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1. Introduction

A central theorem in modern analysis is Hunt’s interpolation theorem [7, 8]. Aris-
ing as the culmination of earlier studies, for example, [2, 3, 10–12, 15, 16], Hunt’s
theorem provides the definitive formulation of the celebrated Marcinkiewicz interpo-
lation theorem in the setting of Lorentz spaces. It is well known that Lorentz spaces
constitute a natural scale of spaces that contain both Lp and weak Lp spaces.

There are elegant and well-documented treatments of these interpolation results
centred around simple functions; for textbook presentations see, for example,
[5, 17]. The interpolation results are then extended from simple functions to those
Lorentz spaces in which simple functions are dense. However, simple functions
are not dense in some of the most conspicuous Lorentz spaces arising in analysis,
namely, the weak Lp spaces.

Due to the reliance on the density of simple functions, standard proofs of inter-
polation theorems often offer incomplete treatments in the case of weak Lp spaces.
Inevitably, interpolation results in these spaces require different ad-hoc arguments
tailored to the particular operators appearing in each application. This short-
coming somewhat compromises a universal formulation in the elegant theory of
interpolation.

In this note, we advocate that the property of countable subadditivity offers an
effective and universal remedy to this problem. Countable subadditivity provides a
streamlined approach to proving these interpolation theorems, obviating the need
for various limiting procedures imposed by the consideration of simple functions,
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thus allowing the uniform treatment of all Lorentz spaces. Accordingly, we believe
that in addition to its scientific value, this approach has a significant expository
and pedagogical merit.

In proposition 2.7, we prove that the hypotheses of the Hunt interpolation
theorem already guarantee countable subadditivity of the operator. Indeed, we
show that a subadditive operator satisfying the hypotheses of Hunt’s theorem is
automatically countably subadditive on the interpolated spaces.

More generally, the question we explore in this paper is under what reasonable
conditions a subadditive mapping may actually be countably subadditive. Recall
that a mapping T defined on a normed vector space (W, | · |W ) and taking values
in another normed vector space (V, | · |V ) is called subadditive if∣∣T (f + g)

∣∣
V

�
∣∣T (f)

∣∣
V

+
∣∣T (g)

∣∣
V

(1.1)

for every f, g ∈W . We say that T is countably subadditive if whenever a series∑
j∈Z fj converges in the norm of W , we have

∣∣∣∣∣T
(∑

j∈Z

fj

)∣∣∣∣∣
V

�
∑
j∈Z

∣∣T (fj)
∣∣
V
. (1.2)

Many examples indicate that in general, a subadditive operator need not be
countably subadditive. For instance, we may define T from L1([0, 1]) to R via

T (f) = min

{
1, lim sup

n→∞
n

∫ 1/n

0

|f(x)|dx
}
.

The functional T is certainly subadditive but not countably subadditive on
L1([0, 1]), as the sequence fj = χ(1/j+1, 1/j], j ∈ Z+, violates (1.2).

A positive answer to the question of when subadditivity implies countable sub-
additivity can be given if the (not necessarily linear) operator T is assumed to be
‘continuous at zero’ in the sense that given ε > 0 there exists δ > 0 such that

f ∈W, |f |W < δ =⇒ |T (f)|V < ε. (1.3)

This property implies that the action of T on the tail of a convergent series tends
to zero in norm, and countable subadditivity may be easily deduced from this and
the subadditivity property.

Although continuity implies countable subadditivity, it should be noted that
the reverse implication is not valid. For instance, the linear operator L(f)(x) =
g(x)

∫
R
f(t) dt is countably subadditive on L1(R), but it is not continuous from

L1(R) to any reasonable space, if g is a measurable function that exhibits bad
behaviour everywhere.

In many situations arising in analysis, V and W are not normed spaces but rather
quasi-normed spaces, which means that the triangle inequality in (1.1) holds with
the appearance of a multiplicative constant on the right-hand side. Quasi-normed
spaces are ubiquitous in analysis: for instance, Hardy spaces, Lp spaces, and Lorentz
spaces with indices less than 1 are all examples of such spaces.
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When V and W are quasi-normed spaces, it is reasonable to replace (1.1) by the
quasi-additivity condition:∣∣T (f + g)

∣∣
V

� K
(∣∣T (f)

∣∣
V

+
∣∣T (g)

∣∣
V

)
(1.4)

for all f, g in W and some fixed constant K > 1. Then under assumptions (1.3)
and (1.4), T enjoys the countable α-quasi-additivity property:∣∣∣∣∣T

(∑
j∈Z

fj

)∣∣∣∣∣
α

V

� 4
∑
j∈Z

∣∣T (fj)
∣∣α
V

(1.5)

for all series
∑

j∈Z fj that converge in the quasi-norm of W . Here, α is the positive
constant that satisfies (2K)α = 2.

