing Borel subgroup of SL(2∞).

(iii) Let Gn = Sp(2(2n − 1)) and let the embedding Gn → Gn+1 be determined by

the condition that the natural representation of gn+1 contains two copies of the nat-

ural representation of gn and two copies of the trivial representation. The resulting

ind-group is not pure; we denote it by Sp(2∞− 1). The weights of the natural repre-

sentation of gn are ±ε1
n, . . . ,±ε

2n−1
n . We assume that ε1+i

n+1 and ε1+2n+i
n+1 restrict to ε1+i

n

for 1 ≤ i ≤ 2n − 2, while ε1
n+1 restricts to 0. The projective system of orders

ε1
n > ε2

n > ε2+2n−1

n > · · · > ε2n−1−1
n > ε2n−1

n

> −ε2n−1
n > −ε2n−1−1

n > · · · > −ε2+2n−1

n > −ε2
n > −ε

1
n

defines an interlacing Borel subgroup B of Sp(2∞ − 1).

A weight λ of G is by definition an inverse system of weights of Gn, i.e., a sequence

{λn} of integral weights of gn such that λn+1 restricts to λn for every n. We use the

notation λ = lim
←−

λn to indicate that the sequence {λn} defines the weight λ. P stands

for the set of weights of G. As in the finite-dimensional case, for every Borel subgroup

B ⊂ G, P is in a natural bijection with the one-dimensional B-modules. A weight

λ ∈ P is B-dominant (or simply dominant if B is clear from the context) if λn is a

Bn-dominant weight for every n; the set of B-dominant weights will be denoted by

P+
B (respectively, by P+). The fundamental bn-weights of gn (in the standard order on

the nodes of the Dynkin diagram of gn) will be denoted by ω1
n, . . . , ω

rn
n .

Example 2.2 We discuss P+
B for each of the Borel subgroups from Example 2.1.

(i) Consider λ = lim
←−

λn ∈ P. Let

(2.1) λn = λ1
nε

1
n + · · · + λ2n

n ε
2n

n = a1
nω

1
n + · · · + a2n−1

n ω2n−1
n .

Since ai
n = λi

n−λ
i+1
n for 1 ≤ i ≤ 2n−1, the fact that λn+1 restricts to λn is equivalent

to the equations

(2.2) a1
n = a1

n+1 + a2n+1
n+1 , a

2
n = a2

n+1 + a2n+2
n+1 , . . . , a

2n−1
n = a2n−1

n+1 + a2n+1−1
n+1 ,

and λ ∈ P+ is equivalent to the condition that ai
n ∈ Z≥0 for every n and every

1 ≤ i ≤ 2n − 1. As (2.2) shows, every Bn-dominant weight λn of Gn is the re-

striction of infinitely many Bn+1-dominant weights of Gn+1. More precisely, there are

finitely many choices for the parameters a1
n+1, . . . , a2n−1

n+1 , a2n+1
n+1 , . . . , a2n+1−1

n+1 , and the

parameter a2n

n+1 can be chosen as any element of Z≥0. In particular, P+ is not finitely

generated and contains the lattice points of an open n-dimensional cone for every n.
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(ii) As in (i) above, each λ ∈ P can be written as in (2.1). The restriction of λn+1 to

λn is equivalent to

(2.3)

a1
n = a1

n+1 + 2a2
n+1 + a3

n+1,

a2
n = a3

n+1 + 2a4
n+1 + a5

n+1,
...

...
...

...

a2n−1
n = a2n+1−3

n+1 + 2a2n+1−2
n+1 + a2n+1−1

n+1 .

Set bn := a1
n + · · · + a2n−1

n . Adding the equations in (2.3) we obtain

(2.4) bn = bn+1 +
(

a2
n+1 + · · · + a2n+1−2

n+1

)
.

Thus b1 ≥ b2 ≥ b3 ≥ · · · and, consequently, bn0
= bn0+1 = bn0+2 = · · · for

some n0. Again (2.4) shows that a2
n = · · · = a2n−2

n = 0 and a1
n = a1

n+1, a2n−1
n =

a2n+1−1
n+1 for every n > n0. Putting these facts together, we see that if λ ∈ P+, then

λ = lim
←−

(a ′ω1
n + a ′ ′ω2n−1

n ). In particular, P+ consists of the lattice points in a cone of

dimension two.

(iii) In this case we are going to show that P+
= 0. Again, consider λ = lim

←−
λn ∈ P.

Let

λn = λ1
nε

1
n + · · · + λ2n−1

n ε2n−1
n = a1

nω
1
n + · · · + a2n−1

n ω2n−1
n .

Since ai
n = λi

n−λ
i+1
n for 1 ≤ i ≤ 2n−2 and a2n−1

n = λ2n−1
n , the fact that λn+1 restricts

to λn is equivalent to the equations

(2.5)

a1
n = a2

n+1 + 2a3
n+1 + a4

n+1,

a2
n = a4

n+1 + 2a5
n+1 + a6

n+1,
...

...
...

...

a2n−2
n = a2n+1−4

n+1 + 2a2n+1−3
n+1 + a2n+1−2

n+1 ,

a2n−1
n = a2n+1−2

n+1 + 2a2n+1−1
n+1 .

Assume that P+ 6= 0 and let λ ∈ P+ be a nonzero weight. Choose n0 so that λn0−1 6=
0 and set

bk := a2k

n0+k + a2k+1
n0+k + · · · + a2n+k−1

n0+k for k ≥ 0.

