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Verma Modules over Quantum
Torus Lie Algebras

Rencai Lii and Kaiming Zhao

Abstract. Representations of various one-dimensional central extensions of quantum tori (called
quantum torus Lie algebras) were studied by several authors. Now we define a central extension of
quantum tori so that all known representations can be regarded as representations of the new quan-
tum torus Lie algebras £,. The center of £ now is generally infinite dimensional.

In this paper, Z-graded Verma modules V () over £, and their corresponding irreducible highest
weight modules V () are defined for some linear functions . Necessary and sufficient conditions for
V() to have all finite dimensional weight spaces are given. Also necessary and sufficient conditions
for Verma modules \7((,0) to be irreducible are obtained.

1 Introduction

In order to better apply Lie theory to various mathematics and physics fields, one of
the main tasks is the construction of “good” modules of Lie algebras. The relation to
physics is well established in the book [10] on conformal fields theory. Recently there
has been substantial activity in developing weight representation theory for higher
rank infinite dimensional Lie algebras with a lot of deep results. Here we can only
list a few. For representations of toroidal Lie algebras see [4-6,11,12, 14, 15, 20]; for
extended affine Lie algebras, see [2, 3,6, 16,17] and for quantum torus Lie algebras,
see [8,13,16-18,21].

Quantum torus algebras were introduced to ring theory in [22] in 1988. They were
used in describing extended affine Lie algebras [1]. In the above mentioned studies
on representations of quantum torus Lie algebras, except in [8], quantum tori were
assumed to have n commutative variables among the n + 1 variables, that essentially
can be considered as two variables. In [16-18] level one (central charge is 1) vertex
representations were constructed. In [13], highest weight representations with finite
dimensional weight spaces were constructed, where the central charge can be any
complex number. In [21], the authors proved that, for exactly the two-variable case
with nonzero central charge, 7>-graded simple modules with all finite dimensional
weight spaces are highest weight modules. In [8], the authors constructed vertex
representations with positive integral level over the algebras with more variables not
commutative.

As in [8], in the present paper, we study Z-graded modules over quantum torus
Lie algebras with more variables not commutative. It is natural and interesting to
study when we can have highest weight modules with all finite dimensional weight
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spaces for any central charge, and when the Verma modules are irreducible. This is
the main purpose of the present paper.

Let us recall the construction of highest weight modules over Z-graded Lie alge-
bras constructed in [8]. We shall denote the set of integers, non-negative integers,
positive integers, the complex numbers by Z, Z*, N, C respectively.

Let L be a complex 7Z"*!-graded Lie algebraand L = L_ & Ly & L, be the gen-
eralized triangular decomposition (L, can be infinite and non-abelian) relative to a
Z-gradation. For any Ly-module A, let L, act on A trivially. We introduce the induced
module

M(A) :==1Indj,,; A~U(L") @cA.

Then M(A) is Z-graded. Clearly M(A) contains a unique maximal proper Z-graded
submodule J(A) trivially intersecting with A. Thus we have the Z-graded quotient
module M(A) := M(A) /J(A). In general, M(A) has infinite dimensional weight
spaces. So it is meaningful to find necessary and sufficient conditions for M(A) to
have all finite dimensional weight spaces.

Let ¢: Ly — C be any Lie homomorphism, and define the associated Ly-module
A = Cvobyg-vo = p(g)vo, Vg € Ly. We will denote \7(@) = M(A), J(p) == J(A)
and V() := M(A).

Now we recall quantum torus Lie algebras.

Letq = (qi‘]‘)?.,j:() be an (n+ 1) X (n+ 1) matrix over C satisfying

g;i=1, gqg;j= q;,»l,

where 7 is a positive integer. The g-quantum torus C,; = (Cq[tgtl, ..., tF1] which was
studied in [22] is the unital associative algebra over C generated by ¢3!, ..., t*" and
subject to the defining relations

—1
tit. =t ti=1, l’,‘l’j = q,“jl’jt,‘.

1 1

For any a € 7"*! we always write a = (a(0), ..., a(n)), and define t* = tg(o) e tZ<”).
For any a, b € 7!, we define the function o4(a,b) and f,(a, b) by

11" = o,(a, L)t t't" = f,(a, b)tt".
Then
o (a,b) = I q?,(ij)b(i), fi(a,b) = ﬁ q?fij)b(i)’
0<i<j<n i.j=0
and fy(a,b) = o4(a,b)o,(b,a)"'. We define
rad f = {a € 7| fq(a,erl) _ 1y,

and the Kronecker delta

5 _J1 ifacradf,,
arad fy = 0 otherwise.
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For properties of Cy, f;, 0, please refer to [1,23].
We define the Lie algebra

L, =Gl tE ] + Cdy
with defining relations:

(L.1) (9, 87] = %" — 7 + 54(0)+(0).00a+b,rad ,a(0)£°t"

(12) = (gq(a7 b) - Uq(ba [1) + 5a(0)+b(0),05a+b,rad fqo—q(aa b)a(O))t”*h,
(13)  [do, %] = a(0)t,Va,b € 7",

which we refer to as the general quantum torus Lie algebra associated with q.

