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GROUPS WHOSE IRREDUCIBLE REPRESENTATIONS HAVE
FINITE DEGREE 1I

by B. A. F. WEHRFRITZ
(Received 8th January 1981)

If F is a (commutative) field let X; denote the class of all groups G such that every
irreducible FG-module has finite dimension over F. The introduction to [7] contains
motivation for considering these classes X, and surveys some of the results to date
concerning them. In [7] for every field F we determined the finitely generated soluble
groups in X Here, for fields F of characteristic zero, we determine, at least in principle,
the soluble groups in X;. Our main result is the following.

Theorem 1. Let G be a soluble Xg-group where F is any field of characteristic zero.
Then G is abelian-by-finite.

Farkas [1] (see top p. 587) claims that R. Snider has proved Theorem 1 in the special
case where F is the complex numbers. Paragraph 3 of [7] enables one to compute
AF N X, for any field F. (See below for notation and definitions.) Thus by Theorem 1
we can determine S§ N X for any field F of characteristic zero. In particular we have
the following corollaries.

Corollary 1. Let F be a depleted field of characteristic zero (e.g. F=Q). Then
(P, LR)E N X, =(AUNECGF< X.

Corollary 2. Let F be a field of characteristic zero that is either algebraically closed or
real closed. Then S N X is the class of all groups G with an abelian normal subgroup of
finite index and torsion-free rank less than |F |

Corollary 3. Let F be a meagre field of characteristic zero. Then

(PAMF N Xy

is contained in the class of all groups G with an abelian normal subgroup of finite index
and finite torsion-free rank.

The terms “depleted” and “meagre” are defined in [7]. The basic example of a
depleted field is the rationals. By a theorem of Artin and Schreier ([2], p. 316) the only
fields that are not meagre are the uncountable fields that are either algebraically closed
or real closed. Thus Corollaries 2 and 3 cover all fields of characteristic zero.
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P,LN is the class of radical groups in the sense of Plotkin. Also U, S, § and ®
denote respectively the classes of abelian, soluble, finite and finitely generated groups
and € is the class of groups of finite exponent. X=)zX, the torsion-free rank of an
abelian group A is dimg(Q@®,A4). For any group G the maximum periodic normal
subgroup of G we denote by 7(G).

Proof of the corollaries

In Corollary 3 the group ©(G) is abelian-by-finite by a result of B. Hartley ([5],
124.16) and G/t(G) is abelian-by-finite by ([7], 5.3). Thus G is soluble-by-finite and
Corollary 3 follows from Theorem 1 and [7], 3.4b). Corollary 1 follows from Corollary
3 and [7], 3.3 and 2.3. Corollary 2 follows from Theorem 1 and [7], 3.1, 3.2 and 2.3.

Almost all of our proof of Theorem 1, with suitable modifications, works for any
characteristic and we present it in this generality. If G is any group and p a prime, then
0,(G) denotes the maximum normal p-subgroup of G, and we set Oy(G)=<1}. By
definition the trivial group is the only O-group. We prove the following.

Theorem 2. Let F be a field of characteristic u=0 that is not locally finite and suppose
that for every periodic soluble X-group H the group H/O (H) is abelian-by-finite. If G is a
soluble X -group then G/0O/(G) is abelian-by-finite.

If u=0 in Theorem 2 and if H is a periodic soluble Xz-group, then H is abelian-by-
finite by Hartley’s theorem [5], 12.4.16. Thus Theorem 1 is a consequence of Theorem 2.

Lemma 1. Let G be a group and u zero or a prime such that H/O/(H) is abelian-by-
finite for every countable subgroup H of G. Then G/O/(G) is abelian-by-finite.

Proof. Suppose that for r=1,2,... there exists a finitely generated subgroup X, of G
such that X,/0/(X,) does not have an abelian normal subgroup of index at most r. By
hypothesis H=<X,:r=1) has a normal subgroup A of finite index with A'< O (H). If
(H:A)=r then (4N X,)0(X,)/0(X,) is an abelian normal subgroup of X,/O0(X,) of
index at most r. This contradiction shows that there exists r=>1 such that every finitely
generated subgroup X of G contains a normal subgroup Ay of index at most r such that

% is a u-group. The lemma follows by the usual inverse limit argument, see [3], 1.K.2.

Lemma 2. Let A be an abelian group of infinite exponent. Then there exists a
subgroup B of A such that A/B is infinite but of rank 1.

(A group has finite rank at most r if each of its finitely generated subgroups can be
generated by r elements.)