Adding the appropriate equations from (2.5) we obtain

(2.6) bk = bk+1 +
(

a2k+1+1
n0+k+1 + · · · + a2n0+k+1−1

n0+k+1

)
,

which implies b0 ≥ b1 ≥ · · · . Hence there exists k0 such that bk0
= bk0+1 = · · · . We

may assume that k0 is the smallest such integer.

If k0 = 0, then (2.6) shows that

a3
n0+1 = · · · = a2n0+1−1

n0+1 = 0,
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which substituted in (2.5) implies

a2
n0
= · · · = a2n0−1

n0
= 0.

After another look at (2.5), we obtain λn0−1 = 0, which contradicts the assumption

that λn0−1 6= 0.

If k0 > 1, then (2.6) shows that

a2k0+1+1
n0+k0+1 = · · · = a2n0+k0+1−1

n0+k0+1 = 0,

which substituted back into (2.5) gives

a2k0 +1
n0+k0

= · · · = a2n0+k0−1
n0+k0

= 0.

The last equation together with (2.6) implies bk0−1 = bk0
, which contradicts the

choice of k0. This proves that P+
= 0.

Despite Example 2.2(iii), we can prove that P+ 6= 0 under some natural assump-

tions. On the other hand, there are no strictly dominant weights unless G is root

reductive.

Proposition 2.3

(i) If G is pure, then P+
B 6= 0 for any Borel subgroup B ⊂ G.

(ii) For any G there exists a Borel subgroup B such that P+
B 6= 0.

(iii) Assume that P+
B contains a strictly dominant weight λ, i.e., such that (λn, α) > 0

for every root α of bn. Then G is root reductive.

Proof (i) If G is pure of type B,C , or D, then ω1
n+1 restricts to ω1

n and thus P+
B

contains lim
←−

(aω1
n) for every a ∈ Z≥0. If G is pure of type A, then ω1

n+1 restricts to ω1
n

or ωrn
n , and ωrn

n+1 restricts to ω1
n or ωrn

n , which implies that every Bn-dominant weight

of the form a ′ω1
n +a ′ ′ωrn

n extends to a Bn+1-dominant weight. This shows that P+
B 6= 0.

(ii) Using induction we can construct a projective system of orders on the weights

of the natural representation of Gn in such a way that the maximal element among

the weights of the natural representation of Gn+1 restricts to a weight of the natural

representation of Gn and not to zero. This projective system defines a Borel subgroup

B, and, for every a ∈ Z>0, lim
←−

(aω1
n) is a nonzero element of P+

B .

(iii) Let α be a long root of bm, and let α1, . . . , αsm,n be the roots of bn, n > m, which

restrict to α. Assuming that λn is a strictly dominant gn-weight we conclude that

(λn, α
i) ≥ 1/2 for 1 ≤ i ≤ sm,n. This gives

(λm, α) = (λn, α
1) + · · · + (λn, α

sm,n ) ≥ 1
2
sm,n,

which is only possible if there is n0 > m so that sm,n = sm,n0
for n ≥ n0. The latter

condition implies that G is root reductive.

Every λ ∈ P+
B defines an irreducible G-module VB(λ) in the following way. The

weight λ determines the direct system of finite dimensional modules VBn
(λn)

en→
VBn+1

(λn+1), where en maps the Bn-highest weight space of VBn
(λn) into the Bn+1-

highest weight space of VBn+1
(λn+1). Then VB(λ) is defined as lim

−→
VBn

(λn).
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Example 2.4 Let G = SL(2∞) and let B be any Borel subalgebra of G. Set λn :=

ω1
n +ω2n−1

n . The sequence {λn} is a B-dominant weight of G and hence the G-module

VB(λ) is well defined. Furthermore, in this case it is easy to check that VB(λ) is a

weight module, i.e., VB(λ) = ⊕µVB(λ)µ, where

VB(λ)µ = {v ∈ VB(λ) | h · v = µ(h)v for every h ∈ h}.

This observation implies that, despite the fact that each of the modules VBn
(λn) is iso-

morphic to the adjoint representation of Gn, VB(λ) is not isomorphic to the adjoint

representation of G as the latter is not a weight module.

3 The Weyl Group WB

In this section we use the filtration (1.4) to construct a group WB that plays the role

that the Weyl group plays in the classical Bott–Borel–Weil theorem.

First we consider the case when G is not of type B. Let Wn denote the Weyl group

of gn and let pri
n : g̃n = g⊕sn

n → gn be the projection onto the i-th direct summand

for 1 ≤ i ≤ sn. Then for each pair n, i, the composition

(3.1) gn −→ g̃n

pri
n

−→ gi
n −→ gn+1

is a root injection and hence yields an injective homomorphism of Weyl groups

τ i
n : Wn → Wn+1. For every sequence {tn}

∞
n=1 with 1 ≤ tn ≤ sn, the injections τ tn

n

form a direct system. Note that, if {t ′n} and {t ′ ′n } are two sequences that differ in

finitely many positions only, then lim
−→τ

t ′n
n

Wn = lim
−→τ

t ′ ′n
n

Wn. We define an equivalence

relation between sequences by setting {t ′n} ∼ {t
′ ′
n } if t ′n = t ′ ′n for large enough n, and

denote the set of equivalence classes by T:

T = {{tn} | 1 ≤ tn ≤ sn}/ ∼ .