Assertion (1.5) can be derived as follows: by the Aoki–Rolewicz theorem [1, 9, 13]
one has ∣∣∣∣∣T

(∑
j∈Z

fj

)∣∣∣∣∣
α

V

� 4
∑

|j|�N

∣∣T (fj)
∣∣α
V

+ 4

∣∣∣∣∣T
( ∑

|j|>N

fj

)∣∣∣∣∣
α

V

(1.6)

for any N ∈ Z+. Then given ε > 0, the last term on the right-hand side in (1.6) can
be made smaller than 4 εα, provided N is large enough such that |∑|j|>N fj |W < δ.
Letting N → ∞ we obtain∣∣∣∣∣T

(∑
j∈Z

fj

)∣∣∣∣∣
α

V

� 4
∑
j∈Z

∣∣T (fj)
∣∣α
V

+ 4 εα (1.7)

and, as ε > 0 was arbitrary, we deduce (1.5).
In this note, we consider the issue of countable subadditivity and countable

α-quasi-additivity in the situation when the underlying spacesW and V are Lorentz
spaces over σ-finite measure spaces. Our main observation is that the continuity
assertion (1.3) can be derived from weak-type, or even restricted weak-type esti-
mates. This is encapsulated in proposition 2.7, which guarantees that a subadditive
operator satisfying the hypotheses of Hunt’s interpolation theorem is countably sub-
additive on the interpolated spaces. As observed earlier, this allows one to prove
the Hunt theorem directly (without resorting to simple functions) and uniformly
on all Lorentz spaces, even those in which simple functions are not dense.

Further applications are discussed in § 3; these include extensions of the Yano
extrapolation theorem and the Calderón–Zygmund theorem, as well as a result
concerning 0-local operators.

2. Countable subadditivity and α-quasi-additivitity for operators
between Lorentz spaces

In this section, we show that mild boundedness assumptions imply countable
subadditivity and countable α-quasi-additivitity.

To fix notation, we let (X, μ) and (Y, ν) be two σ-finite measure spaces. We
denote by S(X) the space of complex-valued simple functions on X and by M (X)
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the space of complex-valued measurable functions on X. We analogously define
S(Y ) and M (Y ).

Following [5], we denote by S0(X) the subset of S(X) of functions of the form
f1 − f2 + if3 − if4, where each fj has the form

∑n
k=m 2−kχAk

where m < n are
integers and Ak are subsets of X of finite measure.

Definition 2.1. The decreasing rearrangement of a function f ∈ M (X) is defined
as follows: for any t ∈ [0, ∞),

f∗(t) = inf{s > 0 : μ({|f | > s}) � t}. (2.1)

For 0 < p, q � ∞, the Lorentz space Lp,q(X) is the space of all complex-valued
measurable functions f on X for which the quasi-norm

∥∥f∥∥
Lp,q(X)

=

⎧⎪⎨
⎪⎩
(∫ ∞

0

(
t1/pf∗(t)

)q dt
t

)1/q

if q <∞,

sup
t>0

t1/pf∗(t) if q = ∞

is finite.

Note that Lp,p(X) = Lp(X) for all 0 < p � ∞, while Lp,∞(X) coincides with the
weak Lp(X) space for 0 < p <∞.

Lorentz spaces satisfy a nesting property; specifically, Lp,q(X) ⊂ Lp,r(X) when-
ever 0 < p � ∞ and 0 < q < r � ∞. Indeed, there exists a constant C(p, q, r)
depending only on p, q, r so that∥∥f∥∥

Lp,r(X)
� C(p, q, r)

∥∥f∥∥
Lp,q(X)

. (2.2)

That the space of simple functions S(X) is dense in Lp,q(X) for all 0 < p, q <∞
was observed already in [8]. For a proof that S0(X) is dense in Lp,q(X) for 0 <
p, q <∞ see Proposition 1.4.21 in [5]. However, S(X) is not dense in Lp,∞(X) for
any 0 < p � ∞ if μ has infinite support; see Exercise 1.4.4 in [5].