Note thatifa+b € rad f,, then 120 —94¢ = 0 and oq4(a,b) —o4(b,a) = 0. Unlike
the Lie algebra constructed directly from the associative algebra C,, the Lie algebra
L, is perfect.

For any Lie algebra L, denote the center of L by Z(L). Clearly we have

Z(8,) = span{t” | a € rad f; and a(0) = 0}.
The Lie algebra @q defined in [8, (1.6)] and [13, (1.4)] is the quotient algebra
Cp=L,/(t" =" | 14" € Z(8,)).
The Lie algebra (Eq defined in [13, (1.2)] is the quotient algebra
Cy=8,/(t" | 1" € Z(L,),a # (0,...,0)).
And the Lie algebra ql)(m) defined in [8, (1.6)’] is the quotient algebra
C(m) = 8,/ (t* — 1" ¢ [ 1,48, € Z(2,) with a(]), b(l) € mZ and c(I) ¢ mZ),

where m is a nonnegative integer and I € {1,2,...,n}.

Note that £, is Z"*!-graded, and £, has a ZZ-gradation with respect to do.

The advantage to introducing our algebra £, is that we can handle all cases at the
same time, unlike in [8,13]where the cases had to be treated separately. Furthermore,
we will have a richer representation theory (more representations because of the big-
ger center) for our algebras £, than the old ones. This is our main motivation for
introducing Lie algebras £,.

Vertex operator representations and highest weight representations of some of
these Lie algebras éq, CA}]7 Cvél)(m) were studied in [2,3,8,16,17,23].

For n = 1, necessary and sufficient conditions for V (¢) over Eq and CAq to have
finite weight spaces were obtained in [13]. The nonzero level Z x Z Harish-Chandra
modules were studied in [21].
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In the present paper, necessary and sufficient conditions for V() over £, to have
all finite dimensional weight spaces are given in Theorem[2.10 in which case we give
the concrete expressions of ¢ in Theorem 2111 In proving this we must use the
concept of exp-polynomial Lie algebras introduced and studied in [7] and the results
therein. Necessary and sufficient conditions for a Verma module to be irreducible is
obtained in Theorem[3.l There the technique we use is the following. We write a
vector-valued function defined on Z"*! into a sum of two parts. If one part is zero
at some points in Z"*!, then we can deduce it is identically zero. Therefore the other
part must be identically zero.

2 Highest Weight Representations for £,

In this section, we shall give necessary and sufficient conditions for irreducible high-
est weight modules over £, to have all finite dimensional weight spaces. Before start-
ing the proof, we need some preparations.

We will simply denote & = &, f = f;, 0 = 0. Then

L = @ Ct" + 5,‘70(Cd0.

aezn+l
a(0)=i

For convenience, we will always use the following symbols:

€ =(0i0,0i1,--,0in), i=0,...,m,
a=(a(l),...,a(n)) €7", Vac7™,
qd=(qij)ij=1,..n,
Cp=Glt, ... 1 C ¢,
rad f:={a e 7™ | t* € Z(Ly)} C {0} x 7",
rady f := {a € rad f | a(0) = 0} C rad f.
Note that in (L2)) da(0)+(0),00a+b,rad f = Oatb,rado f-
To avoid confusion with the multiplication in C,, we will denote the associative

multiplication in U (&) by ""o”’.
Note that £y = C; ® Cdy. Clearly, we have the following decomposition of ideals:

£y = [Lo, L] © Z(Ly).

Let p: &y — C be any Lie homomorphism. Clearly, ([, £o]) = 0. We may
always assume that ¢(dy) = 0 (this is only for convenience, since the value does not
affect the module structure).

We define the associated £o-module Cvy by g - vo = @(g)vo, Vg € Lo. Let £, act
on Cvy trivially. We introduce the induced module

(2.1) V() :==1Indj ,; Cvo~U(L") ®c Cw.
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Then V (¢) is Z-graded. Clearly, V() contains a unique maximal proper Z-graded
submodule J(¢) trivially intersecting with Cvy. Thus we have the Z-graded irre-
ducible quotient module V () := V() / J().

We shall need the following well-known result frequently.

Lemma 2.1 ([19, TheoremI1.1.6]) IfF is a free abelian group of finite rank n and H
is a nonzero subgroup of F, then there exists a basis By p = {by, ..., b,} of F, an integer
r(1 < r < n) and positive integers dy, ..., d, with dy|dy| - - - |d, such that H is a free
abelian group with basis {d, by, . .., d,b,}.

From the definition of £, we have the following.
Lemma 2.2 LetB= {b,...,b,} beany basis of (0,7").

(i)  There exists a /-graded associative algebra isomorphism pg: Cqr — Cy with q,—"j =
fq(bi, b;), and pp(t*') = th fori =0,1,...,n where by = g,. Moreover,

pp(t%) = ( H O'q(bi, bj)a(i)a(j)) ( H Uq(bk7 bk)m)(a(zk)fn ) (S aldby
0<i<j<n k=0
(i) There exists a 7-graded Lie isomorphism op: L4 — £, with qi’J = fy(bi, b)),
op(do) = do, and op(t") = pp(t?) forall b € 7.

