doi:10.1017/S0007114521001173 # Food insecurity (hunger) and fast-food consumption among 180 164 adolescents aged 12–15 years from sixty-eight countries Lee Smith^{1*}, Yvonne Barnett², Guillermo F. López-Sánchez³, Jae Il Shin⁴, Louis Jacob^{5,6}, Laurie Butler⁷, Chao Cao⁸, Lin Yang⁹, Felipe Schuch¹⁰, Mark Tully¹¹ and Ai Koyanagi^{5,12} 1 The Cambridge Centre for Sport and Exercise Sciences, Anglia Ruskin University, Cambridge, UK ²Anglia Ruskin University, Cambridge, UK ³Vision and Eye Research Institute, School of Medicine, Faculty of Health, Education, Medicine and Social Care, Anglia Ruskin University, Cambridge, UK ⁴Department of Pediatrics, Yonsei University College of Medicine, Yonsei-ro 50, Seodaemun-gu, 8044, 120-752 Seoul, Seoul, Republic of Korea ⁵Research and Development Unit, Parc Sanitari Sant Joan de Déu, CIBERSAM, Dr. Antoni Pujadas, 42, Sant Boi de Llobregat, Barcelona 08830, Barcelona, Spain ⁶Faculty of Medicine, University of Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux 78180, Montigny-le-Bretonneux, France 7 Faculty of Science and Engineering, Anglia Ruskin University, Cambridge, UK ⁸Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO, USA ⁹Department of Cancer Epidemiology and Prevention Research, Cancer Care Alberta, Alberta Health Services, Departments of Oncology and Community Health Sciences, University of Calgary, Calgary, Canada 10 Department of Sports Methods and Techniques, Federal University of Santa Maria, Santa Maria, Brazil ¹¹School of Health Sciences, Institute of Mental Health Sciences, Ulster University, Newtownabbey BT15 1ED, Newtownabbey, Northern Ireland ¹²ICREA, Pg, Lluis Companys 23, 08010 Barcelona, Spain (Submitted 22 December 2020 - Final revision received 22 March 2021 - Accepted 25 March 2021 - First published online 5 April 2021) #### **Abstract** Food insecurity has been shown to be associated with fast-food consumption. However, to date, studies on this specific topic are scarce. Therefore, the aim of the present study was to investigate the association between food insecurity and fast-food consumption in adolescents aged 12–15 years from sixty-eight countries (seven low-income, twenty-seven lower middle-income, twenty upper middle-income, fourteen high-income countries). Cross-sectional, school-based data from the Global School-based Student Health Survey were analysed. Data on past 30-d food insecurity (hunger) and fast-food consumption in the past 7 d were collected. Multivariable logistic regression and meta-analysis were conducted to assess associations. Models were adjusted for age, sex and BMI. There were 180 164 adolescents aged 12–15 years (mean age 13-8 (sp 1-0) years; 50-8 % boys) included in the analysis. Overall, severe food insecurity (i.e. hungry because there was not enough food in home most of the time or always) was associated with 1·17 (95 % CI 1·08, 1·26) times higher odds for fast-food consumption. The estimates pooled by country-income levels were significant in low-income countries (adjusted OR (aOR) = 1·30; 95 % CI 1·05, 1·60), lower middle-income countries (aOR = 1·15; 95 % CI 1·02, 1·29) and upper middle-income countries (aOR = 1·26; 95 % CI 1·07, 1·49), but not in high-income countries (aOR = 1·04; 95 % CI 0·88, 1·23). The mere co-occurrence of food insecurity and fast-food consumption is of public health importance. To tackle this issue, a strong governmental and societal approach is required to utilise effective methods as demonstrated in some high-income countries such as the implementation of food banks and the adoption of free school meals. Key words: Food insecurity: Fast-food: Multi-country: Adolescents $\textbf{Abbreviations:} \ \ \textbf{HIC}, \ \textbf{high-income} \ \ \textbf{countries}; \ \textbf{LMIC}, \ \textbf{low-} \ \ \textbf{and} \ \ \textbf{middle-income} \ \ \textbf{countries}.