Definition 2.2. Let T be a mapping defined on a Lorentz space Lp,q(X) and taking
values in the space M (Y ). We say that

(a) T is subadditive on Lp,q(X) if for all f, g ∈ Lp,q(X) we have

|T (f + g)| � |T (f)| + |T (g)| ν-a.e.

If in addition T satisfies

|T (λf)| = |λ||T (f)| for all λ ∈ C and f ∈ Lp,q(X), (2.3)

then T is called sublinear.

(b) T is countably subadditive on Lp,q(X) if whenever
∑

j∈Z fj converges in
Lp,q(X), we have ∣∣∣∣∣T

(∑
j∈Z

fj

)∣∣∣∣∣ �
∑
j∈Z

|T (fj)| ν-a.e.
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(c) T is quasi-additive on Lp,q(X) if there is a constant K > 1 such that for all
f, g ∈ Lp,q(X) we have

|T (f + g)| � K(|T (f)| + |T (g)|) ν-a.e.

If in addition T satisfies (2.3), then T is called quasi-linear.

(d) T is countably α-quasi-additive on Lp,q(X) for some 0 < α � 1 if there is a
constant K ′ � 1 such that whenever

∑
j∈Z fj converges in Lp,q(X), we have∣∣∣∣∣T

(∑
j∈Z

fj

)∣∣∣∣∣
α

� K ′∑
j∈Z

|T (fj)|α ν-a.e.

Next, we recall the restricted weak-type and weak-type conditions.

Definition 2.3. We say that a mapping T defined on a subset of M (X) containing
S(X) and taking values in M (Y ) is of restricted weak-type (p, q) for 0 < p <∞
and 0 < q � ∞ if there is a constant C > 0 so that∥∥T (χA)

∥∥
Lq,∞(Y )

� C μ(A)1/p (2.4)

for all measurable subsets A of X with finite measure.
We say that T is of weak-type (p, q) if there is a constant C > 0 such that∥∥T (f)

∥∥
Lq,∞(Y )

� C ‖f‖Lp(X) (2.5)

for all f ∈ Lp(X).

We recall that a sublinear operator T is of restricted weak-type (p, q) with 0 <
p <∞ and 1 < q <∞ if and only if it admits a bounded extension from Lp,1(X)
to Lq,∞(Y ); see, for example, [5, Exercise 1.4.7].

As observed in the Introduction, countable subadditivity and countable α-quasi-
additivity are consequences of continuity. We first observe that the weak-type
condition provides a strong form of continuity.

Proposition 2.4. Fix 0 < p <∞ and 0 < q � ∞.

(i) A subadditive operator T of weak-type (p,q) is countably subadditive on Lp(X).

(ii) A quasi-additive operator T of weak-type (p,q) is countably α-quasi-additive on
Lp(X).

Proof. We prove (ii) as the proof of (i) is easier.
Let

∑
j∈Z fj be a series converging in Lp(X). By the Aoki–Rolewicz theorem

(with (2K)α = 2), we obtain:∣∣∣∣∣T
(∑

j∈Z

fj

)∣∣∣∣∣
α

� 4
∑

|j|�N

∣∣T (fj)
∣∣α + 4

∣∣∣∣∣T
( ∑

|j|>N

fj

)∣∣∣∣∣
α

ν-a.e. (2.6)

for any N ∈ Z+.
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To conclude the proof, it thus suffices to show that T (
∑

|j|>N fj) converges to
zero ν-a.e. as N → ∞. As T is of weak-type (p, q), we have:

∥∥∥∥∥T
( ∑

|j|>N

fj

)∥∥∥∥∥
Lq,∞(Y )

� C

∥∥∥∥∥
∑

|j|>N

fj

∥∥∥∥∥
Lp(X)

for some fixed C > 0. As the right-hand side converges to zero as N → ∞, we
conclude that T (

∑
|j|>N fj) converges in measure to zero. Consequently, there is a

subsequence Nk → ∞ such that T (
∑

|j|>Nk
fj) → 0 ν-a.e. Setting N = Nk in (2.6)

and letting k → ∞ we obtain that T is countably α-quasi-additive on Lp(X). �

Next we discuss a weaker form of continuity that is still sufficient to imply
countable subadditivity in the setting of Lorentz spaces.