Proof (i) Clearly, s; = t¥,i = 1,2,...,n generate C, as an associative algebra,
and s;s; = qi’jsjsl-. Then we have the associative algebra Cg/[s1,5,,...,s,] that is
isomorphic to €, via pp(s*) = ((#b) 2@y ((h2)e@)y .. ((¢b)2M) Then by a simple
computation (or from [23, Lemma 6.2]) we can obtain (2.1)).

(ii) For any a € 7", leta’ = Y a(i)b;. From (i), we know that pp(rad f;) =
rad ﬁi" Then 5a(0)+b(0)~06a+b7radlfq = 6a’(0)+h’(0),06a’+b'7rad fq/ . Using this formula, ([HD
and (i), we can obtain (ii). [ |

Definition 2.3 The matrix q is said to be in its normal form if

(2.2) rad fq = @ Zdif,‘,
i=1
where r = rank(rad f,) and di, . . . , d, are positive integers.

By using Lemmas[2.Jland 2.2} we see the following.

Lemma 2.4 For any q, there exists some q’ in normal form and a Lie isomorphism
o0: 8y — L4 such that o(dy) = do.

It is clear that t¢? = t** Vb € rad f,a € 7! if q is in normal form. In general
we do not have t¥t% = %7 if g is not in its normal form.
Now we need to recall some notations from [7].

Definition 2.5 (i) The algebra of exp-polynomial functions in r’ variables
My, My, . .., m, is the algebra of functions f(m;,...,m,): 7" — C generated as
an algebra by functions m; and @™ for various constants a € C* = C\{0},j =
I,...,r.
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(i) Let G = @,cymn Ga be any Z"*!-graded Lie algebra, X = {K; | i € Z} a
family of finite sets, and B = {gfk)((i) | k € K;,(i,a) € 7'} any homogenous
spanning set of G with gfk)(d) € Gz Then G is said to be a 7"-extragraded Lie
algebra with respect to X and B if there exist a family of exp-polynomial functions

{fi]f}’kj’k‘”(d, b)} in the 27 variables a(l), b(I),] = 1,2,...,n, where k; € K;,Vi € Z,
such that

(23) g @.g" 01 =3 £ @ bglia+b).

k€Ki+j
The spanning set B is called a distinguished spanning set.

Now we are ready to start the study on the modules V' (¢).

Lemma 2.6 Suppose that there exists some @ # 0 such that the nontrivial irreducible
module V (@) defined in 1) over £, has all finite dimensional weight spaces. Then
rank(rad f) = n, i.e, q; j are roots of unity foralli, j = 1,..., n.

Proof Suppose that rank(rad f) < n and (%) # 0 for some a € rad f. From the
fact that (0,7")/rad f is an infinite group, we can choose {a;};cz C (0,7") with
aj—aj ¢ rad f for all i # j. Suppose that 0 = Do xit Tty € Vip) with x; € C
and x; = 0 for all but finitely many i. Since t* € [€y, £¢] if and only if b ¢ f, and
since ¢([Lg, Lo]) = 0, then [¢17% f—e+a*a] ¢ [Qy L] if i # j. Then

0=¢t""%o (intfﬂﬂlﬁ-a) Vo = xj@([tslfa,-,t761+uj+u])vo
i

=xjo(er —aj,—e1+a+a;) (1 — fla,e1 — a;) + apadyr) P(t)v0,
Since a € rad f, we have a € rad, f if and only if f(a,e; — aj) = 1. Thus

1 — f(a,e1 — aj) + daradyr 7 0. We deduce x; = 0,Vj € Z. So we have proved
that {¢—°*%* %y, },c, are linearly independent, which implies dimV(¢)_; = co. H

Lemma 2.7 Suppose that: 1" — Cis a function,

m; l,
h,’(t):in7jt]:H(t—yi,]‘)5i‘j7 i=1,...n
=0 j=1

are polynomials in C[t] where s; j,m; € N, and x; ;, yi; € C with x; oX; m, # 0. For
k=1,2,...,nlet

3:k - {ﬁ(,O(r)7 ﬁ<,1(r)7 ) fk,mk—l(r)}
=V T Y Vi T T s

a7 r Sk, — 1,71
S Yk TYkr - T J’k.zk}
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be a set of functions inr € 7. Then

m;
(2.4) Zx,—ﬁjw(mjé,-) =0,VaeZ',i=1.2,....n
=0

if and only if there exist H?:l m; complex numbers zp(1)....bny), 0 < (i) < m; — 1,
i=1,...,nsuch that

mp—1 m,—1

(2.5) (@) = Z Z 1)) Hfb@ (a(i)),Va € 7"