Proof. If A4 is torsion-free let X be a basis of A and pick xeX. Now put B
=A n {X\{x}>% A/B is torsion-free of rank 1. Now we may assume that A4 is periodic.
If every primary component of 4 has finite exponent then A4 is a direct sum of cyclic
groups by Priifer’s First Theorem ([4], p. 173) and involves infinitely many primes. Thus
A has a subgroup B such that A/B is the direct product of infinitely many cyclic groups
of distinct prime order. Hence we may assume that A is a p-group for some prime p.
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Suppose that A contains a finite subgroup X of exponent p"> 1 such that if ae A has
order p"*! then X n {a)+ {1). Now

Q,A={ae A:|a|<p"}

is a direct product of cyclic groups by Priifer’s First Theorem, so Q,4A=Y x Z for some
subgroups Y and Z with XY and Y finite. Let a+>a be the natural projection of A
onto A/Z and consider aeA with a’eZ. Then |a|<p"*'. If |q|=p"*' then
Q,{ay= X <Y and |a|=|a|>p. Thus |a|<p", so ae YZ and ae Y. Therefore Q, A< Y, and
in particular is finite. Hence any direct decomposition of 4 has only a finite number of
factors and so A is the direct product of a finite number of directly indecomposable
groups, each of which is cyclic or a Priifer p®-group ([4], p. 181). But 4 and so A4 has
infinite exponent. Therefore 4, and consequently A4, has a Priifer p®-image.

Now assume that no such X exists. We choose x, € A of order p. Suppose we have
found X=(x;>x...x{x,>SA where |x|=p' for each i. By the above there exists
X,+1€A of order p"*! with X n<{x,,,;>=<1). Thus by induction we can construct D
=X, {x;>< A with each |x]=p". Let

E={xx7A:i=1,2,..).

Then D/E is a Priifer p®-group. As such it is Z-injective, so A/E splits over D/E and
again A has a Prifer p®-image.

Lemma 3. Let A be an abelian normal subgroup of the completely reducible, soluble
subgroup G of GL(n, F); here F is any field. If u is any function satisfying Malcev’s
Theorem ([6], 3.6), then there exists an abelian normal subgroup B of G containing A with
(G:B)< n!- u(n).

Proof. By [6], 1.22 we may assume that F is algebraically closed. By Clifford’s
Theorem A is also completely reducible, so [6], 1.12 yields that (G:Cg(A)) divides nl.
Now G has an abelian normal subgroup D of finite index at most u(n) by Mal’cev’s
Theorem. Now set B=A - Cy(A).

We have no interest here in the bound of Lemma 2, merely in the finiteness of (G:B).
Now in Lemma 3 necessarily 7(4) has finite rank. Thus the qualitive part of that lemma
is a special case of the following, whose proof we leave to the reader.

Lemma 3. Let A be an abelian group. Then A<a G implies that A lies in an abelian
normal subgroup of G of finite index for ALL abelian-by-finite groups G if and only if for
every prime p either A has no subgroup of index p or A contains no infinite elementary
abelian p-subgroup.

Lemma 4. Let F be a field of characteristic u=0 that is not locally finite and let G
={x) [A (split extension) be a group where A is abelian normal of finite torsion-free rank
and {x) is infinite. If GeXy and if A\{1) contains no elements of order u, then

Cin(A)F LD,
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Proof. Assume we have a counter example to the lemma. We prove first that 4
contains a subgroup X = X2, <a%) such that [a;, x"]# 1 for each i. Suppose a,,...,a;_,
have been constructed and set Y=<a?,...,a’ ). If ye A then {x, y) is abelian-by-finite
by the main theorem of [7] and {y<*>)=<{y¢) is finitely generated. Thus Y is finitely
generated. Pick a normal subgroup Nc A of G maximal subject to YN N={1).
If C(s(N)=1 there exists a;e N such that [a;, x]#] and clearly a<N. Thus the
construction of X can proceed inductively.

We have to eliminate the possibility that C.,(N)# {1}, so assume that this is so.
Since F is not locally finite and since Y contains no non-trivial elements of order u there
exists a faithful, finite-dimensional, completely reducible representation of Y over F.
Hence by Hall's Lemma ([7], 2.1) and the hypothesis Ge X, there exists a finite-
dimensional, completely reducible representation p of G over F such that N<=ker p and
Ynkerp=(1). By the choice of N we have Aﬂkerp=N, By [6], 1.22, 1.12 and
Clifford’s Theorem there exists #>0 with [Ap, x"p]=<1); that is with [A,x"]< N, and
we choose r large enough so that also [N, x"]={1).

