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Numerous effects of n-3 fatty acids EPA and DHA on functional responses of cells involved in
inflammation and immunity have been described. Fatty acid-induced modifications in mem-
brane order and in the availability of substrates for eicosanoid synthesis are long-standing
mechanisms that are considered important in explaining the effects observed. More recently,
effects on signal transduction pathways and on gene expression profiles have been identified.
Over the last 10 years or so, significant advances in understanding the mechanisms of action of
n-3 fatty acids have been made. These include the identification of new actions of lipid med-
iators that were already described and of novel interactions among those mediators and the
description of an entirely new family of lipid mediators, resolvins and protectins that have anti-
inflammatory actions and are critical to the resolution of inflammation. It is also recognised that
EPA and DHA can inhibit activation of the prototypical inflammatory transcription factor NF-
KkB. Recent studies suggest three alternative mechanisms by which n-3 fatty acids might have
this effect. Within T-cells, as well as other cells of relevance to immune and inflammatory
responses, EPA and DHA act to disrupt very early events involving formation of the structures
termed lipid rafts which bring together various proteins to form an effective signalling plat-
form. In summary, recent research has identified a number of new mechanisms of action that
help to explain previously identified effects of n-3 fatty acids on inflammation and immunity.

Cytokine: Eicosanoid: Fish oil: Resolvin: Lipid raft

Overview of inflammation and immunity in health
and disease

The immune system is the means by which the sources of
non-threatening antigens are identified and tolerated and by
which threatening antigens are identified and their sources
eliminated. The immune system is principally thought of in
the context of protection against pathogenic bacteria,
viruses, fungi and parasites, but it also plays roles in
identification and elimination of tumour cells and in the
response to physical insults such as injury, surgery, burns
and irradiation. The immune system is highly complex,
involving many different specialised cell types dispersed

throughout the body and moving between body compart-
ments as part of routine immune surveillance or in
response to specific stimuli. The cells of the immune sys-
tem interact with one another and with other cell types
(e.g. epithelial cells, endothelial cells, platelets, hepato-
cytes and adipocytes) in order to elicit and regulate
local and systemic responses to infection, injury or insult.
Many chemical mediators are produced during the course
of an immune response; some of these are directly dama-
ging to infectious organisms, others play a regulatory role
promoting the activity of particular cell types, while others
serve to terminate the response when the source of the
initial immune stimulation has been eliminated.

Abbreviation: COX, cyclooxygenase; IxB, inhibitory subunit of NF-kB; LPS, lipopolysaccharide; LT, leucotriene; TLR, Toll-like receptor.
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The immune response can be classified into two general
arms termed the innate (or natural) and the acquired
(or specific). The innate immune response can be activated
via recognition of certain general structural features of
pathogens; these features may be shared by numerous
pathogens. For example, lipopolysaccharide (LPS), a com-
ponent of the cell wall of Gram-negative bacteria and also
known as endotoxin, is recognised by Toll-like receptor
(TLR)-4 on the surface of innate immune cells. In con-
trast, the acquired immune response is specific for a
single antigen which must be presented by an antigen-
presenting cell to an antigen-specific T-cell. Thus, the
innate response is induced quickly and is not improved
by prior exposure to the triggering pathogen, while the
acquired response is induced slowly but is enhanced by
prior exposure to the antigen. The two arms of the
immune system communicate during an immune response
because innate immune cells can present antigen, thus
inducing the acquired response, while the acquired
immune response produces chemicals that activate innate
immune cells or make their processes more -efficient.
Inflammation is part of a normal innate immune response.
Obviously, immune responses, including the inflammatory
component, are protective and hence are beneficial to
health. However, active immune responses triggered by
normally benign structures or by host antigens can cause
tissue damage and disease. These diseases will often
involve infiltration and activation of immune cells (both
innate and acquired) within particular tissue compart-
ments initiating and perpetuating tissue damage which
can become pathological. This can be caused by in-
appropriate activation of the immune response, perhaps
because of wrong recognition of an immune trigger
(e.g. a host antigen), or by an inability to shut-off an
inappropriate immune response because of loss of a
terminating or resolving factor. Examples of diseases where
an inappropriate immune response is central to the pathology
are rheumatoid arthritis (autoimmune destruction of the
joints), inflammatory bowel diseases (loss of tolerance to
commensal gut bacteria resulting in an active and dama-
ging immune response within the gastrointestinal mucosa)
and asthma (adverse immune response to a normally
benign environmental antigen causing airways damage).
Classic inflammatory cells and chemical mediators pro-
duced by those cells are central to the pathology of these
diseases and hence they are often referred to as ‘inflam-
matory diseases’ ">, Nevertheless it should not be over-
looked that cells of the acquired immune response also play
an important, often key regulatory, role in these diseases.