Proof The statement in the lemma for n = 1 is a well-known combinatorial fact
on general solutions of linear homogeneous recurrence relations with constant co-
efficients [9, Theorem 7.2.2]. Using this lemma for n = 1, we can easily deduce
24) from for all n. Now we will prove the other direction by induction on #.
From the inductive hypothesis for n — 1, there exist complex numbers z{,;, >
0<b(i)<m;—1,i=1,...,n,b(n) € Zsuch that

my—1 my—1—1

(@) = Z Z .0 lam))]‘[fb(,)(a(z))

foralla € 7". Applying (2.3) for i = n, we have

m;—1 my—1—1 m,
Z C S i b ) Hfb (ai)) = 0,
b(1)=0 b(n—1)=0 j=0 i=1

forall0 < b(i) <m; —1,i=1,...,n—1,a(n) € Z. Consider these H?;ll m; linear
equations. Noting that the coefficient matrix is invertible (see [7, Lemma 2.1]), we
must have

(2.6) Z Xn,jZ bn—1),a(m+j) = 05

forall0 < b(i) <m; — 1,i =1,...,n— 1, a(n) € Z. There exist HLI m; complex
numbers z1),... p(m)), 0 < b(i) < m; —1,i=1,...,nsuch that

my—1

!/
Z(b(1),....b(n—1),a(n)) = Z Z(b(1),....b(m) fn,b(m) (a(1)).

From (2.6) and (2.5]) we obtain (2.4)). [ |

Corollary 2.8 (i) Let H be any subgroup of 7" withrank H = n. Then h: 7" — C
with h(a(1),...,a(n)) = da).....a(n),H s an exp-polynomial function.
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(i) Letqij,i,j=1,...,n beroots of unity. Then &(a,b) := [Ti<icj<n q?’(ij)b(i) is an

exp-polynomial function in 2n variables a(1), ..., a(n),b(1), ..., b(n)

Proof This corollary follows from applying Lemma 2.7 with h;(¢) = " — 1,i =
1,...,n, where m = |7"/H| for(i) and m = szzl ord(g;,;) for (ii). [ ]

Denote &, := C[t;',...,t!] C €,. The distinguished spanning set of €, in the
following lemma will be repeatedly used later.

Lemma 2.9 Suppose that rank(rad f) = n. Then ﬁq is a 7" -extragraded Lie algebra
with respect to X and B defined in Definition2.5(ii), where

K={K|iez}, B={g"@)|keKk,(G,a) ez},
Ko ={1,2}, K;={1}Vi#0,
and

n
(D~ i 0.
& (@) = g g raa (1 — qu%) +0(0.a)rad £) 07,
i

2.7 i ;
@.7) aP(@) = (1= 6.4y raa 1O,

g (a) =t i #£ 0.
Proof By computing [g/"(a), ¢\ (8)] for alli, j with ij(i + j) # 0, [¢5(a), ¢\ (B)]

forall j # 0, and [g5"(a),g!"(b)] for all j # 0 (note that [gf”(a),g}" (B)] = 0 if
(0,a) € rad f), we easily obtain that

fiiH@,b) = o((i,a), (7, b)) — o((j, b), (i, a)) for all i, j with i j(i + j) # 0,
fo 1@, b) = (1= 65 2) raa )(((0,d), (7, b)) — o((j, b), (0,a))), forall j # 0,
fo71(@,8) = 60 gy raa (1 — f[ q'y) (0((0,a), (j, b)) — o((j, b), (0,)))
i=1
forall j # 0,

which are all exp-polynomial functions in 21 variable a(l), b(l) for [ = 1,.. ., n.
It is straightforward to see that if @ + b € rad, f, since t%#*) ¢y = t,¢(®4*Y) then

aP@a+b)=o,

n n i—1 n

(k)+b(k))i __ (a(k)+b(k)) (a(k)+b(k))j
1— ]| '= (1 - H%:o ) ( k0 ) )
k=1 k=1 j=0 k=1
i—1 n
_ (a(k)+b(k))j
1= r0
j=0 k=1

Since q is in its normal form, it is also clear that o/(@, b) = o'(b,d) ifa+ b € rad f.
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Ifa+bcrad fandi > 0, (we write a = (i,d) and b = (—i, b)), we compute

(g (a),g") (b))
— [t t(—iﬁ)]

= (O—((la d), (717 B)) - 0-((71'7 1_7)7 (la d)) + 5ﬁ+l}_radfio—((ia d), (717 B)))t(()ﬁ%)

(Hq_’“ Hq”’ D4 16041 qu_’“ ) o((0,a), (0, B

n i—1 n
_ i(a(j)+b(j)) 1(a 7)+b(j)
_(1_ q]O +6a+bradeH )
j=1 j=0 i=1

x Hq] Do ((0,a), (0, b))

f‘“ () (a+b)+f“2g0 (a+b),

where

(2.8) i-1 = "
f;f;’l(d, b) = (JZ_;(H qifg(k)+b(k))>) <k_1 q]:éa(k)> ((0,d),(0,B)) ¥i € Z°,
i@, b) = (]Zi;(k: 4" (Hq*”‘(")a( (0,), (0,)) Vi € —N,

fili@a,b) = 0((i, a), (=i, b)) — o((—i,b), (i, ),

which are all exp-polynomial functions in 2n variable a(l), b(l) for I = 1,...,n.
Other cases are simpler. [ ]

Theorem 2.10 Suppose that rank(rad f) = n and q is in its normal form. Then the
following statements are equivalent.

