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Recovery of steady rotational wave profiles from
pressure measurements at the bed
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We derive equations relating the pressure at a flat seabed and the free-surface profile for
steady gravity waves with constant vorticity. The resulting set of nonlinear equations
enables the recovery of the free surface from pressure measurements at the bed.
Furthermore, the flow vorticity (unknown a priori) is determined solely from the bottom
pressure as part of the recovery method. This approach is applicable even in the presence
of stagnation points and its efficiency is illustrated via numerical examples.
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1. Introduction

In this paper, we present a formulation of the rotational water wave problem that enables
the recovery of nonlinear surface gravity wave profiles from pressure measurements
at the seabed, for steady flows with constant vorticity. The determination of the wave
profile is achieved by numerically solving a set of nonlinear equations, with our inverse
recovery procedure having the significant side benefit of also determining the vorticity ω
directly from bottom pressure measurements. The presence of vorticity greatly complicates
the mathematical problem, and the recovery of fully nonlinear rotational water wave
profiles from pressure measurements has hitherto proven unattainable (although explicit
surface-profile recovery formulae for linear, and weakly nonlinear, rotational water waves
were derived by Henry & Thomas (2018) for arbitrary vorticity distributions).

The reconstruction of water wave surface profiles from bottom pressure measurements
is a theoretically challenging issue, with important applications in marine engineering.
Measuring the surface of water waves directly is difficult and costly, particularly in the
ocean, so a commonly employed alternative is to calculate the free-surface profile of water
waves using measurements from submerged pressure transducers. To do so requires the
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construction of either a suitable pressure-transfer function (for linear waves), or a surface
reconstruction procedure (for nonlinear waves), the determination of which corresponds
to a difficult mathematical problem.

Until quite recently, most surface reconstruction formulae were applicable only to
the restricted setting of linear water waves, and even then solely for irrotational flows.
First approaches towards surface reconstruction formulae for nonlinear irrotational waves
appeared in Constantin (2012) and Oliveras et al. (2012); however, these formulae are
quite involved. Exact tractable relations were derived in Clamond (2013) and Clamond
& Constantin (2013), which permit a straightforward numerical procedure for deriving
the free surface from the bottom pressure. A significant advantage of these approaches is
that they work directly with nonlinear waves in the physical plane, allowing recovery of
nonlinear wave profiles up to, and including, Stokes wave of greatest height (Clamond &
Henry 2020). The robustness of this nonlinear wave surface reconstruction approach is
further illustrated in this paper by expanding it to encompass flows with constant vorticity.

Incorporating vorticity in the water wave problem is vital for capturing fundamental
physical processes relating to wave–current interactions (Thomas & Klopman 1997);
however, it significantly complicates all theoretical considerations (Constantin 2011).
We note that, while it was rigorously proven by Henry (2013) that the profile recovery
problem is well posed for nonlinear solitary waves with arbitrary (real analytic) vorticity
distributions, it remains an open question whether the inverse recovery problem is well
posed for periodic waves. Even in the simplified setting of constant vorticity, the water
wave problem exhibits features not encountered in the irrotational case. In particular, such
flows may contain stagnation points (and critical layers) in the fluid interior, and waves
may possess overhanging profiles. The possibility of overhanging waves was first observed
numerically (Da Silva & Peregrine 1988; Okamoto & Shoji 2001) and their possible
existence was recently rigorously proven (Constantin & Varvaruca 2011; Constantin,
Strauss & Varvaruca 2016). We note that the surface recovery approach introduced in
this paper is applicable to flows containing stagnation points; however, we must exclude
overhanging profiles a priori. It is assumed throughout that the surface profile is a
graph (note that overhanging waves cannot occur in the case of ‘downstream’ waves, cf.
(Constantin, Strauss & Varvaruca 2021)).