$ * Corresponding author: Lee Smith, email lee.smith@aru.ac.uk Fast food is food that can be prepared quickly and easily and is sold in restaurants and snack bars as a quick meal or to be taken $out^{(1,2)}$ and often consists of meals such hamburgers and chips⁽³⁾. However, it should be noted that fast-food products likely vary considerably across countries and cultures. (3). Currently, fastfood consumption is on the rise globally, especially among adolescents in both low- and middle-income countries (LMIC) and high-income countries (HIC)(4,5). Fast food often consists of poor nutrition. For example, one study carried out by Heart UK identified that many UK high street restaurants and fast-food chains serve meals with four times the UK's national maximum daily recommended levels of saturated fat in a single meal⁽⁶⁾. Furthermore, fast-food consumers are known to have higher intakes of energy, fat, SFA, trans fatty acids, added sugar and Na, as well as lower intakes of fibre, macronutrients and vitamins⁽⁷⁾. Research has shown that fast-food consumption is associated with increased risk for physical conditions such as obesity, insulin resistance and elevated total cholesterol⁽⁷⁾, while some studies have shown that it can also negatively impact mental health. For example, one study in 13 486 Iranian children and adolescents found that fast-food consumption may increase the risk for psychiatric distress and violent behaviours⁽⁸⁾. Other research has identified a link between fast-food consumption and depression⁽⁹⁾ or suicide attempts⁽¹⁰⁾. Owing to these detrimental health outcomes, it is important to identify risk factors of fastfood consumption in order to implement effective strategies to reduce this behaviour. One potentially important but understudied correlate of fastfood consumption is food insecurity. Food insecurity is a condition in which households lack access to adequate food because of limited money or other resources(11). Although not all individuals in food-insecure households experience hunger, severe food insecurity can lead to hunger. The prevalence of food insecurity has been reported to be high in both LMIC and HIC. For example, the prevalence of food insecurity in the USA in 2019 has been estimated to be 10.5 %(12). Food insecurity may lead to fast-food consumption as people tend to shift to more energy-dense but less nutritious food when food is scarce⁽¹³⁾. Specifically, food-insecure people may prefer energy-dense food to compensate for times when food is scarce. Alternatively, increasing cravings for high-energy foods may be induced as a coping strategy for stress associated with food insecurity(14). However, to date, there are only a few studies specifically on this topic across all age groups and all have been conducted in HIC. For example, in one study including 4746 multi-ethnic middle- and high-school students in the USA, it was found that food-insecure youths reported eating more fast food but fewer family meals and breakfasts per week than did youths who are food secure(15). In another study including 2564 Australian households, it was found that having run out of money to buy food was associated with increased likelihood of purchasing fast food from chain restaurants on a weekly basis⁽¹⁶⁾. The co-occurrence of food insecurity and fast-food consumption in young people is of particular concern as both are detrimental to health and both have been shown to track across the lifespan leading to an increased risk for adverse health outcomes even in adulthood^(17,18). Moreover, studying this association among adolescents is of particular importance as adolescence is a crucial life stage characterised by dramatic modifications in lifestyle patterns. These modifications include unhealthier food choices and eating outside the home (mainly at fast-food restaurants), amongst others (19-21). Therefore, the aim of the present study was to investigate the association between food insecurity and fast-food consumption in adolescents aged 12-15 years from sixty-eight countries, representing all economic settings. #### Methods Publicly available data from the Global School Health Survey were analysed. Details on this self-administered survey can be found at http://www.who.int/chp/gshs and http://www.cdc. gov/gshs. Briefly, the Global School Health Survey was jointly developed by the WHO and the US Centers for Disease Control and Prevention, and other UN allies. The core aim of this survey was to assess and quantify risk and protective factors of major non-communicable diseases. The survey draws content from the Centers for Disease Control and Prevention Youth Risk Behavior Survey for which test-retest reliability has been established⁽²²⁾. The survey used a standardised two-stage probability sampling design for the selection process within each participating country. For the first stage, schools were selected with probability proportional to size sampling. The second stage involved the random selection of classrooms which included students aged 13-15 years within each selected school. All students in the selected classrooms were eligible to participate in the