(1)  The module V (v) over £ has all finite dimensional weight spaces.
(ii) There exists a unique nonzero polynomial P,(t) = P(t) = Zl 0 x;tt € C[t] with
lowest degree m, where x; € C, xo # 0, and x,,, = 1, such that

(2.9) ingo(gél)(d-i- idigj)) = 0,Va € radf,j =1,...,n,

i=0
where d;, gé”(l_a) are defined as in Z2) and 2.7).
(iii) There exists an n-variable exp-polynomial function h: 7" — C, such that
h(a)
=TT 455 + doamas

p(t*) = , Va € rad f.
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Proof (i) = (ii). From (2.9) it is easy to see the l_miqueness of P,. Forany 1 <
j < n. Since dim V_; < oo, there exist an a; € rad f and some nonzero polynomial
Pi(t) = ZZO xjit" € Clt] withx;; € C x;0 # 0 and x,,, = 1 such that

mj
§ :xj,it_€0+a]+ldj8jvo —0.
1=0

Applying t**~% for any a € rad f to the above equation and noting that a — aj €
rad f and o (e, idje;) = 1,Ve € 71, using the notation in Lemma239and 2.8), we
obtain that

_ eota—aj —eotaj+idie; (1) (1) .
0= ijﬁif T o TSy = ij,igl (a—aj)g(aj +idjej)vo
1 1

11,1 . 1 .
= ij,,‘fl"_'l (a—aj,aj+ zdjsj)g(() )(a +idjej)vy

1

= lli'll(a —aj,a;) ijﬁig(()l)(a +idje;)vy (sincedje; € rad(f))

mj
= il = apa) (L waelas @ ide)) o
i=1

where """/ (a — aj,a;) # 0is defined in the proof of Lemma[2.9]
Hence

mj
(2.10) > xjie(gy(a+idig;) =0,Va € rad f = (0,d12, ..., d, 7).
i=0

Let P'(r) =[]\, Pj(t) = Z;":IO x/t' € C[t]. Then from (2.10) we have

> xlpg@+idi)) =0,Vacradf = (0,dZ,...,d72),j=1,2,...,n.

i=0

So we have proved the existence of P, (t).

(i) = (iif). Let): 2" — C defined by 1)(a) = o(g{"(@)), hi(t) = P,(t%). Using
Lemmal[2.7} we see that ¢ is exp-polynomial function, which implies (iii).

(iii) = (i). From Lemma we know that €, is a /Z"-extragraded Lie algebra.
The actions of £ on v, are g(()l)(d)vo = h(@)0 z) rad o and géz)(d)vo = 0. Hence
from [7, Theorem 1.7], we have (i). [ |
Theorem 2.11 Let ¢: &y — C be any Lie homomorphism with cp|(cq[tlin """ i+ 7 0.

Then the irreducible highest weight module V () over £, has finite dimensional weight
spaces if and only if q; ; are roots of unity for all i, j = 1,...,n and there exists some

n-variable exp-polynomial function h: 7" — C, such that
(a)

(2.11) p(1") = i
1 - HL 01?,(01) + 0(0,a),rad f

,Va € rad f.
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Proof By using Lemma[R.2)(i) and Theorem[2.10] we see that V () has finite dimen-
sional weight spaces if and only if g; ;, (i, j = 1,...,n) are roots of unity and there
exists an exp-polynomial function h: 7" — C such that

h(a)
(1 =TT, f(Bi,20)*D + G5~ aginp,rad £) §(a)

foralla € @, Zdie;, where B = {by,...,b,} is a basis of (0,2"), d, ..., d, are
positive integers with rad f = @}, Zd;b; and

gla) = ( H o,(b;, bj)u(i)a(j)) (ﬁ”q(bi, bi)aﬁ)(u(zi)—n) .
i=1

1<i<j<n

(2.12) (1S by —

Denote h'(a) = % From Lemmal2.7lwe see that ﬁ is an exp-polynomial func-
tion if g; ; are all roots of unity. Hence h'(d) is an exp-polynomial function. Let
0: 7" — 7" be the isomorphism of lattice with 0(b;) = &;, and h(a) = h’(6(a)).

Now it is easy to check that (Z.12)) is equivalent to (2.11)). [ ]

3 Verma Modules \7(g0)

In this section we shall study when Verma modules \7(@) over ¥ = &, are irreducible.
The answer is the following.