Proposition 2.5. Let 0 < p <∞, 0 < q � ∞, and 0 < r < min{1, q}. Let T be a
subadditive operator defined on S0(X) with values in M (Y ) which is of restricted
weak-type (p, q). Then |T | has a unique countably subadditive extension on Lp,r(X).

Proof. By Lemma 1.4.20 in [5] there is a constant C > 0 such that

‖T (ϕ)‖Lq,∞(Y ) � C‖ϕ‖Lp,r(X) (2.7)

for all functions ϕ in the subspace S0(X) of Lp,r(X).
Next, we use the density of S0(X) in Lp,r(X) together with (2.7) to define an

extension of |T | on Lp,r(X). Given a sequence {ϕj}j ⊂ S0(X) converging to a given
f ∈ Lp,r(X) in the norm of this space, we claim that |T (ϕj)| converges to |T (f)| in
Lq,∞(Y ). To see this, we note that in view of subadditivity we have:

∣∣|T (ϕj′)| − |T (ϕj)|
∣∣ � |T (ϕj′ − ϕj)|.

Invoking (2.7), this yields that that sequence {|T (ϕj)|}j is Cauchy in the complete
metric space Lq,∞(Y ) and thus it has a limit in this space, which we denote by
|T (f)|∗. Moreover,

‖|T (f)|∗‖Lq,∞(Y ) = lim
j→∞

‖T (ϕj)‖Lq,∞(Y )

� C lim
j→∞

‖ϕj‖Lp,r(X) = C‖f‖Lp,r(X). (2.8)

Next, we observe that the object |T (f)|∗ does not depend on the particular
sequence {ϕj}j used to approximate f . Indeed, if {ψj}j is another sequence in
S0(X) converging to f , then

∣∣|T (ψj)| − |T (ϕj)|
∣∣ � |T (ψj − ϕj)|.

Together with (2.7) this shows that |T (ψj)| has the same limit as |T (ϕj)| in
Lq,∞(Y ). Therefore, |T (f)|∗ is well defined for each f ∈ Lp,r(X).
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This allows us to define an extension |T |∗ of |T | on Lp,r(X) by setting |T |∗(f) =
|T (f)|∗. Moreover, in view of (2.8), this extension satisfies

‖|T (f)|∗‖Lq,∞(Y ) � C‖f‖Lp,r(X). (2.9)

This bound provides the required continuity needed to show that the exten-
sion |T |∗ is a countably subadditive operator on Lp,r(X). Indeed, arguing as in
the proof of proposition 2.4, to derive countable subadditivity we need to con-
trol |T (

∑
|j|>N fj)|∗ whenever

∑
|j|>N fj → 0 in Lp,r(X). Estimate (2.9) implies

that ‖|T (
∑

|j|>N fj)|∗‖Lq,∞(Y ) tends to zero as N → ∞, so there is a subsequence
Nk → ∞ such that |T (

∑
|j|>Nk

fj)|∗ tends to zero ν-a.e. as k → ∞. This yields the
countable subadditivity of the extension |T |∗. �

Remark 2.6. Proposition 2.5 has a natural extension in the case T is a quasi-
additive operator defined on S0(X) with values in M (Y ) which is of restricted
weak-type (p, q) for 0 < p <∞ and 0 < q � ∞. In this setting, Lemma 1.4.20 in
[5] establishes the estimate (2.7) provided

0 < r < min

{
q,

log 2
log(2K)

}
,

where K denotes the quasi-additivity constant of T . The arguments in proposition
2.5 then show that |T | has a unique countably α-quasi-additive extension on Lp,r(X)
where α is chosen such that (2K)α = 2.

Proposition 2.5 shows that operators that are well-behaved on simple functions
have extensions that are likewise well-behaved. However, the extension provided
by proposition 2.5 need not be the only extension of the operator, as the following
example demonstrates: let B denote a vector space basis of S0(X) and let B′ denote
an extension of B to a basis of Lp,r(X). Given a function h �= 0, that may or may
not belong to Lq,∞(Y ), we define:

T (f) =

{
0, if f ∈ B

h, if f ∈ B′ \B,

and extend T to S0(X) and Lp,r(X) as a linear operator. Then the extension
provided by proposition 2.5 is the zero operator on Lp,r(X) and so does not coincide
with T on Lp,r(X).