survey regardless of age. Data collection was performed during one regular class period. The questionnaire was translated into the local language in each country and consisted of multiple choice response options; students recorded their response on computer scannable sheets. All Global School Health Surveys were approved, in each country, by both a national government administration (most often the Ministry of Health or Education) and an institutional review board or ethics committee. Student privacy was protected through anonymous and voluntary participation, and informed consent was obtained as appropriate from the students, parents and/or school officials. Data were weighted for non-response and probability selection. From all publicly available data, we selected all nationally representative data sets that included the variables used in the current analysis. If there were more than two data sets from the same country, we chose the most recent data set. Thus, a total of sixty-eight countries were included in the current study. The characteristics of each country or survey are provided in Table 1. For the included countries, the survey was conducted between 2009 and 2017 and consisted of seven low-income (n 12 462), twenty-seven lower middleincome (n 67 333), twenty upper middle-income (n 72 861) and fourteen high-income (n 27 508) countries based on the World Bank classification at the time of the survey for the respective countries. 472 # L. Smith et al. **Table 1.** Survey characteristics and prevalence of fast-food consumption and severe food insecurity by country (Numbers and percentages) | | | | * | Fast-food | Severe food | |-------------------------------|------|-------------------|----------------|-----------------|----------------| | Country | Year | Response rate (%) | n [*] | consumption (%) | insecurity (%) | | _ow-income countries | | | | | | | Afghanistan | 2014 | 79 | 1493 | 63.3 | 17.1 | | Benin | 2016 | 78 | 717 | 46.3 | 12.5 | | Cambodia | 2013 | 85 | 1812 | 25.5 | 7.7 | | Liberia | 2017 | 71 | 541 | 42.9 | 9.8 | | Mozambique | 2015 | 80 | 668 | 65.5 | 12.0 | | Nepal | 2015 | 69 | 4616 | 75.3 | 4.4 | | Tanzania | 2014 | 87 | 2615 | 35.6 | 6.4 | | Total | | | | 50-4 | 6.9 | | Lower middle-income countries | | | | | | | Bangladesh | 2014 | 91 | 2753 | 53.3 | 13.3 | | Belize | 2011 | 88 | 1600 | 66-2 | 7.1 | | Bolivia | 2012 | 88 | 2804 | 56.9 | 8.2 | | East Timor | 2015 | 79 | 1631 | 67.0 | 11.0 | | Egypt | 2011 | 85 | 2364 | 49.3 | 4.5 | | El Salvador | 2013 | 88 | 1615 | 57.4 | 3.9 | | Ghana | 2012 | 82 | 1110 | 69.9 | 14.8 | | Guatemala | 2015 | 82 | 3611 | 56.8 | 2.7 | | Guyana | 2010 | 76 | 1973 | 56.0 | 8.0 | | Honduras | 2010 | | | | | | | | 79 | 1486 | 48.0 | 3.7 | | Indonesia | 2015 | 94 | 8806 | 54.7 | 4.2 | | Kiribati | 2011 | 85 | 1340 | 43.9 | 12.8 | | Laos | 2015 | 70 | 1644 | 44-8 | 1.0 | | Mauritania | 2010 | 70 | 1285 | 63-2 | 9.4 | | Mongolia | 2013 | 88 | 3707 | 55.2 | 1.9 | | Morocco | 2016 | 91 | 3975 | 62-2 | 8-8 | | Pakistan | 2009 | 76 | 4998 | 21.0 | 5.6 | | Philippines | 2015 | 79 | 6162 | 51.9 | 7⋅2 | | Samoa | 2017 | 59 | 1058 | 67.3 | 13.9 | | Solomon Islands | 2011 | 85 | 925 | 65.9 | 10⋅3 | | Sri Lanka | 2016 | 89 | 2254 | 42.8 | 3.4 | | Sudan | 2012 | 77 | 1401 | 41.5 | 9.2 | | Swaziland | 2013 | 97 | 1318 | 41.3 | 8.0 | | Syria | 2010 | 97 | 2929 | 42.8 | 11.1 | | Vanuatu | 2016 | 57 | 1288 | 57-6 | 8.4 | | Vietnam | 2013 | 96 | 1743 | 29.7 | 0.9 | | Yemen | 2014 | 75 | 1553 | 34.5 | 11.1 | | Total | | | | 48.5 | 6.5 | | Upper middle-income countries | | | | | | | Algeria | 2011 | 98 | 3484 | 51.9 | 8.1 | | Antigua & Barbuda | 2009 | 67 | 1235 | 56-6 | 7·2 | | Argentina | 2012 | 71 | 21 528 | 31.5 | 3.5 | | Costa Rica | 2009 | 72 | 2265 | 54.4 | 1.1 | | Dominica | 2009 | 84 | 1310 | 47.1 | 5.5 | | Dominican Republic | 2016 | 63 | 954 | 46.7 | 2.0 | | • | 2016 | 79 | 1537 | 64.2 | 11·6 | | Fiji
Irog | 2010 | 79