Theorem 3.1 Suppose that the matrix q is in its normal form. Then V(y) is not
irreducible if and only if one of the following conditions holds:

(i)  There exist pairwise distinct ay, . . . , a,, € rad f and a nonzero polynomial p(t) =
Z;":O xit' € C[t] where x; € Cwith xox,, # 0, such that

(3.1) me(gé”(d +a;)) =0, Va € rad f,

i=0

where g(()l)(B) is defined as in 2.2);

(ii) radf # rady f and there exist pairwise distinct ay,...,an € rado f and a
nonzero polynomial p(t) = Z;ﬂ:o x;it' € C[t], where x; € C with xox,, # 0,
such that

(3.2) Zx,»gp(t“*“") =0, Va € rad, f.

i=0

Before proceeding to the proof of this theorem, we need some preparations on the
universal enveloping algebra (U(£_), o) of £_. Denote

Ky = E Ct* and Ry = g Ct?.
+a(0)>0 +a(0)>0
a€?Z"™"\ rad f, a€rad f;
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They are Lie subalgebras and any of them can be 0.
Clearly 84+ = Ky @ Ry. Itis not difficult to verify that K. is generated by K4 =
D a(0)=t1, €2\ rad £, (Ct* as Lie subalgebras, respectively. Then

U(€4) 2UKy) @U(Ry) =U(Ky) @ (U(Ks) ® (URL) o Ry)) .

Let S be the set of all finite sequences of integers (i1, i3, . .., 1;). We first define a
total ordering > on the set S: (1,12, ...,11) > (j1, j2,- .-, js) if and only if I > sor
l=s1=j1,i2,= ja,--,dk—1 = jk—1 and iy > ji forsome 1l < k <s.

We have the obvious meaning for >, <, and <.

We fix a PBW basis B for U(£_) consisting of the following elements:

t™ Mot ™o..cot™, a;€eNxZ",

where s is an arbitrary nonnegative integer and a; > a;;; foralli = 1,... s — 1.
We call this s the height of the element t = o =% o --- o t—%, which is denoted by
ht(r=™ ot™® o --- 0 t~%). We now define a total ordering on B as follows:

by b

Mot ™ oot -t ot oot
if(ay,...,a5) = (b1, ba,...,bp).

For any nonzero u € U(£_), we can uniquely write it as a linear combination of
elements in B: u = Z:":lxiui, where 0 # x; € C,u; € Band uy > up = -+ > uy,.
We define the height of u as ht(u;), and the highest term of u as xju;, denoted by
hm(u) = x;u;. For convenience, we define ht(0) = —1 and hm(0) = 0.

It is clear that Bvy := {uv, | u € B} is a basis for the Verma module V () where
Vo is again the highest weight vector of V (). We define

ht(uvg) := ht(u), hm(uvy) := hm(u)vy, Vu € U(L_).
At last we need to define the notation
U'={uecU(Q_) | [dy,u] = su,ht(u) < I}.

It is easy to see that UL o U", C UMY, forall,I',s,s' € N.

—s—s’

Also we have t% o Uisvo cU! Vo foralll,s € Z, anda € N x 7" (where we

—s+a(0

have regarded U} = 0 for k > 0), and we also have
—a —a —as s
7 otT oot € Uly0)-ar(0)—.a(0)

forany ay,a,,...,a, € N x 7"

ProofofTheoremp:] Denote V() = \7(<p)/](<p), where J(¢) is the maximal pro-
per submodule of V ().
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“«”, Suppose that (i) holds. For all (1,a) € 7"*!, using Lemma[29land 2.8), we
deduce

£ o (th Mr)m Zx (18 Ly,
= Garad Z P N Al I
_ (Zx,. £ @, a) (g8 @+ @) ) v
= 8(00.),—=0) (Y w(eh (@ + a)) v =0,

ie, & o (X1 xit ")y = 0. Thus 0 £ (31 xit =19y € (o).
Now suppose (ii) holds. It is not difficult to show that there exists some ¢, €
N x 7"~! such that rad f = Zc, + rady f. Now it is easy to check that

m m m
L, 0 (Zx,-t“"*c") vo=0 and YLyo (Zx,'t“"*c") Vg C (C(Zx,-t“"*c") Vo,
i—0 i=0 i=0

ie,U(L_)o (Z?’:O x;t% )y is a proper submodule of \7(<p).

“=". Since \7(@) is not irreducible, say J(¢) = @Zoin J(p)_x, where J(©)_g, # 0
and ky € N. Let 0 # uvg € J(¢)_k,. Write u = > x/u; € U(L_)_g,, where
xl € C*andu; € Bwithuy = -+ > u,,.

We break up the proof into two different cases.

Case 1: u ¢ U(K_). Clearly in this case we have rad f # rad, f, and there exists
some ¢y € rad f with ¢g(0) > 0 such that rad f = Zcy + rad, f. From the definition
of K_, we know that there exists u;, € U(£_) o (Zaaadof(Ct*J““*“) for some 1 <

io < mwith jo > 0. Now by 0 = t70%70 o 4, € \7(<p) forall b € rad, f, it is easy to

deduce (3.2)).
Case2: uec U(K_).