The set T consists of a single element if G is root reductive, and is uncountable oth-

erwise. For any element t ∈ T we put W t := lim
−→τ tn

n
Wn, where {tn} is a representative

of t . It is easy to see that W t depends only on the type of G. Namely, W t is isomor-

phic to S∞, the group of finite permutations of N, if G is of type A; to the group of

signed finite permutations of N if G is of type C ; and to the group of signed finite

permutations of N with even number of minus signs if G is of type D. Finally we put

W := ×̇t∈TW t , where ×̇ stands for restricted direct product.

If G is root reductive of type B, the definitions above still make sense. Moreover,

T consists of a single element t , and W = W t is isomorphic to the group of signed

finite permutations of N.

If G is of type B but is not root reductive, κn is not a root injection for infinitely

many n, and we need to modify the definitions above. Let W̊n denote the subgroup

of Wn generated by reflections along the long simple roots of bn. It is clear that (3.1)

maps root spaces corresponding to long roots of gn into root spaces corresponding
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to long roots of gn+1. Hence, again we have an injective homomorphism of groups

τ i
n : W̊n → W̊n+1. We can now proceed as above to define

W t := lim
−→τ tn

n
W̊n and W := ×̇t∈TW t .

Note that W t is isomorphic to S∞, the group of finite permutations of N.

Next we define a length function ℓB : W → N ∪ {∞}. Let ℓn denote the length

function on Wn determined by bn.

Lemma 3.1 For every n ∈ N, every 1 ≤ i ≤ sn, and every w ∈Wn we have

ℓn(w) ≤ ℓn+1(τ i
n(w)).

Furthermore, if ℓn(w) = ℓn+1(τ i
n(w)), then for every reduced factorization w =

σ1 · · ·σ j into a product of simple reflections, τ i
n(w) = τ i

n(σ1) · · · τ i
n(σ j) is a reduced

factorization of τ i
n(w).

Proof Let ∆n = ∆
+
n ⊔∆

−
n , where ∆+

n are the roots of bn, and let γ : ∆n → ∆n+1 be

the map corresponding to the injection (3.1). Then γ(∆±n ) ⊂ ∆
±
n+1. Set

Φw := (w−1
∆
−
n ) ∩∆

+
n and Φτ i

n(w) := (τ i
n(w)−1

∆
−
n+1) ∩∆

+
n+1.

The inclusion γ(Φw) ⊂ Φτ i
n(w) implies

ℓn(w) = |Φw| ≤ |Φτ i
n(w)| = ℓn+1(τ i

n(w)).

Moreover, the equality ℓn(w) = ℓn+1(τ i
n(w)) implies that γ(Φw) = Φτ i

n(w), and thus γ
sends every simple root in Φw into a simple root of bn+1. Consider a reduced factor-

ization w = σ1 . . . σ j and let σ j be the reflection along the simple root α of bn. Then

τ i
n(σ j) is the reflection along the simple root γ(α) of bn+1. Set w ′ := σ1 · · ·σ j−1.

Then we have ℓn(w ′) = ℓn+1(τ i
n(w ′)), and we complete the proof by induction.

Lemma 3.1 (and the observation that τ i
n(W̊n) ⊂ W̊n+1 if G is of type B) implies

that every element wt ∈ W t has a well-defined, possibly infinite, length ℓB(wt ). We

extend the definition of length to elements of W by setting ℓB(w) :=
∑

t∈T ℓB(wt )

for w = (wt )t∈T . We now define WB as the subgroup of W consisting of all elements

w ∈ W of finite length ℓB(w). For w = (wt ) ∈ WB we say that the support of w

is {t1, . . . , t l} ⊂ T if wt
= 1W t precisely when t 6∈ {t1, . . . , t l}. Assume that n0 is

such that wt i

∈ Wn0
for 1 ≤ i ≤ l. Then wt i

∈ Wn for n ≥ n0 and 1 ≤ i ≤ l. It

is not necessarily true that wt1

, . . . ,wt l

commute in Wn. If, however, the sequences

(t i
n0
, . . . , t i

n−1) for i = 1, . . . , l are distinct, then wt1

, . . . ,wt l

commute in Wn, and

define an element w(n) := wt1

. . .wt l

∈Wn. Since t1, . . . , t l are distinct, there exists

n1 such that the sequences (t i
n0
, . . . , t i

n1−1) for i = 1, . . . , l are distinct and hence

wt1

, . . . ,wt l

commute in Wn for every n ≥ n1. For the rest of the paper, whenever for

an element w ∈WB we consider the elements w(n), we will assume that n ≥ n1. If G

is of type B, then w(n) ∈ W̊n.
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Example 3.2 For G = SL(2∞) we have W ∼= ×̇TS∞. If B is the upper triangular

Borel subgroup of G, then WB = W . If, on the other hand, B is the interlacing Borel

subgroup, WB is trivial.

Proposition 3.3 If WB contains an element of length l, then WB contains elements of

all lengths from 0 through l. WB may be finite or infinite and may or may not contain an

element of maximal length. In addition, for fixed G and variable B, any non-negative

integer can appear as a maximal possible length of an element in WB.

Proof The first statement follows from the generalization of Lemma 3.1 discussed

above. Let w ∈W with ℓB(w) = l. For any reduced expression for w(n), any subword

of w(n) is well-defined and represents an element of WB. Subwords of w(n) will

provide elements of W of any length between 0 and l.

The remaining statements are rather straightforward, and we omit their proofs

here.

It is not difficult to see that in general the group WB does not act on P, i.e., there

exist w ∈ WB and λ = lim
←−

λn for which {w(n)(λn)} is not an inverse system of

weights. Here is a simple example.