2. Preliminaries

In the frame of reference moving with a travelling wave of permanent shape, the flow
beneath the wave reduces to a steady motion with respect to the moving coordinate system.
Thus, the wave phase speed c is constant in any Galilean frame of reference. Let (x, y) be a
Cartesian coordinate system moving with the wave, x being the horizontal coordinate and
y the upward vertical coordinate. We define accordingly the fluid domain as Ω = {(x, y) :
x ∈ R,−d � y � η(x)}, where y = −d and y = η(x) correspond, respectively, to the solid
bottom and the free surface (both impermeable). In addition, (u(x, y), v(x, y)) denotes the
velocity field in the moving frame. We assume the wave is L = (2π/k) periodic (with
k → 0 for solitary waves) in the x-direction, and we denote by y = 0 the mean water
level. The latter equation expresses the fact that 〈η〉 = 0, where 〈·〉 is the Eulerian average
operator over one period, that is,

〈η〉 def= k
2π

∫ π/k

−π/k
η(x) dx = 0. (2.1)

961 R2-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

27
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.271


Recovery of rotational waves

The flow is governed by the balance between the restoring gravity force and the inertia
of the system. With constant density ρ > 0, the equation of mass conservation and Euler
equations (defined in Ω) are, respectively,

∂xu + ∂yv = 0, u∂xu + v∂yu = −∂xP/ρ, u∂xv + v∂yv = −∂yP/ρ − g, (2.2a–c)

where P(x, y) denotes the pressure. As a general notation, subscripts ‘b’ denote all
quantities written at the bed y = −d, whereas subscripts ‘s’ denote all quantities written at
the free surface y = η(x). The effect of surface tension being neglected, on the free surface
we must have the dynamic boundary condition

Ps = Patm, (2.3)

where Patm is the (constant) atmospheric pressure. The free surface and the rigid bed are
impermeable interfaces, giving the kinematic boundary conditions (with ηx

def= dη(x)/dx)

vs = usηx, vb = 0, (2.4a,b)

respectively, while the rotational character of the flow is ensured by requiring

∂xv − ∂yu def= ω (= const.). (2.5)

Equations (2.2a–c)–(2.5) are the governing equations for rotational (of constant vorticity
ω) travelling water waves in a frame of reference moving with the wave.

For incompressible flows where (2.2a) holds, we can define a streamfunction ψ such
that u = ∂yψ and v = −∂xψ . As the flow is steady and the free surface is impermeable, it
follows that the free surface is a streamline, that is, the streamfunction is constant ψ = ψs
at the free surface (similarly, the streamfunction is constant ψ = ψb at the bed).

Equations (2.2a–c) can be integrated to

2p + 2gy + u2 + v2 = Bs − 2ω(ψ − ψs), (2.6)

for some constant Bs, where p(x, y) def= [P(x, y)− Patm]/ρ is a normalised relative pressure.
Equation (2.6) is a Bernoulli equation, and we note that the Bernoulli integral B(ψ) def=

Bs − 2ω(ψ − ψs) is constant for an irrotational motion (i.e. when ω = 0).

3. Definition of the parameters

From the definition (2.1) of the mean water level and by averaging expression (2.6) written
at the free surface, we obtain a definition for the constant Bs in the form

Bs = 〈u2
s + v2

s 〉. (3.1)

As the frame of reference moving with the wave is Galilean, there is no mean acceleration.
For steady waves with constant vorticity, the zero-mean horizontal acceleration condition
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is perforce satisfied, but the condition for zero-mean vertical acceleration yields

0 =
〈∫ η

−d

[
u
∂v

∂x
+ v

∂v

∂y

]
dy

〉
=

〈∫ η

−d

∂

∂y

[
u2 + v2

2
+ ωψ

]
dy

〉

= 1
2
〈u2

s + v2
s 〉 − 1

2
〈u2

b〉 + ω(ψs − ψb). (3.2)

This furnishes at once an alternative relation for the Bernoulli constant,

Bs = 〈u2
b〉 + 2ω(ψb − ψs), (3.3)

and, since ps = 0, relation (3.2) implies that the average pressure at the bottom is

〈pb〉 = −
〈∫ η

−d

∂p
∂y

dy
〉

=
〈∫ η

−d

[
u
∂v

∂x
+ v

∂v

∂y
+ g

]
dy

〉
= gd. (3.4)

Relation (3.4) provides a mechanism for determining the mean water depth d from
bottom pressure measurements. For later convenience, define the alternative Bernoulli
constant as

Bb
def= Bs − 2ω(ψb − ψs) = 〈u2

b〉, (3.5)

where, as expected, both Bernoulli constants Bb and Bs coincide for irrotational flows. The
vorticity ω being constant, exploiting the free-surface impermeability gives