Set B=[A,x"]. Then B is a homomorphic image of 4/N= A4p. The torsion subgroup
of Ap has finite rank (cf. [5], 2.2) and A and hence Ap has finite torsion-free rank.
Therefore B has finite rank. But then there exists a faithful direct sum of a finite number
of irreducible representations of B over F and hence there exists a finite-dimensional,
completely reducible representation ¢ of G over F with Bnkero=<1}. By [6], 1.22 and
1.12 again there exists s>0 with [ A4, x*]ckero. But then

[A4,x*]c[4, x" ][4, X J]EBnkero={1),

which contradicts our assumption that we are considering a counter example to the
lemma. Therefore C,,,(N)=<(1) and this completes the construction of X.

We complete the proof of the lemma by constructing an infinite-dimensional,
irreducible FG-module. Let F be an algebraic closure of F. Since <{a’) is finitely
generated and abelian there exists a homomorphism ¢; of (af) into F* with
[a;, xJ¢:# 1. Since F* is Z-injective there exists a homomorphism ¢:A— F* such that
[a;, x1¢=[a;, x'1¢; for each i. Thus ap+#ar¢ for each i>1. Set K=F(Ap)<F and
V=®,;.7v:K. Make V into a KG-module by defining

vx=v,_; and va= v,-(a"iqﬁ)
for each ie Z and ae A.
In particular V becomes an FG-module of infinite dimension. Let U be a non-zero

KG-submodule of V. Pick v=)73_, va;eU\{0} where each o;e K and s—r is minimal.
Replacing v by vx” we may choose v with r=0. Suppose s>0. Then U also contains

va,~ola,d)= 3. vadas'9—ap).

By construction agfa*¢—a,$)#0. This contradicts the choice of v. Thus s=0 and so
voe U. But clearly voFG = V. Consequently U=V and V is irreducible as KG-module.
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Since V is FG-cyclic there exists a maximal FG-submodule W of V. Suppose
dimg(V/W) is finite. Let a be the annihilator of V/W in FG. Then dimg(FG/a) is finite.
But Va is a KG-submodule of V and consequently by the above is {0}. Thus V is an
image of FG/a and as such is finite dimensional. This contradiction proves that V/W is
an infinite-dimensional, irreducible FG-module, and completes the proof of the lemma.

The argument of the previous paragraph can be used to prove the following, which
should be compared with {7], 2.3.

Proposition. Let FSK be fields with (K:F) finite. Then Xp=Xy.

If K is an arbitrary extension field of F then 3.1 (or alternatively 3.2) shows that
sometimes X,& X, and the work of P. Hall and Roseblade shows that sometimes

XX,
Proof of Theorem 2

This we break into a number of pieces. Let F and G be as in the theorem and assume
that G/0,(G) is not abelian-by-finite. Let F be an algebraic closure of F.

1. G contains a countable subgroup H, such that H=H /O (H,) has an abelian normal
subgroup A containing H' with H' and H/A periodic, and such that H is not abelian-by-
finite.

Proof. By Lemma | we may assume that G is countable. By hypothesis 7(G) contains
a normal subgroup T of finite index with T'=0/G). Hall’s Lemma applied to
irreducible F(1(G)/0,(G))-modules shows that there exists a finite-dimensional (from
G e X;), completely reducible representation p of G over F such that ©(G) n ker p has its
derived group in 0,(G). By [7], 5.1 the group G/1(G) is abelian-by-finite, and also Gp is
abelian-by-finite ([6], 3.5). Hence G contains a normal subgroup H, of finite index with
Hic1uG)nkerp. Set H=H,/G,(H,). Then H' is periodic and abelian and H is not
abelian-by-finite.

Since H is countable there exist elements x,, x,,... of H such that H/{x;:iZ1>H’ is
periodic. Suppose we have constructed r,,...,r;_;>0 such that A4;=(x7:j<i)H’ is
abelian. Since 4; is normal in H, there are no elements of order u in 4,\{1)> and Lemma
4 yields that there exists an integer r;>0 with [A,, x{]=1 (if |x|< o set r;=|x;). Then
A =A(x]"> is abelian. By induction we construct an abelian normal subgroup.
A=|Ji»1 Ai2H’ of H with H/A periodic.

Let L denote the Fitting subgroup of H.