Example 3.4 Let B be the upper triangular Borel subgroup of SL(2∞). Consider

w ∈WB given by

wt
=

{
(12) if t = (1, 1, . . . ),

1S∞ otherwise,

where the transposition (12) is understood as an element of the symmetric group

S∞. Let λ = lim
←−

λn be a weight such that a1
n = n and a2n−1+1

n = −1 in the notation

of Example 2.2(i). Then w(n + 1)(λn+1) = λn+1 − (n + 1)(ε1
n − ε2

n) restricts to

λn− (n + 1)(ε1
n− ε

2
n), while w(n)(λn) = λn− n(ε1

n− ε
2
n), which shows that w(n)(λn)

is not an inverse system of weights.

Despite this example, we are going to show that if λ ∈ P+, then w(λ) is a well-

defined element of P for any w ∈ WB. We will also define an analog of the “dot”

action in the finite-dimensional case. Recall that, for a finite-dimensional reductive

Lie algebra g ′ with fixed Cartan subalgebra h ′ ⊂ g ′ and Borel subalgebra b ′ ⊂ g ′,

b ′ ⊃ h ′, the dot action of a Weyl group element w ′ on a weight µ ′ ∈ (h ′)∗ is defined

as w ′(µ ′ + ρb ′)− ρb ′ , where ρb ′ is the half-sum of roots of b ′. One writes w ′ · µ ′ :=

w ′(µ ′ + ρb ′) − ρb ′ . In the case of a diagonal ind-group G, for any λ = lim
←−

λn and

w ∈WB it is natural to consider the weights {w(n)(λn + ρn)− ρn}, where ρn denotes

the half-sum of the roots of bn.

To prove results about the action of WB on weights we need additional notation.

If α ′ is a root of bm and α ′ ′ is a root of bn with n ≥ m, we say that α ′ ′ is a successor

of α ′ if α ′ ′ ∈ h∗n restricts to α ′ ∈ h∗m. If, in addition, n = m + 1, we say that α ′ ′ is

an immediate successor of α ′. Every root of bm has exactly sm immediate successors.

The set of successors Sα of a root α of bm has a natural structure of a directed tree —

every element is connected with its immediate successors. If α is a root of bm, then

Sα = ⊔n≥mS
α
n , where Sαn is the set of successors of α of level n, i.e., those successors
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of α which are roots of bn. Furthermore, given λ ∈ P, we assign integer labels to all

nodes of this tree in a natural way: the node α ′ ∈ Sαn is labeled by 2(λn, α
′)/(α ′, α ′).

It is clear that the sum of the labels of the elements of Sαn is the same for all n and

equals (2λm, α)/(α, α).

Proposition 3.5

(i) If w ∈WB, then w ·0 is a well-defined element of P, i.e., {w(n) ·0 = w(n)(ρn)−ρn}
is an inverse system of weights of G.

(ii) If w ∈WB and λ ∈ P+
B , then w(λ) is a well-defined element of P.

(iii) If w ∈WB and λ ∈ P+
B , then w · λ is a well-defined element of P.

Proof (i) Since w ∈ WB, we have w−1 ∈ WB and w(n)−1
= w−1(n). The proof of

Lemma 3.1 applied to w−1 implies that the set Φw(n+1)−1 projects onto the set Φw(n)−1 ,

and the formulas (cf. [DR])

w(n) · 0 = w(n)(ρn)− ρn = −
∑

α∈Φ
w(n)−1

α

and

w(n + 1) · 0 = w(n + 1)(ρn+1)− ρn+1 = −
∑

α∈Φ
w(n+1)−1

α

show that w(n + 1) · 0 restricts to w(n) · 0.

(ii) Let w = (wt ) ∈WB have support t1, . . . , t l and let m be such that wt i

for 1 ≤ i ≤ l

all belong to Wn and commute in Wn for n ≥ m. Let w(m) = σα1 · · ·σαq be a reduced

expression of w(n). Then, for n ≥ m, w(n) = σα1
n
· · ·σαq

n
is a reduced expression

of w(n), and αi
n is a successor of αi for 1 ≤ i ≤ q. Furthermore, the sequence

αi
= αi

m, α
i
m+1, α

i
m+2, . . . is a path in Sα

i

. Since λ is dominant, i.e., all labels in Sα
i

corresponding to λ are non-negative integers, there exists n0 ≥ m such that the labels

on each of the paths αi
= αi

m, α
i
m+1, α

i
m+2, . . . of level n ≥ n0 stabilize. For n ≥ n0

we have

(3.2)

w(n)(λn) = λn −

(
∑

1≤i≤q

2(λn, α
i
n)

(αi
n, α

i
n)
αi

n −
∑

1≤i< j≤q

2(λn, α
j
n)

(α
j
n, α

j
n)

2(α
j
n, αi

n)

(αi
n, α

i
n)

αi
n + · · ·

)
.

Now consider the restriction of w(n + 1)(λn+1) to h∗n . By the definition of λ,

λn+1 restricts to λn and, by the stabilization of the labels along the paths αi
=

αi
m, α

i
m+1, α

i
m+2, . . . ,

∑

1≤i≤q

2(λn+1, α
i
n+1)

(αi
n+1, α

i
n+1)

αi
n+1 −

∑

1≤i< j≤q

2(λn+1, α
j
n+1)

(α
j
n+1, α

j
n+1)

2(α
j
n+1, α

i
n+1)

(αi
n+1, α

i
n+1)

αi
n+1 + · · ·

restricts to

∑

1≤i≤q

2(λn, α
i
n)

(αi
n, α

i
n)
αi

n −
∑

1≤i< j≤q

2(λn, α
j
n)

(α
j
n, α

j
n)

2(α
j
n, αi

n)

(αi
n, α

i
n)

αi
n + · · · .

https://doi.org/10.4153/CJM-2011-032-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-032-6


1320 I. Dimitrov and I. Penkov

These observations together with (3.2) and its analog with n + 1 in place of n imply

that w(n + 1)(λn+1) restricts to w(n)(λn). This completes the proof of (ii).