ωd =
〈∫ η

−d

[
∂v

∂x
− ∂u
∂y

]
dy

〉
= −〈ηxvs〉 − 〈us〉 + 〈ub〉

= 〈ub〉 − 〈(1 + η2
x)us〉. (3.6)

Expression (3.6) provides a means of determining the vorticity ω in terms of ub, us, d
and η. In the same vein, a relation not involving velocity evaluation along the flat bed is
given by

ω

2
〈h2〉 =

〈∫ η

−d

[
∂v

∂x
− ∂u
∂y

]
( y + d) dy

〉
= −〈hηxvs〉 − 〈hus〉 + ψs − ψb

= ψs − ψb − 〈(1 + η2
x)hus〉, (3.7)

where h(x) def= η(x)+ d is the total water depth. Together with (3.5), relation (3.7) can be
expressed as

Bs = Bb − ω2〈h2〉 − 2ω〈(1 + η2
x)hus〉. (3.8)

As for irrotational motions, Stokes’ first and second definitions of the phase speed
(Kishida & Sobey 1988; Clamond 2017) can be applied, resulting in the expressions

c1
def= −〈ub〉 = −ωd − 〈(1 + η2

x)us〉, (3.9)

c2
def= −

〈
1
d

∫ η

−d
u dy

〉
= ψb − ψs

d
= −ωd

2
− ω〈η2〉

2d
− 〈(1 + η2

x)hus〉
d

. (3.10)

Here c1 and c2 are the wave speeds observed in frames of reference without mean
horizontal velocity at the bed, and without mean flow, respectively. In the irrotational
case (ω = 0), it can be shown (Clamond & Dutykh 2018) that c2 →1 and Bb = Bs →2

1 as
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Recovery of rotational waves

d → ∞ or as k → 0, but c2 ≈ c1 in the linear wave regime. For constant vorticity ω /= 0,
matters are more complex, even at the linear level: c2 ≈ c1 − ωd/2 �≈ c1, while c1 ≈ c±

0 ,
where the linear phase speed (Brink-Kjær 1976; Kishida & Sobey 1988),

c±
0 = −ωd + 1

2 k−1ω tanh(kd)± 1
2 k−1

√
ω2 tanh(kd)2 + 4gk tanh(kd), (3.11)

solves a linear dispersion relation with symmetry property c±
0 (−ω) = −c∓

0 (ω). Hence,
without loss of generality in subsequent considerations, we assume that c1 > 0 (that is,
the wave propagates towards the increasing x-direction in the frame of reference without
mean velocity at the seabed) and allow the vorticity to take either sign.

4. Holomorphic functions

When ω = 0, the flow is irrotational and one can use the powerful theory of holomorphic
functions (Clamond 2013; Clamond & Constantin 2013; Clamond & Henry 2020). In the
case where ω /= 0, one can still use this technique following Helmholtz representation
(Aris 1962). Thus, introduce U, V and Ψ (functions of both x and y) as

U def= u + ω( y + d), V def= v, Ψ
def= ψ + 1

2ω( y + d)2, (4.1a–c)

from which, using (2.5), straightforward calculations show that U = ∂yΨ , V = −∂xΨ and
∂xV = ∂yU, implying that the velocity field (U,V) is curl-free. At the bed y = −d, we
have

Ub = ub, Vb = vb = 0, Ψb = ψb, (4.2a–c)

while, at the free surface y = η(x),

Us = us + ωh, Vs = vs, Ψs = ψs + 1
2ωh2. (4.3a–c)

Note that Ψs is not uniform (unlike ψs) while Ψb is a constant.
Thus, introducing a velocity potential Φ such that U = ∂xΦ and V = ∂yΦ, the complex

potential and velocity are defined as

F(z) def= Φ + iΨ, W(z) def= U − iV = dF/dz, (4.4a,b)

where z def= x + iy is a complex coordinate in Ω .
With these new dependent variables, the Bernoulli equation (2.6) evaluated at the free

surface becomes
U2

s + V2
s + 2(gη − ωhUs)+ (ωh)2 = Bs, (4.5)

while, at the bed, it yields

2(pb − gd)+ U2
b = Bs − 2ω(ψb − ψs) = 〈U2

b〉 = Bb. (4.6)