In fact, the restricted weak-type property is most useful when it is additionally
known that the operator is also bounded on some other space, in which case there
is no ambiguity over the extension.

Our main result in this section demonstrates that if two estimates are known
(such as, e.g. in the setting of the Hunt or Marcinkiewicz interpolation theorems),
then subadditivity (respectively, quasi-additivity) properties of the operator neces-
sarily imply countable subadditivity (respectively, countable α-quasi-additivity) on
interpolation spaces.
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Proposition 2.7. Let 0 < p0 < p < p1 � ∞ and 0 < q0, q1 � ∞. Let T be a quasi-
additive (respectively, subadditive) operator defined on Lp0,1(X) + Lp1,1(X) with
values in M (Y ). Assume that T satisfies

‖T (f)‖Lq0,∞(Y ) � C0‖f‖Lp0,1(X), (2.10)

‖T (f)‖Lq1,∞(Y ) � C1‖f‖Lp1,1(X), (2.11)

for fixed constants positive C0, C1. Then T is countably α-quasi-additive (respec-
tively, countably subadditive) on Lp,r(X) for any 0 < r � ∞, where α is related to
the quasi-addivity constant K via (2K)α = 2.

Proof. We prove the claim in the case T is quasi-additive, as the subadditive case
is included.

Given f ∈ Lp,r(X), we may decompose it as

f = f0 + f1 with f0 = fχ{|f |>f∗(1)}.

Then

f∗0 (t) � f∗(t)χ(0,1)(t) and f∗1 (t) �
{
f∗(1), if t < 1
f∗(t), if t � 1

which yields

‖f0‖Lp0,1 + ‖f1‖Lp1,1 � C(p, p0, p1)‖f‖Lp,∞ � C(p, p0, p1)‖f‖Lp,r . (2.12)

The last inequality above follows from the nesting property (2.2) of Lorentz spaces.
As (2.12) shows, the space Lp,r(X) is contained in Lp0,1(X) + Lp1,1(X). There-

fore, given a sequence fj in Lp,r(X), we may decompose each fj = gj + hj with
gj ∈ Lp0,1(X) and hj ∈ Lp1,1(X). If the series

∑
j fj converges in Lp,r(X), then

(2.12) shows that
∑

j gj converges in Lp0,1(X) and
∑

j hj converges in Lp1,1(X).
The quasi-additivity of T yields∣∣∣∣∣T

( ∑
|j|>N

fj

)∣∣∣∣∣ � K

∣∣∣∣∣T
( ∑

|j|>N

gj

)∣∣∣∣∣+K

∣∣∣∣∣T
( ∑

|j|>N

hj

)∣∣∣∣∣. (2.13)

By (2.10), (2.11) and the convergence of
∑

j gj in Lp0,1(X) and that of
∑

j hj in
Lp1,1(X), we have that T (

∑
|j|>N gj) tends to zero in Lq0,∞(Y ) and T (

∑
|j|>N hj)

tends to zero in Lq1,∞(Y ). Passing to a subsequence Nk → ∞, we may thus guaran-
tee that T (

∑
|j|>Nk

gj) tends to zero ν-a.e. and T (
∑

|j|>Nk
hj) tends to zero ν-a.e.

as k → ∞. By (2.13), this shows that T (
∑

|j|>Nk
fj) tends to zero ν-a.e. as k → ∞.

To continue, we employ the Aoki–Rolewicz theorem to deduce∣∣∣∣∣T
( ∑

|j|�Nk

fj

)∣∣∣∣∣
α

� 4
∑

|j|�Nk

∣∣T (fj)
∣∣α + 4

∣∣∣∣∣T
( ∑

|j|>Nk

fj

)∣∣∣∣∣
α

ν-a.e. (2.14)

Sending k → ∞, this yields the countable α-quasi-additivity of T . �
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Note that the boundedness properties (2.10) and (2.11) of T are the standard
hypotheses in Hunt’s interpolation theorem [7, 8]. Moreover, by the nesting prop-
erty (2.2), if T is of weak-type (p0, q0) and of weak-type (p1, q1), then it also
satisfies (2.10) and (2.11); weak-type bounds are the standard hypotheses in the
Marcinkiewicz interpolation theorem.