(iii) The statement follows from (i), (ii), and the obvious formula

w(n) · λn = w(n)(λn) + w(n) · 0.

Proposition 3.6

(i) Let σ ∈ WB be an element of length one and let λ ∈ P be such that σ(n) · λn is

dominant for large enough n. Then there exists n ′ such that, for n ≥ n ′, σ(n) = σαn
,

(λn, αn) does not depend on n, and (λn, α) = 0 for every successor α ∈ S
αn ′

n different

from αn.

(ii) Let w ∈ WB and λ ∈ P be such that µn := w(n) · λn is bn-dominant for large

enough n. Then µ := lim
←−

µn is a well-defined element of P+
B .

Proof (i) Since ℓB(σ) = 1, σ(n) = σαn
where αn+1 is an immediate successor of αn

for n ≥ n0 and both αn and αn+1 are simple roots of the respective Borel subalgebras

bn and bn+1. The label of λ at αn in Sαn0 is negative, while all other labels of λ in Sαn0

are non-negative. This implies that the labels of λ along the path αn0
, αn0+1, . . . are

non-increasing. Let βn0+1 = αn0+1 +α ′n0+1 be a root of bn0+1 higher than αn0+1 and let

βn = αn +α ′n be a successor of βn0+1. Note that βn is uniquely determined by αn. We

have

(λn, βn) = (λn, αn) + (λn, α
′
n),

which implies (λn, αn) ≥ −(λn, βn). Since {(λn, βn)} is a non-increasing sequence

of non-negative integers or half-integers, we conclude that the sequence {(λn, αn)}
is bounded, and hence it stabilizes. Noting that (λn+1, αn+1) = (λn, αn) implies that

(λn+1, α) = 0 for every immediate successor of αn other than αn+1 concludes the

proof of (i).

(ii) Write w(n) = σ1
αn
. . . σ

q
αn as in the proof of Proposition 3.5(ii). As in (i) we prove

that the labels along the paths {αi
n} for 1 ≤ i ≤ q stabilize, and then repeat the

argument in the proof of Proposition 3.5(ii).

4 G/B and the Bott–Borel-Weil Theorem

Recall that an ind-variety X = lim
−→

Xn is determined by a sequence of morphisms of

algebraic varieties

X1
ϕ1
→ · · · → Xn

ϕn
→ Xn+1 → · · · ;

see for instance [Sh,DPW]. We denote by OXn
the structure sheaf of Xn and we define

the structure sheaf O of X as the inverse limit lim
←−

OXn
. More generally, a shea f F on X

is by definition the limit of an inverse system of sheaves Fn on Xn, and F is a shea f o f

O-modules whenever {Fn} is an inverse system of sheaves of OXn
-modules. A sheaf

F of O-modules is locally free of rank r whenever each Fn is locally free of rank r. In

what follows we will also call a locally free sheaf of O-modules a vector bundle on X.

Assume now that all Xn are proper. Then it is well known that the cohomology

H·(X, E) of any vector bundle E = lim
←−

En of finite-rank on X is canonically isomor-

phic to the inverse limit lim
←−

H·(Xn, En); see [W, DPW].
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In this paper we consider the ind-varieties G/B and G/P, where G = lim
−→

Gn is a

diagonal ind-group and B = lim
−→

Bn or P = lim
−→

Pn are respectively direct limits of

Borel subgroups Bn ⊂ Gn or parabolic subgroups Pn ⊂ Gn. More precisely, if B =

lim
−→

Bn with Bn = Gn∩Bn+1, or P = lim
−→

Pn with Pn = Gn∩Pn+1, the embeddings Gn →
Gn+1 induce closed immersions Gn/Bn → Gn+1/Bn+1 and Gn/Pn → Gn+1/Pn+1 of

proper smooth varieties. In what follows, we denote the corresponding ind-varieties

by G/B and G/P.

If λ ∈ P, the line bundles (OGn/Bn
)−λn

form an inverse system, and hence deter-

mine a line bundle (or a locally free sheaf of O-modules of rank one) O−λ on G/B.

Recall that, by definition, (OGn/Bn
)−λn

is the Gn-equivariant line bundle on Gn/Bn

whose geometric fibre at the closed point Bn ∈ Gn/Bn is the Bn-module K
−λn .

More generally, if En is a Gn-equivariant vector bundle (or, for short, Gn-bundle)

on Gn/Pn, then the vector bundle E = lim
←−

En on Gn/Pn is by definition G-equivariant,

and each cohomology group H j(G/P, E) is a dual G-module, being an inverse limit

of Gn-modules H j(Gn/Pn, En).

The Bott–Borel–Weil theorem computes the cohomology H·(Gn/Bn, (OGn/Bn
)−λn

)

for each weight λn; see [B, S, D1, D2]. It is the following result.

Theorem 4.1 (Bott–Borel–Weil, [S, B]) There exists a (necessarily unique) wn ∈Wn

such that wn ·λn is a Bn-dominant weight of Gn if and only if H·(Gn/Bn, (OGn/Bn
)−λn

) 6=
0. In this case

H j(Gn/Bn, (OGn/Bn
)−λn

) ∼=

{
VBn

(wn · λn)∗ for j = ℓn(wn),

0 for j 6= ℓn(wn).