Note that (4.5) and (4.6) can be rewritten, respectively, as

Us = ωh −
√
(Bs − 2gη)/(1 + η2

x), Ub = −
√

Bb − 2(pb − gd), (4.7a,b)

the minus sign in front of the radicals being a consequence of the choice c1 > 0. Since
Vb = 0, the complex velocity can then be expressed as

W(z) = −
√

Bb − 2pb(z + id)+ 2gd, (4.8)
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a relation that suggests the introduction of a complex pressure. Following Clamond &
Constantin (2013), we introduce a ‘complex pressure’ function 𝔓 defined as

𝔓(z) def= gd + ω(ψs − ψb)− 1
2 (W

2 − Bs), (4.9)

which is holomorphic in the fluid domain Ω . Note that the expression in (4.9) is purely
real when restricted to the flat bed, with 𝔓b = pb on y = −d. Accordingly, pb determines
𝔓 uniquely within the entire fluid domain Ω , and so 𝔓(z) = pb(z + id). We note that,
since p is not a harmonic function in the fluid domain (Constantin 2011), it can coincide
with the real part of 𝔓 only at y = −d.

Similarly, as for irrotational waves in Clamond (2013, 2018), it is useful to introduce the
holomorphic function 𝔔

𝔔(z) def=
∫ z

z0

[𝔓(z′)− gd] dz′ = 1
2

∫ z

z0

[Bb − W(z′)2] dz′, (4.10)

where z0 ∈ Ω is an arbitrary constant.

5. Equations for the surface recovery

Integrating (4.10) along the free-surface path, with the origin located at the crest (i.e.
z0 = ia, a def= η(0) being the wave amplitude), one gets

𝔔s(x) =
∫ x

0
[𝔓s(x

′)− gd](1 + iη′
x) dx′, (5.1)

where 𝔓s(x) = gd + (Bb − U2
s + V2

s )/2 + iUsVs. With (2.4a), (4.3a,b) and (4.7a), and
splitting real and imaginary parts, (5.1) yields after some algebra

𝔔s(x) =
∫ x

0
[Re{𝔓s(x

′)} − gd − Im{𝔓s(x
′)}η′

x] dx′

+ i(η − a)[B̂ − t 1
2 (g + ω2d)(η + a)− 1

6ω
2(η2 + aη + a2)], (5.2)

where B̂ def= (Bs + Bb − ω2d2)/2 is an expression involving Bernoulli constants at the
surface and the bottom.

The imaginary part of (5.2) provides an implicit relation for the surface elevation
expressed in terms of the holomorphic function 𝔔s,

Im{𝔔s} = (η − a)[B̂ − 1
2(g + ω2d)(η + a)− 1

6ω
2(η2 + aη + a2)]. (5.3)

From the differentiation of (5.1) and (5.3), one gets the differential equation
dη
dx

= Im{𝔓s}
B̂ − (g + ω2d)η − 1

2ω
2η2 − Re{𝔓s} + gd

. (5.4)

In the special case of irrotational motion (ω = 0), the differential equation derived in
Clamond & Constantin (2013) is recovered.

Evaluating (5.3) at the trough (x = −π/k), bearing in mind relation (3.8), one obtains
an expression for B̂ as

B̂ = Bs + 1
2ω

2〈η2〉 − ω

〈
h
√
(Bs − 2gη)(1 + η2

x)

〉
,

= 1
2(g + ω2d)(a − b)+ 1

6ω
2(a2 − ab + b2)− (a + b)−1 Im{𝔔s(−π/k)}, (5.5)

where b def= −η(−π/k) denotes the trough height (thus H def= a + b is the total wave height).
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Recovery of rotational waves

We now have algebraic expressions for the recovery of η and B̂, as functions of the
remaining unknown parameters a, b and ω. Three relations are then needed to close our
set of equations. These relations are obtained by considering 𝔓s = gd + ω(ψs − ψb)−
1
2 (W

2
s − Bs) at the crest, at the trough and at an intermediate point. Using the surface

impermeability with the decomposition (4.1a–c), the squared complex velocity reduces to