n-3 Fatty acids, inflammation and immunity

Research on the influence of fatty acids on immunity
started in the 1970s, with the earliest studies evaluating
and comparing the effects of common SFA and the n-6
fatty acid linoleic acid®”. The effects observed were
considered to involve modifications of the physical state
of the plasma membrane of immune cells: membrane
order (‘fluidity’) could clearly be involved in a mem-
brane-mediated process such as phagocytosis®'" but has
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also been thought to be important in T-lymphocyte
responses to activation'>'?. The discovery that eicosa-
noids, including PGE,, play roles in inflammation and in
the regulation of immune cell function'*'> initiated
research into the effects of the common eicosanoid pre-
cursor arachidonic acid and also raised the possibility that
the effects of some fatty acids on immune cell responses
could be due to modification of eicosanoid production’>'?.
Thus, the two long-standing mechanisms to describe the
effects of fatty acids on inflammation and immunity
involve alterations of membrane order and modulation of
eicosanoid production, both driven by modification of
the fatty acid composition of the phospholipids within
membranes of inflammatory and immune cells.

The first studies of the effects of n-3 fatty acids
on inflammation and immunity were published in the
1980s. In vitro studies revealed that both EPA and DHA
could influence the functional responses of immune cells to
stimulation (see Calder™® for references) and early studies
of fish oil in experimental models of autoimmunity'”’ and
clinical trials of fish oil in patients with rheumatoid
arthritis"®'” demonstrated significant anti-inflammatory
activity of the combination of EPA and DHA. The effects
of EPA and DHA on inflammation and immunity were
considered to be consistent with the existing mechanisms
of fatty acid action. First, the highly unsaturated nature of
EPA and DHA means that they have the potential to have
marked effects on membrane order in immune cells'?.
Secondly, incorporation of EPA and DHA into cells
involved in inflammation and immunity is partly at the
expense of arachidonic acid®®>” hence decreasing the
amount of substrate available to produce inflammatory and
immunoregulatory eicosanoids®®*342  Qver the last
25 years, the effects of n-3 fatty acids on aspects of
inflammation and immunity have been extensively exam-
ined. They have been demonstrated to affect the functions
of a range of cell types involved in innate and acquired
immunity, to modify the expression of key cell surface
proteins and to modulate the production of reactive oxygen
species, eicosanoids and cytokines (Table 1). The effects of
n-3 fatty acids on inflammation and immunity have been
reviewed many times(5’7’43*54), and the reader is referred to
these reviews for a detailed coverage of the topic. The
current article will provide an update on the mechanisms
of action of n-3 fatty acids with respect to inflammation
and immunity, putting these in the context of the earlier
understandings of n-3 fatty acid actions.

EPA and DHA are rapidly incorporated into
phospholipids of immune cells in human subjects

It is well known that increased oral supply of EPA and
DHA results in an increase in the amount of those fatty
acids in immune cells in laboratory animals®®2*3°=*! and
human subjects®®*233799 " This increase occurs in a
dose—response manner°>*">> and time-course studies
reported that near maximum incorporation of both EPA
and DHA occurred within a few weeks in human
subjects®!373%_ The incorporation of these highly unsatu-
rated long chain n-3 fatty acids is mainly at the expense of


https://doi.org/10.1017/S0029665113001031

Proceedings of the Nutrition Society

¢
o=

328 P. C. Calder

Table 1. Summary of the effects of n-3 fatty acids (EPA + DHA) on
immune and inflammatory cells

Cell type Effects seen

Endothelial cells Decreased adhesion molecule expression

Decreased adhesion of leucocytes

Decreased production of inflammatory
cytokines

Decreased chemotaxis

Decreased adhesion to endothelial cells

Decreased respiratory burst

Decreased production of eicosanoids from
arachidonic acid

Decreased chemotaxis

Decreased adhesion molecule expression

Decreased adhesion to endothelial cells

Decreased respiratory burst

Increased phagocytosis

Decreased production of eicosanoids from
arachidonic acid

Decreased production of inflammatory

Neutrophils

Monocytes and
macrophages

cytokines
Antigen presenting Decreased MHC | and Il expression
cells Decreased antigen presentation
T-cells Decreased adhesion molecule expression