If wn as above does not exists, then H·(Gn/Bn, (OGn/Bn
)−λn

) = 0.

An immediate corollary of Theorem 4.1 is that, for a fixed λ ∈ P, the cohomology

H·(G/B,O−λ) can be nonzero in at most one degree. This follows from Theorem

4.1 and from the fact that H j(G/B,O−λ) = lim
←

H j(Gn/Bn, (OGn/Bn
)−λn

) for any j.

The following theorem provides a much stronger statement. It is an analog of the

Bott–Borel–Weil theorem and is the central result in this paper.

Theorem 4.2 Let G be a diagonal ind-group, let B be a Borel subgroup of G, and

let λ ∈ P. Then H j(G/B,O−λ) 6= 0 for at most one value of j. More precisely,

H j(G/B,O−λ) 6= 0 if and only if there exists w ∈ WB such that w · λ ∈ P+
B . In

the latter case we have an isomorphism of dual G-modules

H j(G/B,O−λ) ∼= VB(w · λ)∗.

Before we prove Theorem 4.2 we state two results necessary for the proof. Let G ′ ⊂
G ′ ′ be reductive algebraic groups with Lie algebras g ′ ⊂ g ′ ′ respectively. Assume that

B ′ ′ ⊂ G ′ ′ is a Borel subgroup of G ′ ′ and that B ′ := G ′∩B ′ ′ is a Borel subgroup of G ′.

Then we have a closed immersion of homogeneous spaces G ′/B ′ → G ′ ′/B ′ ′. Denote

the Weyl groups of G ′ and G ′ ′ by W ′ and W ′ ′ respectively. If G ′ (respectively, G ′ ′)

is of type B or product of groups of type B, denote by W̊ ′ (respectively, W̊ ′ ′) the

subgroup of W ′ (respectively, W ′ ′) generated by reflections along the long simple
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roots of the corresponding Borel subalgebra. Let λ ′ ′ be a weight of B ′ ′ that restricts

to the weight λ ′ of G ′. Assume that there exist w ′ ∈ W ′ and w ′ ′ ∈ W ′ ′ both of

length j and such that w ′ ′ · λ ′ ′ and w ′ · λ ′ are dominant weights. The natural map

(4.1) H j(G ′ ′/B ′ ′,O−λ ′ ′)→ H j(G ′/B ′,O−λ ′)

is a homomorphism of nontrivial G ′-modules.

Proposition 4.3 (Tsanov, [T]) In the notation above the following statements hold.

(i) Assume that g ′ is a root subalgebra of g ′ ′ and consider W ′ as a subgroup of W ′ ′.

Then (4.1) is nonzero if and only if w ′ ′ = w ′ ∈W ′.

(ii) Assume that g ′ ∼= Br ⊕ Br and g ′ ′ ∼= D2r+1 as in Section 1. If w ′ ′ = w ′ ∈ W̊ ′,

then (4.1) is nonzero.

Corollary 4.4 Let G ′ = G1 × · · · × Gs
∼= (Br ′)

s with s > 1, let G ′ ′ ∼= Br ′ ′ and

assume that the embedding κ : G ′ → G ′ ′ is analogous to κn from (1.5). In other words,

the natural representation V ′ ′ of G ′ ′ decomposes as V ′1 ⊕· · ·⊕V ′s ⊕K
z, where each V ′i

is isomorphic to the natural representation of Br ′ . Consider the diagram

(4.2) g ′
κ

//

ψ ��>
>>

>>
>>

g ′ ′

ḡ ′
θ

??��������

,

where ḡ ′ is defined analogously to ḡn from (1.5).

(i) If (4.1) is nonzero, then w ′ ′ ∈ W̊ ′ ′.

(ii) If w ′ ∈ W̊ ′, then (4.1) is nonzero if and only if w ′ ′ = w ′.

Proof The second statement follows from Proposition 4.3. Here is the proof of (i).

Denote by Ḡ ′ the simply-connected algebraic group with Lie algebra ḡ ′. Assume that

(4.1) is nonzero. The fact that (4.1) is nonzero implies that the map

H j(G ′ ′/B ′ ′,O−λ ′ ′)→ H j(Ḡ ′/B̄ ′,O−λ̄ ′)

is nonzero, where λ̄ ′ is the restriction of λ ′ ′ to Ḡ ′. Since θ is a root injection, Propo-

sition 4.3(i) implies that w ′ ′ ∈ W̊ ′ ′ if s is even. If s is odd, Proposition 4.3(i) implies

that w ′ ′ is contained in the subgroup 1W̊ ′ ′ of W ′ ′ generated by reflections along

long simple roots corresponding to the components of Ḡ ′ of type D and by reflec-

tions along the simple roots corresponding to the component of Ḡ ′ of type B. We

can use a different way of combining the G ′-constituents V ′1 , . . . ,V
′
s of the natural

representation of G ′ ′ to obtain a diagram analogous to (4.2) but with different ḡ ′ and

different maps κ and θ. Repeating the argument above we conclude that w ′ ′ ∈ 2W̊ ′ ′

for a subgroup 2W̊ ′ ′ analogous to 1W̊ ′ ′. Note that 1W̊ ′ ′ ∩ 2W̊ ′ ′
= W̊ ′ ′ as long as we

choose a different component of type B of ḡ ′. This completes the proof.
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Proposition 4.5 ([DR, Corollary 5.4.1]) Let g ′ ′ equal the direct sum of s isomor-

phic copies g ′ ′1 , . . . , g ′ ′s of g ′ so that g ′ projects isomorphically onto each subalgebra g ′ ′i .