Subcase 2.1: ht(u) < ky. Suppose
= t(fil-, ar) t< iz, ﬂz) t( ir,—a,) t<71-7dr+1) Ot(—],—ﬁHz) O« Ot(flafdrﬁ) c B

with r > 0 and i, > 2. Since t(=/»—4) ¢ Z(L), there exists some a € 7" with suf-

ficiently large a(1) such that o((1, —a), (—i,, —a,)) # o((—i,, —a,), (1, —a)). Since
t04 o uvy € J_4,—1) = 0, we have

hm(t o uvy) = hm([t" 2, x/ 1y ]vp)
= Uo((1,—a), (—i,, —a,)) — o((—iy, —d,), (1, —a)))r =)
o t(_iZs_dZ) 0---0 t(—i,+1,—ﬁ,—ﬁ) o t(—l-,—drﬂ)

° t(*l.fu’#z) 0--+0 t(*L*st)VO # 0,
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where [ is the number of g such that (—i,, —d,) = (—i,, —d,). Then

0#t"" ouvy € J() k1,
which is a contradiction. So this subcase cannot occur.

Subcase 2.2: ht(u) = ky. In this case, we may assume that there exist 7, s such that
ht(y;) =n,1 <i<rht(y;) =n—1,r+1 <i <sandht(y;) <n—-2,5+1 <i < m.
For 1 < i < r, each u; is of the form u; = (~1 =80 o f(=1=a2) o ... o (=1 —dikg),
For any a € 7" we compute
(3.3)
t(ls_ﬁ) o uvy = [t(la_ﬁ) t(_l«,_di.l) o t(—l,—ﬁz.z) 0--+0 t(_la_di,ko)]vo
b

ko
— Z t(_ly_ﬁzll) O+-:0 t(_lx_ﬁupfl) o [t(L_d), t(_17_dx‘p)]
p=1

o t(*l,*ﬁi,pn) 6.0 t(*l,*ﬁi,ko)vo

ko

=3 ([, ) o FET=00) o o L)y
p=1
ko ko o
+ Z Z tL=ain) o p(=h=aia) o Lo p(=1=dip) L
p=1q=p+1
° [[t(l’_d), t(—ly—di.p)]’ t(—l‘—ﬁz,q)] 0---0 t(_lw_ﬁi,ko)vo mod (Uﬁ;ﬁ)i’o)
ko .
= Z (p([t(l,*d)’ t(fl,ffti,p)])t(*l-fdi.l) 0---0t=L=dip) 5... 0 t(*lﬁﬁl.ko)vo
p=1
ko ko
+ Z Z “t(l,fa)’ t(fl,faf,p)]’ t(fl.,fa,v,p] o t(mh—ain) o f(=L=aid) o,
p=1 q=p+1
o t(ﬁp) 0---0 t(ﬂq) 0---0 t(_lv_ﬁlvko)yo mod (U_k}[i;rzl)vo)
k() —_—
= Z @([t(l’_d), t(_1~_'ii,p)])t(_l-,_di,l) 0. o0t(=L=dp) 5...0 t(_L_di.kO)VO
p=1
ko ko
+ Z Z ﬁlyp’q(a‘)t(_lv_d_dp_dq) o t(TLmain) o f(=1=a2) o L
p=1q=p+l

o t(_ly_di.p) 0O---0 t(_l-,_di,q) O---0 t(il’iﬁik())‘l/o mod (UY{?{;ZI)VO)’

where the ~ means the factor is missing and f; , , fori = 1, ..., r are exp-polynomial
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functions defined by
[[t(l,—d)7 t(—l,—ﬂ_i,p)]’ t(—l,—ﬁi,q)] - ﬁjpﬁq(d)t(—l,—a'—ap—aq)’ va e 7",

Forr+1 < i < s, each u; is of the form u; = (=2~ op(=L—Gia) 6. . . op(—1—Gikg—1),
For all a € 7" we compute

17—di.k0—1)]v0

(3.4) t(lx_ﬁ) o UVy = [t(ly_ﬁ)7 t(_zx_ﬁi,l) o t(_la_ﬁxl) 0---0 t(_
= (@0 o 1) o g0y

mod (U%" vy),
where f; fori =r+1,...,sare exp-polynomial functions defined by

[t(l-fd),t(*Z,*ﬁi.l)] _ ﬁ(a_)t(flyfé*di.l)vva‘ e

Using (3.3), (3.4), and the fact that "= o y;vy € U81n_+21) foralls+1<i<m,
we obtain that for alla € 7",

(3.5)

0= ouyy = [1t77, ulvy

r ko —
= xl/ Z @([t(l —a)7 t(_ly_di.p)])t(_la_ﬁi.l) 0. -rot—L=diy o... 0 t(—l,—ﬁi,ko)%
i=1 p=1
r kO kD

+ in/ Z Z fipg(@) T A ) o f(FLm) o (71 ) o

i=1  p=1q=p+l

o t(_/l:_\dxp) O---0 t(_/L_\ﬁzq) O+-+0 t(il’id"A"o)