Proposition 2.7 shows that the colloquial formulation of the Hunt interpolation
theorem holds true – there is no need to discuss simple functions. Indeed, proposi-
tion 2.7 guarantees that, under the traditional hypotheses of the Hunt interpolation
theorem, the operator T extends naturally to the entirety of Lp,r(X), even when
r = ∞. By comparison, traditional treatments guarantee only that the interpola-
tion bounds hold for simple functions and consequently, that the operator T extends
to a bounded operator on Lp,r only when simple functions are dense therein. As
discussed in the Introduction, this excludes the weak Lp spaces.

3. Applications

In this section, we look at three examples where countable subadditivity plays a
critical role.

3.1. Yano’s extrapolation

For our first application, we prove a slight extension of Yano’s extrapolation
theorem [18]; see also [4, Theorem 4.1] for a different approach to this result.

Theorem 3.1. Let (X, μ) and (Y, ν) be finite measure spaces and fix 1 < p∗ <∞
and positive constants A, α. Let T be a sublinear operator that maps Lp,1(X) to
Lp,∞(Y ) for every 1 < p < p∗ with norm bounded by A(p− 1)−α. Then for all f ∈
∪1<p<p∗L

p,1(X) we have

∫
Y

|T (f)|dν � ACY

[ ∫
X

|f |(log+
2 |f |)α dμ+ CX,α,p∗

]
, (3.1)

where CX,α,p∗ and CY are constants depending on the indicated parameters.

Proof. By proposition 2.7, T is countably subadditive on Lp,1(X) for all 1 < p < p∗.
Given f ∈ Lp,1(X) for some 1 < p < p∗, we decompose

f =
∞∑

k=0

fχSk
,

where S0 = {|f | < 2} and Sk = {2k � |f | < 2k+1} for k � 1. That the series rep-
resentation of f converges in Lp,1(X) follows from the dominated convergence
theorem.

Let k0 � 1 be such that 1 + 1/k < p∗ for all k � k0. Let pk = (k + 1)/k whenever
k � k0.
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By the countable subadditivity property of T and Hölder’s inequality in Lorentz
spaces, we may estimate∫

Y

|T (f)|dν

�
∑
k�0

∫
Y

|T (fχSk
)|dν

�
∑

0�k<k0

‖T (fχSk
)‖Lp,∞(Y )‖1‖Lp′,1(Y ) +

∑
k�k0

‖T (fχSk
)‖Lpk,∞(Y )‖1‖Lp′

k
,1(Y )

� A

(p− 1)α

∑
0�k<k0

‖fχSk
‖Lp,1(X)ν(Y )

1
p′ +

∑
k�k0

A

(pk − 1)α
‖fχSk

‖Lpk,1(X)ν(Y )
1

p′
k

� ACY

[
CX,α,p∗ +

∑
k�k0

2k+1kαμ(Sk)
k

k+1

]
.

Claim (3.1) follows from this and an application of Young’s inequality:

μ(Sk)
k

k+1 � k
k+1 4μ(Sk) + 1

k+1 4−k � 4μ(Sk) + 4−k.

Summing over k � k0 yields the claimed assertion. �

3.2. The Calderón–Zygmund theorem

Our next application concerns singular integral operators of Calderón–Zygmund
type. One of the central themes in the treatment of such operators is that knowledge
of the boundedness of the operator from Lr(Rn) to Lr(Rn) for some 1 < r <∞,
together with further regularity conditions satisfied by the kernel, guarantee that
the operator is of weak-type (1, 1). An application of the Marcinkiewicz interpo-
lation theorem then allows one to conclude that the operator admits a bounded
extension from Lp(Rn) to Lp(Rn) for all 1 < p � r; see [5, 14]. Below, we dis-
cuss an analogous statement under the milder assumption that T is bounded from
Lr,1(Rn) to Lr,∞(Rn) for some fixed 1 < r <∞. In view of proposition 2.7, bound-
edness on Lp(Rn) for 1 < p < r will follow once the operator T is shown to also be
of weak-type (1, 1).

Theorem 3.2. Suppose that the singular integral operator T is associated with a
kernel K(x, y) in the sense that

T (f)(x) =
∫
Rn

K(x, y)f(y) dy for x /∈ supp f, (3.2)

whenever f ∈ L1(Rn) is compactly supported. Assume that there exists two con-
stants A, A′ > 0 and 1 < r <∞ so that

(i) |K(x, y)| � A |x− y|−n uniformly for x �= y,

(ii)
∫
|x−y|�2|y−y′| |K(x, y) −K(x, y′)|dx � A′ uniformly for y, y′ ∈ R

d,

(iii) T is bounded from Lr,1(Rn) to Lr,∞(Rn).
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Then T admits an extension that is of weak-type (1, 1) with a bound proportional
to A′ + ‖T‖Lr,1→Lr,∞ .