Assume that

H j(G ′ ′/B ′ ′,O−λ ′ ′) =

H j(G ′ ′1 /B ′ ′1 ,O−λ ′ ′

1
)⊗H0(G ′ ′2 /B ′ ′2 ,O−λ ′ ′

2
)⊗ · · · ⊗H0(G ′ ′s /B ′ ′s ,O−λ ′ ′

s
),

where G ′ ′ = G ′ ′1 × · · · × G ′ ′s
∼= (G ′)s and λ ′ ′1 , . . . , λ

′ ′
s are the restrictions of λ ′ ′ to

g ′ ′1 , . . . , g ′ ′s . Then (4.1) is a nonzero homomorphism.

Proof of Theorem 4.2 For n > m, diagram (1.4) induces the commutative diagram

gm

δm,n

//

ϕm,n   A
AA

AA
AA

gn

gn
m

κm,n

>>~~~~~~~

,

where δm,n = δn−1 ◦ · · · ◦ δm and ϕm,n and κm,n are defined in the obvious way. By

definition g̃m := gm+1
m and gn

m
∼= g

⊕sn
m

m , where sn
m := sm · · · sn−1. Given λ ∈ PB, we

denote the restriction of λ to gn
m by λn

m. Furthermore, for n > m > k there exist Lie

algebra homomorphisms δk,m,n, ϕm,n
k , and κn

k,m such that the diagram

(4.3) gk

δk,m

//

ϕk,m

&&N
NN

NN
NN

NN
NN

NN
N

ϕk,n

��@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@

gm

δm,n

//

ϕm,n

  A
AA

AA
AA

gn

gm
k

κk,m
>>}}}}}}} δk,m,n

//

ϕm,n
k

��1
11
11
11
11
11
11
1

gn
m

κm,n

88pppppppppppppp

gn
k

κn
k,m

FF















κk,n

??~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

commutes. To simplify notation we set

ϕn
m :=

{
ϕm if n = m,

ϕn,n+1
m if n > m,

κn
m :=

{
κm if n = m + 1,

κn
m,m+1 if n > m + 1,

and gn
n := gn.
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Diagram (4.3) gives rise to a commutative diagram

(4.4)

· · · gm → gm+1 → gm+2 → gm+3 · · ·
ց ր ց ր ց ր

· · · gm+1
m gm+2

m+1 gm+3
m+2 · · ·

ց ր ց ր
· · · gm+2

m gm+3
m+1 · · ·

ց ր
· · · gm+3

m · · ·

· · ·

The idea of the proof is to study the maps between the cohomology groups

H j(Gn
m/Bn

m,O−λn
m

) induced from (4.4), where Gn
m is the simply-connected classical

group with Lie algebra gn
m and Bn

m = B ∩ Gn
m. More precisely, every injection in the

direct system gk → gk+1
k → gk+2

k → · · · splits into the direct product of embeddings

to which Proposition 4.5 applies. Similarly, Proposition 4.3 and Corollary 4.4 apply

to every injection in the sequence

gn
m → gn

m+1 → · · · → gn
n−1 → gn.

Assume first that H j(G/B,O−λ) 6= 0. Then there exists k such that all maps

between the cohomology groups H j(Gn
m/Bn

m,O−λn
m

) induced from (4.4) for n ≥ m ≥
k are nonzero. Note that

H j(Gm
k /Bm

k ,O−λm
k

) = ⊗t∈Tm
k

H jt ((Gm
k )t/(Bm

k )t ,O−(λm
k

)t
),

where Tm
k = {(tk, . . . , tm−1) | 1 ≤ ti ≤ si}, (Gm

k )t , and (Bm
k )t are the respective

constituents of Gm
k and Bm

k corresponding to t , and (λm
k )t is the restriction of λ to

(Gm
k )t . Let wt denote the element of the Weyl group (W m

k )t of (Gm
k )t such that wt ·

(λm
k )t is dominant. We say that t ′ ′ ∈ Tm+1

k is an immediate successor of t ′ ∈ Tm
k if

t ′ = (tk, . . . , tm−1) and t ′ ′ = (tk, . . . , tm−1, tm); we denote this relation by t ′ ≺ t ′ ′.

Künneth’s formula implies that jt =
∑

t≺t ′ jt ′ . Hence there is a finite collection of

sequences t i
= (t i

k, t
i
k+1, . . . ), for 1 ≤ i ≤ l such that, for t ∈ Tm

k , jt 6= 0 if and

only if t = (t i
k, . . . , t

i
m−1) for some 1 ≤ i ≤ l. Fix m > k such that, for t ∈ Tm

k

with jt 6= 0, jt ′ 6= 0 for exactly one immediate successor t ′ of t . In particular jt i

stabilizes for n > m. Noting that (λm+1
k )t ′ ′ is dominant for every t ≺ t ′ ′ 6= t ′

we conclude that τ
t i
n

n (wt i

) = wt i

for n > m. The last equation means that we have

well-defined elements wt i

∈ W t i

if G is not of type B. If G is of type B, Corollary

4.4(i) ensures that wt i

∈ W t i

if we repeat the argument above with k + 1 in place

of k. Furthermore, ℓB(wt i

) = jt i and wt1

, . . . ,wt l

define an element w of WB of

length j. The fact that w · λ ∈ P+
B follows from Proposition 3.6. The existence of an

isomorphism H j(G/B,O−λ) ∼= VB(w · λ)∗ is obvious.