88 | 1533 | 55·7 | 8.8 | | Iraq | | | | | | | Jamaica | 2017 | 60 | 1061 | 58·4 | 6.2 | | Lebanon | 2017 | 82 | 3347 | 77·1 | 3.1 | | Malaysia | 2012 | 89 | 16 273 | 48-3 | 4.5 | | Maldives | 2014 | 60 | 1781 | 35.1 | 6.0 | | Mauritius | 2017 | 84 | 1955 | 57.4 | 8.2 | | Namibia | 2013 | 89 | 1936 | 53.9 | 10.2 | | Paraguay | 2017 | 87 | 1972 | 54-4 | 2.4 | | Peru | 2010 | 85 | 2359 | 50.0 | 3.2 | | Suriname | 2016 | 83 | 1453 | 63.8 | 9.5 | | Thailand | 2015 | 89 | 4132 | 80.1 | 4.3 | | Tonga | 2017 | 90 | 2067 | 69-6 | 11.8 | | Tuvalu | 2013 | 90 | 679 | 44.4 | 8.0 | | Total | | | | 56.7 | 5.2 | | High-income countries | | | | | | | Bahamas | 2013 | 78 | 1308 | 72.1 | 7.1 | | Barbados | 2011 | 73 | 1504 | 62-4 | 4.4 | | Brunei Darussalam | 2014 | 65 | 1824 | 66-2 | 6.2 | | Chile | 2013 | 60 | 1353 | 32.3 | 1.1 | | Curação | 2015 | 83 | 1498 | 70·5 | 4.0 | | French Polynesia | 2015 | 70 | 1902 | 71.4 | 11.4 | | i iononi i diynosia | 2010 | , 0 | 1002 | / I'T | 11.4 | Table 1. (Continued) | Country | Year | Response rate (%) | n [*] | Fast-food consumption (%) | Severe food insecurity (%) | |----------------------|------|-------------------|----------------|---------------------------|----------------------------| | Kuwait | 2015 | 78 | 2034 | 75.1 | 6.4 | | Oman | 2015 | 92 | 1669 | 71.9 | 4.4 | | Qatar | 2011 | 87 | 1781 | 85.9 | 7.7 | | Seychelles | 2015 | 82 | 2061 | 70.5 | 12-6 | | Saint Kitts & Nevis | 2011 | 70 | 1471 | 61-6 | 4.7 | | Trinidad & Tobago | 2017 | 89 | 2763 | 67⋅1 | 8.2 | | United Arab Emirates | 2016 | 80 | 3471 | 76-6 | 7.5 | | Uruguay | 2012 | 77 | 2869 | 44.7 | 1.5 | | Total | | | | 47-8 | 3.1 | ^{*} Restricted to those aged 12-15 years #### Fast-food consumption Fast-food consumption was assessed with the question 'During the past 7 d, on how many days did you eat food from a fast-food restaurant?' with country-specific examples on fast-food restaurants. Those who consumed fast food on at least 1 d in the past 7 d were considered to be consumers of fast food $^{(10)}$. The examples of fast food included in the questionnaire of each country are provided in online Supplementary material Table S1. However, it should be noted that the validity of the question on fast-food consumption has not been examined and thus is unknown. # Food insecurity (hunger) Food insecurity (hunger) was assessed by the question 'During the past 30 days, how often did you go hungry because there was not enough food in your home?'. Answer options were 'never', 'rarely', 'sometimes', 'most of the time' and 'always'. A brief hunger screening tool based on a similar single question showed 85% sensitivity and 80% specificity compared with the Household Food Security Scale⁽²³⁾. For some analyses, a dichotomised variable on severe food insecurity (hunger) was used (i.e. most of the time/always or else)(24). # Control variables The control variables included sex, age and BMI. Trained survey staff conducted measurement of weight and height. BMI was calculated as weight in kg divided by height in metres squared. Obesity and overweight were defined as >2 sp and >1 sp above the median for age and sex based on the 2007 WHO Child Growth reference, respectively, and adolescents who were below -2 sp were considered to be underweight (25). All other subjects were considered to be normal weight. ### Statistical analysis Statistical analyses were performed with Stata 14.2 (Stata Corp LP). We restricted the analysis to those aged 12–15 years as data on the exact age outside of this age range were not available and because most students were within this age range. Using the overall sample, we used logistic regression analysis to estimate the association between different levels of food insecurity (hunger) (independent variable) and fast-food consumption (dependent variable), while adjusting for age, sex, BMI and country. Adjustment for country was done by including dummy variables for each country in the model as in previous Global School Health Survey publications (26,27). We also conducted interaction analysis by including a product term (food insecurity x sex) in the regression analysis in order to assess whether associations differ by sex. Next, we conducted country-wise logistic regression analysis to assess the association between severe food insecurity (i.e. most of the time/always hungry) and fast-food consumption, while adjusting for age, sex and BMI. We focused on severe food insecurity (hunger) for this analysis as preliminary analysis showed that this level of food insecurity (hunger) is associated with particularly high odds for fast-food consumption. In order to assess between-country heterogeneity, we calculated the Higgins's I^2 which represents the degree of heterogeneity that is not explained by sampling error with a value of <40 % often considered as negligible and 40-60 % as moderate heterogeneity⁽²⁸⁾. A pooled estimate (overall and by countryincome level) was obtained based on country-wise estimates using meta-analysis with random effects. All variables were included in the regression analysis