Proof. Fix f ∈ L1 ∩ Lr,1, which is a dense subset of L1. For λ > 0 fixed and a con-
stant γ > 0 to be specified shortly, we perform a Calderón–Zygmund decomposition
of f at level γλ, thereby writing f = g +

∑
j∈Z bj where

‖g‖L1 � ‖f‖L1 and |g| � 2nγλ a.e. (3.3)

and each bj is supported in a dyadic cube Qj such that

‖bj‖L1 � 2n+1γλ|Qj | and
∫

Qj

bj(y) dy = 0. (3.4)

Moreover, the dyadic cubes Qj have pairwise disjoint interiors and satisfy:

∑
j∈Z

|Qj | � (γλ)−1‖f‖L1 . (3.5)

For each cube Qj , let yj denote its centre. Let Q∗
j denote the dilate of Qj with

the same centre yj and side �(Q∗
j ) = 2

√
n �(Qj). Note that in view of hypothesis

(i), T (bj) admits representation (3.2) for x /∈ Q∗
j . Moreover, as

|x− yj | � 2|y − yj | for all y ∈ Qj and x /∈ Q∗
j ,

hypotheses (i) and (ii) together with (3.4) yield

∫
Rn\Q∗

j

|T (bj)(x)|dx �
∫
Rn\Q∗

j

∫
Qj

|K(x, y) −K(x, yj)||bj(y)|dy dx

� 2n+1A′γλ|Qj |. (3.6)

By (3.3) and interpolation, we conclude that g ∈ Lr,1. Indeed,

‖g‖Lr,1 � ‖f‖1r
L1(γλ)1−1r. (3.7)

Consequently, the series
∑

j∈Z bj = f − g ∈ Lr,1 and converges a.e. By the dom-
inated convergence theorem, it follows that the series converges in Lr,1. As by
hypotheses (iii) we have:

∥∥∥∥∥T
( ∑

|j|>N

bj

)∥∥∥∥∥
Lr,∞(Rn)

� C

∥∥∥∥∥
∑

|j|>N

bj

∥∥∥∥∥
Lr,1(Rn)

for some fixed C > 0, and the right-hand side converges to zero as N → ∞, we
conclude that |T (

∑
|j|>N bj)| converges to zero in Lr,∞ (and so also in measure) as
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N → ∞. Thus, there exists a subsequence Nk → ∞ such that |T (
∑

|j|>Nk
bj)| → 0

a.e. as k → ∞. Together with the linearity of T , this yields

T (f) = T (g) +
∑

j

T (bj) a.e. (3.8)

To continue, we use hypothesis (iii), (3.3), (3.5), (3.6), (3.7) and (3.8) to derive
the bound∣∣∣{x : |T (f)(x)| > λ}

∣∣∣
�
∣∣∣{x : |T (g)(x)| > λ

2 }
∣∣∣+∑

j∈Z

|Q∗
j | +

∣∣∣{x /∈ ∪Q∗
j :
∑
j∈Z

|T (bj)(x)| > λ
2

}∣∣∣
�
[
λ−1‖T (g)‖Lr,∞

]r + (γλ)−1‖f‖L1 + λ−1

∫
Rn\∪Q∗

j

∑
j∈Z

|T (bj)(x)|dx

�
[
λ−1‖T‖Lr,1→Lr,∞‖f‖1r

L1(γλ)1−1r
]r + (γλ)−1‖f‖L1 +A′λ−1‖f‖L1

� λ−1(A′ + ‖T‖Lr,1→Lr,∞)‖f‖L1 ,

having chosen γ = 1/‖T‖Lr,1→Lr,∞ . All the implicit constants depend only on the
dimension (and not on A, f , λ).

This proves that T satisfies weak-type (1, 1) bounds on f ∈ L1 ∩ Lr,1. Using the
density of L1 ∩ Lr,1 in L1, we may therefore extend T to a bounded operator from
L1(Rn) to L1,∞(Rn). �

3.3. Subadditive 0-local operators

Finally, we consider an application concerning subadditive operators that pre-
serve the supports of functions with vanishing integral; we call such operators
0-local.