2. We may choose H and A such that L{A is finite. We may also choose A maximal, that is
with A=Cy(A).

Proof. Initially let H and 4 be as in 1. Necessarily A< L. Suppose L has infinite
exponent. Clearly L\{1) contains no elements of order u. By Lemma 2 there exists a
homomorphism of L into F* with infinite image. By Hall’s Lemma there exists an
irreducible representation p of L with Lp infinite. But Lp is nilpotent ([6], 8.2ii), so Lp
is finite ([6], 3.13). Consequently L has finite exponent m say.

EMS C
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Let Q/L be a maximal torsion-free subgroup of A/L. Then Q™ is normal in L and
L/Q™ is periodic. Let P/Q™=0,(L/Q™). By hypothesis L/Q™ contains a normal subgroup
M/Q™ of finite index with M’ P. But LnQ™=(1), so

M cLnPcO/[(L)=(1)

and M is an abelian subgroup of L of finite index, n say.

H/I? is periodic and so contains a normal subgroup N/ of finite index such that
NI/ is a u-group. But NS H' and so has no proper u-images. Consequently
N'cIl’c M. Since (H:N) is finite L contains the Fitting subgroup of N and so Mn N
has finite index in this Fitting subgroup. Now replace H by N and 4 by any maximal
abelian subgroup of N containing M n N.

3. H/A is reduced.

Proof. Let D/A be the divisible part of H/A. Let p be any irreducible representation
of D over F. Necessarily p is finite dimensional ([7], 2.2). Also Dp/Ap has no proper
subgroup of finite index. Therefore Dp is abelian by Lemma 3 and thus

D'c (\kerps0,D)=(1)

by [7], 2.5. Thus D= A by the maximal choice of A.

Let K={xeH:[A, x] is finite}. It is easily seen that K is a subgroup of H containing
A.

4. [A, K] has finite exponent.

Proof. Suppose not. By Lemma 2 there exists a homomorphism of [4, K] into F*
with its image infinite and of rank 1. In particular this image has infinite exponent. By
Hall's Lemma these exists an irreducible representation p of H over F such that [4, K]p
has infinite exponent. Let r be the index in Ap of its Zariski connected component
containing 1. If ke K then |[4, k]p|=|k?p|, and the latter, being finite, divides r ([6], 5.3,
5.4, cf. 5.5). Thus the abelian group [A4, K]p has exponent dividing r. This contradiction
confirms 4.

S. K/A is finite.

Proof. Let Q/[A4, K] be a maximal torsion-free subgroup of A/[A4, K]. By 4, there
exists m>0 with [4, K]™"=(1). Now Q is normal in K and K/Q™ is periodic. Set P/Q™
=0,K/Q™. By hypothesis there exists a normal subgroup M of K of finite index such
that M'S P. But [4, K] n Q™(1), so

[A,K]nPSOJ[A,K]=(1) and [AnM,M]={1>.

Also M'SH nMZSAn M and M is nilpotent. Consequently as K/M is finite we have
Mc L, and so AM/A is finite by 2. But again K/M is finite, so 5 follows.
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6. The final contradiction; H/K is finite.

Proof. Suppose otherwise. By 3 and 5 there exists an infinite subgroup X/A of H/A
with KnX=A. Let {1} UY={1,y,,y,,...} be a transversal of A to X (recall that H is
countable). Suppose we have constructed a,,...,q;_,€A and a homomorphism ¢; 4;
={a;:j<iy— F* such that for each j<i, a;e[A4, y;]\{1) and |a;¢;|=|a,. Now 4, is finite,
being a finitely generated subgroup of H’, and [A, y;] is infinite since y;¢ K, so there
exists a;e[A4, yJ\A;. Let r be the order of g; modulo 4; and let « be a primitive r-th.
root of ai¢; in F. There exists a homomorphism ¢,;,, of 4,{a;> into F* such that a¢,,,
=ad¢,; for all ae A; and a;¢;, , =0

Thus inductively we can construct a;e[4,y;] for i=1,2,... and a homomorphism ¢ of
{a;:iz 1) into F* such that each a;¢#1. By Hall's Lemma there exists an irreducible
representation p of H over F with a;p+#1 for each i. Now by Lemma 3 there exists an
abelian subgroup of Xp of finite index containing Ap. Since X/A is infinite there exists i
with (A4, y;>p abelian. But then g,e[A, y;Jckerp, which is false. This contradiction
yields 6 and completes the proof of the theorem.
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