as categorical variables with the exception of age (continuous variable). Sampling weights and the clustered sampling design of the surveys were taken into account to obtain nationally representative estimates. Results from the logistic regression analyses are presented as OR with 95 % CI. The level of statistical significance was set at P < 0.05. ## **Results** A total of 180 164 adolescents aged 12-15 years (mean age 13.8 (sp 1.0) years; 50.8 % boys) were included in the analysis. The prevalence of fast-food consumption in the past 7 d overall was 50·1 %. Overall, the proportion of adolescents who went hungry due to lack of food at home in the past 30 d by frequency was: rarely 17.6 %; sometimes 24.5 %; most of the time 3.5 % and always 2.7 %. There was a wide range in the prevalence of fast-food consumption and severe food insecurity (i.e. most of the time/always hungry) by country with the ranges being 21.0% (Pakistan) to 85.9% (Qatar) and 0.9% (Vietnam) to 17.1% (Afghanistan), respectively, while the prevalence of severe food insecurity was particularly high in low-income countries (Table 1). The prevalence of fast-food consumption increased with greater frequency of food insecurity (hunger) (Fig. 1). Based on a multivariable logistic regression analysis, compared with no food insecurity (hunger), being hungry most of the time and always were associated with significant 1.25 (95 % CI 1·09, 1·44) and 1·31 (95 % CI 1·11, 1·54) times higher odds for fast-food consumption, respectively (Fig. 2). No 474 L. Smith et al. 40 Neve Sometimes Most of the time Frequency of food insecurity (hunger) Fig. 1. Prevalence of fast-food consumption by frequency of food insecurity (hunger). Bars denote 95 % CI. P-value < 0.001 (χ^2 test). Fig. 2. Association between frequency of food insecurity (hunger; exposure) and fast-food consumption (outcome) estimated by multivariable logistic regression. Reference category is no food insecurity. Model is adjusted for age, sex, BMI and country. significant interaction by sex was observed. The country-wise association between severe food insecurity (hunger) and fastfood consumption is shown in Fig. 3. Overall, the pooled estimate based on all sixty-eight countries was OR = 1.17 (95 % CI 1.08, 1.26) with a moderate level of between-country heterogeneity ($I^2 = 50.2\%$). The estimates pooled by country-income levels were significant in low-income countries (OR = 1.30; 95 % CI 1.05, 1.60), lower middle-income countries (OR = 1.15; 95 % CI 1.02, 1.29) and upper middle-income countries (OR = 1.26; 95 % CI 1.07, 1.49), but not in HIC (OR = 1.04; 95 % CI 0.88, 1.23), although a moderate level of between-country heterogeneity was present for all income levels ($I^2 = 44.3$ – 58·3 %) with the exception of low-income countries ($I^2 = 0.0$ %). #### Discussion In this large sample of children and adolescents from sixty-eight countries representative of all economic settings, it was found that the prevalence of fast-food consumption increases linearly with increasing severity of food insecurity (hunger). Based on a meta-analysis, it was found that severe food insecurity (i.e. hungry most of the time or always due to not enough food at home) was associated with 1·17 (95 % CI 1·08, 1·26) times higher odds for fast-food consumption compared with those without severe food insecurity. This association was significant in low-income countries (OR = 1.30), lower middle-income countries (OR = 1.15) and upper middle-income countries (OR = 1.26)but not in HIC. The finding that food insecurity is associated with higher odds for fast-food consumption is in line with previous literature that has identified a positive association between food insecurity and fast-food consumption^(15,16). There may be several plausible pathways that explain why food-insecure adolescents are more likely to consume fast food. First, research has suggested that food-insecure families tend to choose more energy-dense food and this may be because energy-dense foods composed of refined grains, added sugars or fats may represent the lowestcost option to the consumer⁽²⁹⁾. Alternatively, this behaviour may be explained by a preference for energy-dense food owing to compensation for periods with scarcity of food or poor health literacy. Second, dietary habits and food insecurity track across the lifespan. Therefore, parents of food-insecure households may be more likely to have been food insecure in their childhood and have been consuming fast food