Theorem 3.3. Let 1 < r � ∞. Suppose S is a subadditive operator defined on
L1(Rn) + Lr,1(Rn) that is bounded from Lr,1(Rn) to Lr,∞(Rn). Assume that S
is 0-local in the sense that whenever h is supported in a dyadic cube Q and has
vanishing integral, then S(h) is supported in a fixed multiple Q∗ of Q. Then S is of
weak-type (1, 1).

Proof. Assume initially that f lies in L1 ∩ Lr,1, which is dense in L1. For λ > 0
fixed and a constant γ > 0 to be chosen shortly, we apply the Calderón–Zygmund
decomposition to f at height γλ. In this way, we may write f = g + b so that (3.3)
and (3.4) are satisfied. As g ∈ L1 ∩ L∞, we have g ∈ Lr,1 and it satisfies bound
(3.7). By hypothesis, this implies

‖S(g)‖Lr,∞ � ‖S‖Lr,1→Lr,∞‖f‖1/r
L1 (γλ)1−(1/r). (3.9)

As b = f − g ∈ Lr,1 and S is bounded from Lr,1 to Lr,∞, we may deduce the
countable subadditivity property

|S(b)| �
∑

j

|S(bj)| a.e.
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As each bj is supported in Qj and has mean value zero, our hypotheses guarantee
that S(bj) is supported in Q∗

j . Hence,
∑

j |S(bj)| is supported in ∪jQ
∗
j , which has

measure bounded by a constant multiple of (γλ)−1‖f‖L1 .
Using that |S(f)| � |S(g)| + |S(b)| together with (3.9) and choosing γ =

1/‖S‖Lr,1→Lr,∞ , we may bound

λ
∣∣{|S(f)| > λ

}∣∣ � λ
∣∣{|S(g)| > λ

2

}∣∣+ λ
∣∣{|S(b)| > λ

2

}∣∣
� λ

(‖S(g)‖Lr,∞
λ

)r + λ(γλ)−1‖f‖L1

� ‖S‖Lr,1→Lr,∞‖f‖L1 ,

where all implicit constants are independent of λ. This proves the weak-type (1, 1)
bounds for functions f ∈ L1 ∩ Lr,1. Since S is already defined on L1, a density
argument yields

‖S(f)‖L1,∞ � ‖S‖Lr,1→Lr,∞‖f‖L1

for all f ∈ L1. �

Note that by an application of Hunt’s interpolation theorem, the operator S in
theorem 3.3 maps Lp(Rn) to Lp(Rn) for every 1 < p < r.

If the operator S were only defined on Lr,1 and not on L1, then we can deduce
that it has a unique bounded subadditive extension on L1 which is of weak-type
(1, 1) and a unique bounded subadditive extension on Lp for 1 < p < r.

Examples of 0-local subadditive operators in the sense of theorem 3.3 can be
constructed as follows: let hI be the Haar functions, where I ranges over all dyadic
intervals. These are equal to |I|−1/2 on the left half of I and −|I|−1/2 on the right
half. Let Dk be the set of all dyadic intervals of length 2−k. The dyadic martingale
difference operator is

Dk(f) =
∑

I∈Dk

〈f, hI〉hI , f ∈ L1
loc(R). (3.10)

For a bounded and compactly supported sequence {ak,j}k,j∈Z, define

S(f) = sup
j∈Z

∣∣∣∣∣
∑
k∈Z

ak,jDk(f)

∣∣∣∣∣, (3.11)

whenever f ∈ L1
loc(R). Then S is 0-local; indeed, if f is supported in a dyadic

interval I0 of length 2−k0 and has vanishing integral, then for any k < k0 and any
J of length 2−k containing I0 we have that f is supported in the left or right half
of J on either of which hJ is constant. But if f has mean value zero, it follows that
Dk(f) = 0 when k < k0. Therefore, the smallest k that appears in the sum in (3.11)
is k0. Also, the sum in (3.10) for k = k0 contains only one term, namely the one
corresponding to I = I0. Finally, the part of the sum in (3.10) with k > k0 contains
only terms which are supported in I0. Thus, S(f) is supported in I0.

Such examples of operators S are inspired by maximal combinations of martingale
difference operators on probability spaces equipped with dyadic filtrations [6].
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