Conversely, assume that w ∈WB satisfies w · λ ∈ P+
B . We need to show that there

exists k such that all maps between cohomology groups H j(Gn
m/Bn

m,O−λn
m

) corre-

sponding to (4.4) with n ≥ m > k are nonzero. Assume that the support of w
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is t1, . . . , t l and choose k so that the sequences t i
k, t

i
k+1, . . . for 1 ≤ i ≤ l are dis-

tinct. The fact that H j(Gn
m,O−λn

m
) → H j(Gn−1

m ,O−λn−1
m

) is nonzero follows from

Proposition 4.5, while the fact that H j(Gn
m,O−λn

m
) → H j(Gn

m−1,O−λn
m−1

) is nonzero

follows from Proposition 4.3 and Corollary 4.4. Finally, H j(Gn+1/Bn+1,O−λn+1
) →

H j(Gn/Bn,O−λn
) being the composition of

H j(Gn+1
n+1,O−λn+1

n+1
)→ H j(Gn+1

n ,O−λn+1
n

) and H j(Gn+1
n ,O−λn+1

n
)→ H j(Gn

n,O−λn
n
)

is nonzero.

Example 4.6 Let G = SL(2∞). If B is the upper triangular Borel subgroup, then

Theorem 4.2, together with the explicit description of WB given above, implies that

for each j there are line bundles Oλ with H j(G/B,O−λ) 6= 0. If B is the interlacing

Borel subgroup of SL(2∞), then WB is the trivial subgroup of W , and hence, by

Theorem 4.2, H j(G/B,O−λ) = 0 for all B-weights λ and all j > 0. Moreover, in

this case H j(G/B,L) = 0 for all j > 0 and for any line bundle L on G/B, as it

is easy to show that any L is G-equivariant, i.e., L ≃ O−λ for some B-weight λ.

This implies that the above two homogeneous ind-spaces are not isomorphic as ind-

varieties, and in particular that the interlacing Borel subgroup is not conjugate to the

upper triangular Borel subgroup by an automorphism of SL(2∞).

Note that the group WB which we use in Theorem 4.2 is different from the Weyl

group WF defined in [NRW] unless G is root reductive. (In fact WF is a trivial group

if G is diagonal but not root reductive.) Nevertheless, if H j(G/B,O−λ) 6= 0 for some

λ, the B-weight λ is cohomologically finite in the sense of [NRW]. A question we do

not answer in this paper is whether the cohomological finiteness of λ is sufficient for

H j(G/B,O−λ) to be nonzero.

5 G/P and Projectivity

Let P be a parabolic subgroup of G and let B ⊂ P be a Borel subgroup of G. It is easy

to see that every finite-dimensional simple P-module admits a B-highest weight, i.e.,

is the limit of the direct system of simple highest weight Pn-modules for an inverse

system of Gn-weights λn. Setting λ = lim
←−

λn, we denote by Mλ the simple P-module

with highest weight λ.

Proposition 5.1 Set O(M∗λ) := lim
←−

(OGn/Pn
(M∗λ)), where OGn/Pn

(M∗λ) is the usual

Gn-equivariant bundle on Gn/Pn with fibre M∗λ . Then H j(G/P,O(M∗λ)) 6= 0 if and

only if H j(G/B,O−λ) 6= 0, and in that case

H j(G/P,O(M∗λ)) = H j(G/B,O−λ) ∼= VB(w · λ)∗,

where w ∈WB and w · λ ∈ P+
B .

Proof It is easy to see that O(M∗λ) ∼= pr∗O−λ, pr : G/B → G/P being the natural

submersion. Moreover, the fibre of pr equals P/B = lim
−→

Pn/Bn, hence the classical
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Bott–Borel–Weil theorem implies Ri pr∗OG/P = 0 for i > 0 and pr∗OG/P = OG/B.

This is sufficient to conclude that

H j(G/P,O(M∗λ)) = H j(G/B,O−λ)

for any j ∈ Z≥0. The isomorphism H j(G/B,O−λ) ∼= VB(w · λ)∗ is established in

Theorem 4.2.

We conclude this paper by discussing the projectivity of the ind-varieties G/B and

G/P. Recall that an ind-variety X is projective, i.e., admits an embedding in the

projective ind-space P
∞, if and only if it admits a very ample line bundle L. An

explicit criterion for the projectivity of G/B (and, more generally, of G/P) when G is

root reductive is proved in [DPW].

For diagonal ind-groups we have the following corollary.

Corollary 5.2 Let G a diagonal ind-group and let B be a Borel subgroup of G. Then if

G/B is projective, G is necessarily root reductive.

Proof If ι : G/B → P
∞ is a closed immersion, then L := ι∗(OP∞(1)) is a very

ample line bundle on G/B. In other words, L|Gn/Bn
is very ample for each n. Since

Gn is simply-connected for each n, L|Gn/Bn
∼= (OGn/Bn

)−λn
for some strictly dominant

weight λn of Gn. The weights λn form an inverse system and hence define a strictly

dominant weight λ = lim
←−

λn of G. By Proposition 2.3(iii) G is root reductive.

The following example shows that G/P may be projective even if G is not root

reductive.

Example 5.3 Let G = SL(2∞) and let Pn be the stabilizer of the span of the first i

standard basis vectors in C
2n

. Then lim
−→

Pn is a well-defined maximal parabolic sub-

group of G, and it is easy to see that G/P is isomorphic to the ind-Grassmannian of

i-dimensional subspaces of C
∞. The latter is clearly projective.
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