Decreased adhesion to endothelial cells

Decreased production of T-helper 1 type
cytokines

Decreased proliferation

n-6 fatty acids, especially arachidonic acid®*~”. A recent
study evaluated the incorporation of EPA and DHA into
human mononuclear cells (a mixture of 85% lymphocytes
and 15% monocytes isolated from peripheral blood) over
one week®®. By coincidence this study provided the same
daily amounts of EPA and DHA as used in an earlier study
by Yaqoob et al.®", allowing a direct comparison of the
findings of these two studies in healthy human volunteers.
Faber et al.®® report significant incorporation of EPA and
DHA after just 1 d of supplementation and combining the
findings of these two studies reveals that the near max-
imum incorporation of both n-3 fatty acids into human
mononuclear cells occurs at about 7 d of supplementation
(Fig. 1). This rapid incorporation of EPA and DHA sug-
gests that subsequent functional effects on cell respon-
siveness and function may occur more quickly than
previously considered.

Opposing actions of eicosanoids produced
from arachidonic acid and EPA regulate
leucocyte-endothelial interaction

Eicosanoids are biologically active lipid mediators pro-
duced from PUFA, most commonly the n-6 fatty acid
arachidonic acid. Eicosanoids play wide ranging roles in
inflammation and regulation of immune function®’"®.
To produce these eicosanoids, arachidonic acid is released
from membrane phospholipids through the action of phos-
pholipase A, enzymes, and then acts as a substrate
for cyclooxygenase (COX), lipoxygenase or cytochrome
P450 enzymes (Fig. 2). COX enzymes lead to PG and
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Fig. 1. Time course of incorporation of EPA and DHA and of dis-
appearance of arachidonic acid in human mononuclear cells in
healthy volunteers consuming fish oil. Healthy human volunteers
consumed fish oil providing 2-1g EPA and 1-1g DHA per d for
1 week®® or for 12 weeks®"). Blood was sampled at several time
points in each study and mononuclear cells prepared. Fatty acid
composition of the cells was determined by GC. Mean values
are shown. Wl and [0, EPA; @ and O, DHA; A and A, arachidonic
acid; Black symbols represent data from Faber et al.®®; Grey
symbols represent data from Yagoob et al.®".

thromboxanes, lipoxygenase enzymes lead to leucotrienes
(LT) and cytochrome P450 enzymes lead to hydroxy-
eicosatetraenoic and epoxyeicosatrienoic acids®’ . The
decrease in arachidonic acid content of cell membrane
phospholipids that occurs with incorporation of EPA
and DHA (Fig. 1) reduces the availability of the usual
eicosanoid substrate. Thus, increased incorporation of n-3
fatty acids into cell membranes is associated with
decreased production of the major 2-series PG and 4-series
LT@02%3042) " This represents a key anti-inflammatory
effect of n-3 fatty acids, and has been long recognised.
EPA is also a substrate for the COX, lipoxygenase and
cytochrome P450 enzymes, but the mediators produced
have a different structure from those made from arachi-
donic acid (e.g. PGE; rather than PGE, and LTBj5 rather
than LTB,). Increased generation of 5-series LT has been
demonstrated using macrophages from fish oil-fed mice“”
and neutrophils from human subjects taking fish oil
supplements for several weeks®***?  The functional
significance of this is that the eicosanoids produced from
EPA are often much less bioloé%ically active than those
produced from arachidonic acid®®. One reason for this
reduced biological potency is that eicosanoid receptors
typically have a much lower affinity for the EPA-derived
mediator than for the arachidonic acid-derived one®.
Thus, EPA results in decreased production of potent
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Fig. 2. Summary of eicosanoid synthesis from arachidonic acid. COX, cyclooxygenase; CYT
P450, cytochrome P450 enzymes; DHET, dihydroxyeicosatrienoic acid; HETE, hydro-
xyeicosatetraenoic acid; HPETE, hydroperoxyeicosatetraenoic acid; EET, epoxyeicosatrienoic
acid; LOX, lipoxygenase; LT, leucotriene; TX, thromboxane. Note that not all enzymes are

named and that not all metabolites are shown.