S
+ Z xi/fi(d)t(*lﬁfli,l*ﬁ) ° t(*l-,*lii.z) 0.0 t(*l-*di,ko—l)vo

i=r+l

r o ——

ko
in/ Z ([0 fCLma) ) Lmdin) L6 o (FL=aig) o .o~ L)y
i=1 p=1

+ 3 i@ Tt ol oo Thyy - mod (UK D),
leJ
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where all the elements appeared above (for example t(=1=h* o t(=1.=h) o ... o
=1~k 1)) are in B and J is a finite subset of (Z")*~!, and fi(a) are exp-polynomial
functions in a. Denote

r kg

w, = le/ Z 90([1-(1-,752)7 t(flyfai.p)])t(flsfdi.l) O+++0 t(_lv_a_f«}’) O+-+0 t(flwfdzlk@)vo’
i=1 p=1

wy = 37 @D 0 k) oo Ty
1

Now for a with sufficiently large a(1) € 7Z, let

—

R={t"h 8 o ophmin) oot Th0k)yy | i =1,2,--- 1},
which is the set of all possible basis elements in w; € \7(g0),(k0,1), and
T = {t(—l.—ll—d) o t(—l,—lz) 0.0 t(—l,—lko_l)VO | (117 127 . 7lk0—1) c ]},

which is the set of all possible basis elements in w, € v(w),(ku,l). Clearly, for
a € 7" with sufficiently large a(1) € Z, R U T is linearly independent in the vec-
tor space (UY‘,“((;II) vo)/ (U(l‘i(;zl)vo). Thus w; = 0 = w, for a € 7" with sufficiently
large a(1) € Z. Since fi(a) are exp-polynomial functions, using [7, Lemma 2.1] we

deduce thatf;(a) = 0 for all a € Z". Hence from (3.35) we have 0 = w; € \7(gp) for all
aeir.

In terms of linear combination of Bvy, the coefficient of f(~ 1) op(—L—d2) 5. . .o
(=1 =@ -1)y in the expression of w is 0, i.e.,

> pixlp([r P f ]y = 0,Va € 2"

iel
where I = {1 < i < r|a, = aipVl < p < k — 1)}, p; is the number of
q such that d;; = aig,. Let)y = {i € I | di, — a1y, € radf}. Noting that
©(t?) = 0,Vb € (0,7")\ rad f, we have

(3.6) Zpixl{(p([t(l,al,kﬂm)’ t(—l,—di,ko)]) —0,Va € rad f

i€l

From (1) we know that [t(1@1x+@) #(=1.=dix)] £ 0, Using Lemma[.9land 2.8), we
have

,a a —1,—a;, _ Lo = _ 1), = _ _
[t (=h=dug)] — FULN (a0 + a), (<1, —d ) (@ — g, + drgy)

—a(k)—ay kg, (k) _ /= = _
90 o o (a1,ky > ik, )gé )(ﬂ — Ak, + d1ky)-

e

)

Now it is a straightforward computation to see that (3.8)) implies (3.I). This com-
pletes the proof of the theorem. ]
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We can apply this theorem to some special cases.

Corollary 3.2 (i) Ifradf = {(0,...,0)}, then the Verma module V() is irre-
ducible if and only if (%)) £ 0.

(ii) Ifn = 1and qo, is generic, then the Verma module V (ip) is not irreducible if and
only if v satisfies Z.11)).

(iii) If n = 1 and qo, is the m-th primitive root of unity, then the Verma module
V() is not irreducible if and only if there exists some exp-polynomial function
h: 7 — C such that p(t") = h(i), Vi € 7.

Remark 3.3 Corollary B2(ii) was obtained in u3]. From part (iii) and Theo-
rem[2.11] we know that there exist some ¢ so that V() is not irreducible and V()
has some infinite dimensional weight spaces.

We would like to conclude this paper with two easy examples.
Let wy be a primitive k-th root of unity, q; ¢ a fixed generic complex number, i.e.,
q1,0 is not a root of unity, and

1 g, 1
(3.7) a=|{q0 1 w'
1 Wi 1

It is easy to see that rady f, = rad f; = (0,0,k2), radfq = (0,kZ,k7). By The-
orem 2.T1] an irreducible highest weight module V(¢) over £, has finite dimen-
sional weight spaces if and only if there exists a 2-variable exp-polynomial function
i ki ij
h: 7> — G, such that p(t¥t)’) = 1_’;&7135
Example 3.4 Let q be the same as in (3.7) and let Lp(t{‘itgj) = 0;00j0. It is easy to
see that there does not exist a polynomial p(t) € C[t] satisfying the conditions in
Theorem[3.1Ki). Hence from Theorem[3.1} the Verma module V (¢) is irreducible.
Example 3.5 Let g be the same as defined in (3.7)) and let go(t{‘itgj) = 1_;;7':“ =
1,0 MU
di0. It is easy to check that g(i, j) := J; is not an exp-polynomial function. Hence
from Theorem 2.17] the highest weight module V(¢) has an infinite dimensional
weight space. Clearly, cp(t{‘it;‘](l — 1)) = 0foralli, j € Z. From TheoremB.1{i), we
know that the Verma module V (¢) is not irreducible.
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