often, and ingrained this habit in their offspring(17,18). Third, those who are food insecure are more likely to suffer from mental health complications⁽²⁴⁾, and mental health complications are associated with fast-food consumption⁽³⁰⁾. For example, previous studies have shown that food insecurity may lead to higher levels of stress⁽¹⁴⁾, and it is possible that increasing cravings for high-energy foods may be induced as a coping strategy for this stress⁽¹⁴⁾. Finally, literature suggests that those who are from a lower socio-economic status (and thus more likely to be food insecure) live in closer proximity to fast-food outlets. Thus, it is possible that foodinsecure people are more likely to consume fast food owing to convenience and greater availability(31). It is important to note that although the pooled estimate showed a significant association between food insecurity and fast-food consumption in the overall sample and in LMIC, such an association was not observed for HIC although a moderate level of between-country heterogeneity was observed within HIC. The findings from HIC are not in line with previous studies from this setting (i.e. USA and Australia)(15,16), but it is important to note that the HIC included in our study were not Western countries with a large variation in terms of geographical location. Moreover, there are some important differences between our study and those previous studies that may explain the discrepant findings. For example, the previous study in the USA used data now over two decades old⁽¹⁵⁾, and the previous study carried out in Australia collected data from the main food shopper in each household and thus did not focus on adolescents per se⁽¹⁶⁾. At least in our study, the observed differences between countryincome levels may be related to national actions to combat food insecurity. For example, in some HIC, food banks are readily available(32) and have been found to reduce levels of food insecurity⁽³³⁾. Moreover, in many HIC, children and young people Fig. 3. Country-wise association between severe food insecurity (hunger) (exposure) and fast-food consumption (outcome) estimated by multivariable logistic regression. Models are adjusted for age, sex and BMI. Overall estimates were obtained by meta-analysis with random effects. 476 L. Smith et al. are provided with free and healthy school meals(34,35). However, both of these kinds of initiatives are rare in LMIC. Finally, although speculative, it is possible that food-insecure adolescents and their parents in some countries included in our study may be more aware of the deleterious health effects of fast food or that fast food is not readily available or affordable in some settings, and this might explain some of the between-country heterogeneity observed. However, clearly, further studies are necessary to understand the reason for the moderate level of between-country heterogeneity observed in our study. The large multi-country sample of children and adolescents is a clear strength of the present study. However, findings must be interpreted in light of its limitations. First, the study was crosssectional in nature, and thus the direction of the association is not known. However, it is highly unlikely that fast-food consumption per se leads to food insecurity. Moreover, the mere co-occurrence of these two conditions is of importance as they are both associated with adverse physical and mental health outcomes. Second, the study relied on self-reported data which could have been affected by factors such as recall and social desirability biases. Third, our measure on food insecurity (hunger) was based on a single question based on hunger due to lack of food at home, which can be considered a rare and extreme manifestation of food insecurity, and we were thus unable to assess all aspects of food shortage and inadequacy. Moreover, our measure of fast food did not ask about the type of fast food being consumed. Indeed, certain types of fast food may be more detrimental to both physical and mental health than others. Future research should aim to investigate the present association using fast-food type as an outcome. It should also be noted that the validity of our question on fast-food consumption has not been examined and thus is unknown. Fourth, there is much overlap between poverty and food insecurity. Thus, it is possible that the association observed in our study may also partly be explained by other aspects of poverty that could not be adjusted for