eicosanoids from arachidonic acid and increased produc-
tion of weak eicosanoids. Recently, the effect of arachi-
donic acid-derived PGD, and EPA-derived PGD; on
neutrophil adhesive interactions with endothelial cells was
investigated in an in vitro setting®”. Both EPA and PGD;
were able to inhibit neutrophil transmigration through the
endothelial cell monolayers, an effect which could be pre-
vented by either arachidonic acid or PGD,. An antagonist
to the PGD receptor DP1 also inhibited transmigration,
while a DP1 agonist overcame the inhibitory effect of
EPA. It was concluded that PGD, acts to up-regulate neu-
trophil transmigration, analogous to neutrophilic infiltra-
tion into inflammatory sites, acting through DP1 while
PGDj acts to prevent this effect of PGD, again acting at
DPI1. The observation that PGD5 can effectively compete
with PGD, is supported by the findings of Wada er al.®®
that DP1 has a greater affinity for PGDj3 than for PGD,.

New families of anti-inflammatory and inflammation
resolving mediators are produced from EPA and DHA

Historically, research has focused on the initiation of
inflammatory responses and strategies to promote or
suppress. In the last 10 years or so a greater appreciation
of the importance of ‘turning off’ inflammation has
developed. This process is termed resolution and it seems
likely that failure to resolve inflammation is an important
factor in determining the course of inflammatory responses
and their transition to disease states. During the recent past,
lipid mediators produced from EPA and DHA have been
discovered that seem to play a central role in resolution of
inflammation. Hence, these mediators have been termed
resolvins. Those produced from EPA are called E-series
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while those produced from DHA are termed D-series.
Related compounds called protectins (also referred to as
neuroprotectins when generated within neural tissue) are
produced from DHA. The synthesis of resolvins and pro-
tectins involves the COX and lipoxygenase pathways
operating across two cell types, with different epimers
being produced in the presence and absence of aspirin‘®>~%%),
Resolvin synthesis is increased by feeding fish-oil rich
diets to laboratory rodents’®” and was shown to occur in
fat-1 mice in which colitis had been induced”’®. A recent
study revealed significant concentrations of resolvins El
and DI in the plasma of healthy human volunteers after
supplementation with fish oil for 3 weeks”".

The biological effects of resolvins and protectins have
been examined extensively in cell culture and in animal
models of inflammation, where they have been shown to
be anti-inflammatory and inflammation resolving. For
example, resolvins D1 and E1 and protectin D1 all inhib-
ited transendothelial migration of neutrophils, preventing
the infiltration of neutrophils into sites of inflammation;
resolvin D1 inhibited IL-1p production; and protectin D1
inhibited TNF and IL-1B production®®_ Resolvins
reduce inflammation and exert protection in experimental
animals in models of inflammatory disease including
arthritis"?, colitis”® and asthma”*’>. The potent effects
of resolvins and protectins may explain many of the anti-
inflammatory effects of n-3 fatty acids.

n-3 Fatty acids inhibit activation of the
pro-inflammatory transcription factor NF-xB

Cell culture studies with EPA and DHA show inhibition of
LPS-induced production of COX-2, inducible nitric oxide
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synthase, TNF, IL-1, IL-6, IL-8 and IL-12 in endothelial
cells”®”” and monocytes”®’®. Animal feeding studies
with fish oil, a source of EPA and DHA, support the
observations made in vitro with respect to the effects of n-
3 fatty acids on inflammatory cytokine production. For
example, dietary fish oil decreased the production of TNF,
IL-1p and IL-6 by LPS-stimulated mouse macro-
phages®?#%D " Some studies in healthy human subjects
have demonstrated that oral fish oil supplements can
decrease production of TNF, IL-1B, IL-6 and various
growth factors by LPS-stimulated monocytes or mono-
nuclear cells(26’27’30’82*84’, although not all studies confirm
this effect.