W2
s

def= (Us − iVs)
2 = ω2h2 + 2ωhus(1 − iηx)+ u2

s (1 − iηx)
2,

= ω2h2 +
[
(Bs − 2gη)/(1 + iηx)− 2ωh

√
(Bs − 2gη)/(1 + η2

x)

]
(1 − iηx). (5.6)

Following Clamond & Constantin (2013), we substitute (5.6) in the definition of 𝔓s at the
crest and the trough – together with (3.8) and (3.10) – to get the two relations

𝔓s(0) = ghc + ω2 〈h2〉 − h2
c

2
− ω

[〈
h
√
(Bs − 2gη)(1 + η2

x)

〉
− hc

√
Bs − 2ga

]
, (5.7)

𝔓s

(
−π

k

)
= ght + ω2 〈h2〉 − h2

t

2
− ω

[〈
h
√
(Bs − 2gη)(1 + η2

x)

〉
− ht

√
Bs + 2gb

]
,

(5.8)

where ht
def= d − b and hc

def= d + a are local depths under, respectively, the trough and the
crest. As expected, both expressions reduce in the irrotational limit to the formulae derived
in Clamond (2013). With (5.7) and (5.8) we have two relations that close the problem if ω
is known. However, in practice, ω is generally unknown a priori, so another independent
relation must be introduced.

A last relation is obtained considering the complex pressure 𝔓s at an abscissa x0 strictly
between crest and trough. This point is chosen at a coordinate of median bottom pressure
measurement such that pb(x0) = (max pb − min pb)/2 to ensure a large distance from the
crest and the trough. With x0 being thus chosen, Im{𝔔s(x0)}, Re{𝔓s(x0)} and Im{𝔓s(x0)}
(together with (5.6) applied at x0) provide three relations for η(x0), ηx(x0) and ω (relations
not written in extenso here, for brevity).

6. Reconstruction procedure

From measurements of the bottom pressure pb, the free-surface reconstruction procedure
takes the following form. The first step is to choose a suitable basis of functions, generally
a Fourier polynomial or elliptic functions (Clamond 2013; Clamond & Constantin 2013).
The best choice is that providing the best fit among data with a minimum of eigenfunctions.
Here, we consider only Fourier polynomials for simplicity, but the procedure is identical
for any basis of functions expressible in the complex plane. Thus, the wavenumber k and
the coefficients 𝔭n of the Nth-order Fourier polynomials, pb ≈ ∑N

n=−N 𝔭n einkx, can be
determined by least-squares minimisation (Clamond & Barthélémy 1995). From (3.4), we
know that 𝔭0 = gd and, since the acceleration due to gravity g is known, this relation gives
an expression for the mean water depth d. Thus, after this first step, the parameters g, d,
k and 𝔭n are known explicitly and the bottom pressure can be extended everywhere in the
bulk of the fluid.
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From the analytic approximation of pb, the holomorphic pressure 𝔓 is, by definition,

𝔓(z) ≈
N∑

n=−N

𝔭n eink(z+id) =
N∑

n=−N

𝔭n e−nkd einkz, (6.1)

so one obtains at once

𝔔s(x) =
∫ x

0
[𝔓s(x

′)− gd] dx′ ≈
N∑

|n|>0

i𝔭n

nk
e−nka − eink(x+iη)

enkd . (6.2)

After this second step, 𝔓s and 𝔔s are known explicitly as functions of η. The wave surface
profile η is then determined by solving the algebraic (i.e. not differential, nor integral)
equation (5.3), which, in general, can only be achieved numerically. This results in η
being obtained as a function of the parameters a, b, ω and Bs. These parameters are then
determined by solving the nonlinear equations (5.5), (5.7) and (5.8) and those at x0.

The numerical procedure consists in solving simultaneously the nonlinear set of
equations (5.3), (5.5), (5.7) and (5.8) (and those at x0) to recover the surface wave profile
and related parameters. To this end, we use an iterative root-finding algorithm (the built-in
function fsolve in MATLAB) supplemented with initial values given by the linear
theory (Kishida & Sobey 1988). When needed, ηx is computed directly from its explicit
expression (5.4).