in our analysis due to lack of data. Fifth, information on factors such as parent's SES, family structure and other environmental factors (e.g. availability of fast food in the neighbourhood) were not available in the data set. Thus, the influence of these factors in the association between food insecurity and fast-food consumption could not be assessed. Sixth, the countries included in our study are not representative of all countries that belong to the country-income level. For example, the highincome countries included in our study were all from non-Western settings. Sixth, some students aged 15 years in our study may have major national examinations where they will likely have extended study hours. This may influence students to consume snacks/foods that are high in energy and affordable. However, the present study did not collect data on this and was thus unable to account for its potential influence. Finally, our study only focused on one aspect of dietary intake and behaviour. Thus, future studies should examine the association between food insecurity and other aspects of dietary behaviour such as intakes of nutrients (e.g. Na, saturated fats, added sugar), breakfast skipping and overall dietary quality. In conclusion, in the present large sample of children and adolescents from sixty-eight countries representing all economic settings, food insecurity was associated with fast-food consumption in LMIC but not in HIC, although a moderate level of between-country heterogeneity was present. The mere cooccurrence of food insecurity and fast-food consumption is of public health importance and to tackle this issue requires a strong governmental and societal approach potentially utilising effective methods as demonstrated in some HIC such as the implementation of food banks and the adoption of free school meals. However, whether such methods would be feasible and effective in LMIC is not known, and future research is thus required to identify the efficacy of implementing such approaches in low economic settings. Finally, interventions to increase knowledge on the deleterious health effects of fast food may be important especially for food-insecure households. # Acknowledgements This paper uses data from the Global School-Based Student Health Survey (GSHS). GSHS is supported by the WHO and the US Centers for Disease Control and Prevention. This research received no specific grant from any funding agency, commercial or not-for-profit sectors. All authors listed have made a substantial, direct and intellectual contribution to the work and approved it for publication. There are no conflicts of interest. # Supplementary material For supplementary material referred to in this article, please visit https://doi.org/10.1017/S0007114521001173 #### References - 1. De Vogli R, Kouvonen A & Gimeno D (2014) The influence of market deregulation on fast food consumption and body mass index: a cross-national time series analysis. Bull World Health Organ 92, 99-107A. - 2. Sturm R & Datar A (2005) Body mass index in elementary school children, metropolitan area food prices and food outlet density. Public Health 119, 1059-1068. - 3. Collins Dictionary (2020) Definition of 'fast food'. https://www. collinsdictionary.com/dictionary/english/fast-food (accessed 7 June 2021). - 4. Janssen HG, Davies IG, Richardson LD, et al. (2018) Determinants of takeaway and fast food consumption: a narrative review. Nutr Res Rev 31, 16-34. - 5. Bauer KW, Larson NI, Nelson MC, et al. (2009) Fast food intake among adolescents: secular and longitudinal trends from 1999 to 2004. Prev Med 48, 284-287. - 6. HEART UK (2020) HEART UK study finds high street restaurants serve meals with four times recommended saturated fat. https://www.heartuk.org.uk/news/latest/post/7-heart-ukstudy-finds-high-street-restaurants-serve-meals-with-fourtimes-recommended-saturated-fat (accessed 7 June 2021). - 7. Jaworowska A, Blackham T, Davies IG, et al. (2013) Nutritional challenges and health implications of takeaway and fast food. Nutr Rev 71, 310-318. - 8. Zahedi H, Kelishadi R, Heshmat R, et al. (2014) Association between junk food consumption and mental health in a national sample of Iranian children and adolescents: the CASPIAN-IV study. Nutrition 30, 1391–1397. - 9. Sánchez-Villegas A, Toledo E, De Irala J, et al. (2012) Fast-food, commercial baked goods consumption, the risk of depression. Public Health Nutr 15, 424-432. - Jacob L, Stubbs B, Firth J, et al. (2020) Fast food consumption