7. Examples

In order to validate our procedure, we computed exact rotational waves with an accurate
numerical algorithm similar to that of Da Silva & Peregrine (1988). We then obtained
bottom pressures that are considered the ‘measured’ ones from which the free surface
and vorticity are recovered. Throughout the procedure, we monitor the convergence of our
iterative algorithm using a tolerance of 10−12. When converged, the numerical solution is
compared with the exact surface wave profile ηex and vorticity ωex.

For waves of relatively small amplitudes, as well as small ω, we witness a rapid
convergence of the recovery procedure described above. The numerical errors of the
recovered surface and vorticity are, respectively, εη = ‖η − ηex‖∞ < 10−8 and εω =
|ω − ωex| < 10−6. This excellent agreement is reached with as few as N = 5 harmonics
when considering the pressure Fourier expansion. However, for steady rotational waves
with a steeper profile (thus departing from linear theory), the procedure naturally requires
a larger number of harmonics.

Here, we illustrate our surface wave recovery procedure with numerical examples
depicted in figures 1 and 2 for a domain of size L/d = 2π (rather deep water for which
surface recovery is a priori difficult). For our first example, we examine a steep wave with
negative vorticity ω

√
d/g = −1.7. Although the steep wave in figure 1(c) would appear to

be quite challenging to compute, we still recover the correct surface profile using N = 30
harmonics in our Fourier expansion (cf. figure 1b), with the recovered solutions showing
an excellent agreement with the exact data (εη ≈ 10−4 and εω ≈ 10−4).

For the second case of interest (figure 2), we take the positive vorticity ω
√

d/g = 3.
This value is greater than that predicated by linear wave theory for the existence of
critical layers. Indeed, linear waves with c0 > 0 never allow for stagnation points when
ω < 0, while they contain stagnation points for ω > 0 if and only if tanh(kd)/kd ≤
ω2d/(g + ω2d) (Da Silva & Peregrine 1988; Constantin & Varvaruca 2011). This example
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Figure 1. Example of surface recovery for ω
√

d/g = −1.7, H/d = 0.14 and L/d = 2π: (a) pressure at the
bottom; (b) Fourier spectrum extracted from bottom pressure (blue squares) and fitted harmonics used for the
reconstruction (red crosses); and (c) recovered wave profile (red line) versus exact surface profile (blue circles).

is of special interest because it involves three stagnation points per wavelength: two at
the bottom (about halfway between crests and troughs) and one within the fluid (under
the crests) (cf. figure 14a of Da Silva & Peregrine (1988)). The surface recovery still
works relatively well in this case; taking N = 20 Fourier modes, errors are εη ≈ 10−3

and εω ≈ 10−4 (see figure 2).
We observe from figure 1(a) that the bottom pressure distribution for our choice

of wave configuration displays a monotonic increase between trough and crest, which
is not matched by that illustrated in figure 2(a). This is an artefact not solely of the
difference in signs of the vorticities, but also their magnitudes. An examination of explicit
linear solutions for water waves with constant vorticity (Brink-Kjær 1976) illustrates the
richness in behaviour of the pressure fluctuations even for small-amplitude waves, with
regard to both its monotonicity properties and the location of its extrema. For nonlinear
waves, the precise qualitative behaviour of the bottom pressure fluctuations due to wave
motion (and the location of its extrema) was only recently rigorously established for
irrotational periodic waves in (Constantin 2016), and there are presently no similarly
rigorous mathematical results for nonlinear waves with constant vorticity. It is clear from
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Figure 2. Same as figure 1 for the case ω
√

d/g = 3, H/d = 0.5 and L/d = 2π.

figures 1(a) and 2(a) that considerable insight into this matter can be gained from a
numerical approach.

8. Discussion

In this paper, we have presented a procedure for recovering fully nonlinear wave surface
profiles from bottom pressure measurements for flows with constant vorticity. The
theoretical basis for this procedure involves a reformulation in terms of holomorphic
functions 𝔓 and 𝔔, respectively introduced in Clamond & Constantin (2013) and
Clamond (2013), followed by a numerical implementation scheme. We have demonstrated
the efficiency of this approach for different flow regimes, including one that presents
stagnation points in the fluid body (an archetypical feature of waves with constant
vorticity). For future work, it would be interesting to expand our approach to incorporate
variable vorticity. Additionally, the question remains open as to whether our approach can
be adapted to recover waves that exhibit overhanging profiles.
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