and suicide attempts among adolescents aged 12-15 years from 32 countries. J Affect Disord 266, 63-70. - Gundersen C & Ziliak JP (2015) Food insecurity and health outcomes. Health Aff 34, 1830–1839. - United States Department of Agriculture (2020) Food Security Status of U.S. Households in 2019. https://www.ers.usda. gov/topics/food-nutrition-assistance/food-security-in-the-us/ key-statistics-graphics.aspx#foodsecure (accessed 7 June 2021). - Pilgrim A, Barker M, Jackson A, et al. (2012) Does living in a food insecure household impact on the diets and body composition of young children? Findings Southampt Women's Surv J Epidemiol Community Health 66, e6. - 14. Yau YH & Potenza MN (2013) Stress and eating behaviors. Minerva Endocrinol 38, 255-267. - Widome R, Neumark-Sztainer D, Hannan PJ, et al. (2009) Eating when there is not enough to eat: eating behaviors and perceptions of food among food-insecure youths. Am J Public Health **99**. 822–828. - Burns C, Bentley R, Thornton L, et al. (2015) Associations between the purchase of healthy and fast foods and restrictions to food access: a cross-sectional study in Melbourne, Australia. Public Health Nutr 18, 143-150. - Movassagh EZ, Baxter-Jones AD, Kontulainen S, et al. (2017) Tracking dietary patterns over 20 years from childhood through adolescence into young adulthood: the Saskatchewan Pediatric Bone Mineral Accrual Study. Nutrients 9, 990. - Lee JS, Gundersen C, Cook J, et al. (2012) Food insecurity and health across the lifespan. Adv Nutr 3, 744-745. - AL Faris NA, Al-Tamimi JZ & Al Jobair MO (2015) Trends of fast food consumption among adolescent and young adult Saudi girls living in Riyadh. Food Nutr Res 59, 26488. - Story M, Neumark-Sztainer D & French S (2002) Individual and environmental influences on adolescent eating behaviors. JAm Diet Assoc 102, S40-S51. - 21. Nielsen SJ, Siega-Riz AM & Popkin BM (2002) Trends in food locations and sources among adolescents and young adults. Prev Med 35, 107-113. - Brener ND, Collins JL, Kann L, et al. (1995) Reliability of the youth risk behavior survey questionnaire. Am J Epidemiol 141, 575-580. - Kleinman RE, Murphy JM, Wieneke KM, et al. (2007) Use of a single-question screening tool to detect hunger in families - attending a neighborhood health center. Ambulatory Pediatr **7**. 278–284. - 24. Koyanagi A, Stubbs B, Oh H, et al. (2019) Food insecurity (hunger) and suicide attempts among 179 771 adolescents attending school from 9 high-income, 31 middle-income, and 4 low-income countries: a cross-sectional study. J Affect Disord 248, 91-98. - 25. Caleyachetty R, Thomas GN, Kengne AP, et al. (2018) The double burden of malnutrition among adolescents: analysis of data from the Global School-Based Student Health and Health Behavior in School-Aged Children surveys in 57 low-and middle-income countries. Am J Clin Nutr 108, 414-424. - 26. McKinnon B, Gariépy G, Sentenac M, et al. (2016) Adolescent suicidal behaviours in 32 low-and middle-income countries. Bull World Health Organ 94, 340-350. - 27. Vancampfort D, Stubbs B, Firth J, et al. (2018) Sedentary behavior and depressive symptoms among 67,077 adolescents aged 12-15 years from 30 low-and middle-income countries. Int J Behav Nutr Phys Act 15, 1-9. - 28. Higgins JP & Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21, 1539-1558. - Drewnowski A & Specter SE (2004) Poverty and obesity: the role of energy density and energy costs. Am J Clin Nutr 79, - 30. Mohr P, Wilson C, Dunn K, et al. (2007) Personal and lifestyle characteristics predictive of the consumption of fast foods in Australia. Public Health Nutr 10, 1456-1463. - 31. Thornton LE, Lamb KE & Ball K (2016) Fast food restaurant locations according to socioeconomic disadvantage, urbanregional locality, and schools within Victoria, Australia. SSM Popul Health 2, 1-9. - 32. Loopstra R, Lambie-Mumford H & Fledderjohann J (2019) Food bank operational characteristics and rates of food bank use across Britain. BMC Public Health 19, - 33. Bazerghi C, McKay FH & Dunn M (2016) The role of food banks in addressing food insecurity: a systematic review. J Community Health 41, 732-740. - 34. Kitchen S, Tanner E, Brown V, et al. (2013) Evaluation of the free school meals pilot. https://www.gov.uk/government/ publications/evaluation-of-the-free-school-meals-pilot-impactreport (accessed 7 June 2021). - 35. United States Department of Agriculture (2020) National School Lunch Program. https://www.fns.usda.gov/nslp (accessed 7 June 2021).