NF-kB is a key transcription factor involved in up-
regulation of inflammatory cytokine, adhesion molecule and
COX-2 genes®>*®_ Inactive NF-kB is a trimer localised
within the cytosol; it is activated via a signalling cascade
triggered by extracellular inflammatory stimuli which
involves phosphorylation of an inhibitory subunit of
NF-kB (IxB) which then dissociates allowing translocation
of the remaining NF-xB dimer to the nucleus®”. LPS
induces inflammation by activating NF-kB, as do some
inflammatory cytokines and UV irradiation. EPA or fish
oil has been shown to decrease LPS-induced activation of
NF-kB in human monocytes”*¥%% and this was asso-
ciated with decreased IxB phosphorylation®**%

Until fairly recently it has not been clear how n-3 fatty
acids could influence NF-xB activation. However, recent
studies suggest several possible mechanisms that might be
involved. PPARY is a transcription factor that acts in an
anti-inflammatory manner®®. It is able to directly regulate
inflammatory gene expression, but it also interferes physi-
cally with the activation of NF-xB“®". DHA induced
PPARY in dendritic cells and this was associated with
inhibition of NF-xB activation and reduced production of
the pro-inflammatory cytokines TNF and IL-6 following
LPS stimulation®?. In addition, DHA induced a number of
known PPARY target genes in dendritic cells, suggesting
this as an important anti—inﬂammator%/ mechanism of
action of DHA and perhaps also of EPA®?.

The n-3 fatty acid mediated inhibition of NF-kB acti-
vation is associated with decreased IkB phosphoryla-
tion®®*?_ In contrast with the effects of EPA and DHA on
IxB phosphorylation and subsequent activation of NF-kB,
SFA, especially lauric acid, enhanced IxB phosphorylation
and NF-kB activation in macrophages®” and dendritic
cells®® and so promoted inflammatory gene expression.
Lee et al.®” found that EPA and DHA were able to
prevent the NF-xB mediated pro-inflammatory effect of
lauric acid in macrophages. They also showed that the
activation of NF-kB and induction of COX-2 expression
by lauric acid did not occur in macrophages expressing a
dominant-negative mutant of the cell surface LPS receptor,
TLR-4, suggesting that lauric acid somehow interacts with
TLR-4. Myeloid differentiation primary response gene 88
is a cell membrane-associated adapter protein used by
TLR-4 to activate NF-xB. DHA inhibited COX-2 expres-
sion in macrophages bearing constitutively active TLR-4
but not in those bearing constitutively active myeloid dif-
ferentiation primary response gene 88 suggesting that
the effects of DHA are at the level of TLR-4°%. More
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recently, Wong et al.®® demonstrated that exposure of
macrophages to lauric acid-induced association of TLR-4,
myeloid differentiation primary response gene 88 and other
signalling proteins into membrane rafts in much the same
way as LPS acts. Furthermore, they showed that DHA
inhibited the ability of both LPS and lauric acid to promote
recruitment of these signalling proteins into rafts. Thus, the
differential effects of fatty acids on inflammatory signal-
ling initiated through TLR-4 and impacting on NF-kB
appear to relate to their ability to promote or disrupt raft
formation within the membrane of inflammatory cells.

Activation of PPARY and disruption of lipid rafts that
initiate inflammatory signalling represent two mechanisms
by which n-3 fatty acids could inhibit activation of NF-xB.
Recently, a third mechanism has been identified®”. This
involves a cell surface G-protein coupled receptor called
GPR120 which is highly expressed on inflammatory mac-
rophages. The GPR120 agonist GW9508 inhibited respon-
siveness of macrophages to LPS®”. The effect of GW9508
involved reduced phosphorylation of IxB kinase and IkB,
IxB maintenance in the cytosol and reduced TNF and IL-6
production. These observations suggest that GPR120 sig-
nalling is anti-inflammatory. Both, EPA and DHA, but not
arachidonic, palmitic or myristic acids, promoted GPR120-
mediated gene activation, although they were less potent
than GWO9508. The effects of DHA were further
explored®”. 1Its inhibitory effects on LPS-induced IxB
kinase phosphorylation, IkB phosphorylation and degra-
dation, and TNF, IL-6 and monocyte chemotactic protein-1
production did not occur in GPR120 knockdown cells.
These observations suggest that the inhibitory effect of
DHA (and probably also those of EPA) on responsiveness
to LPS occur via GPR120, which induces signalling that
interferes with the pathway that activates NF-xB.

Thus, recent studies suggest three alternative mechan-
isms by which EPA and DHA might act to suppress
inflammatory signalling via NF-xB: activation of PPARY
which physically interacts with NF-xB preventing its
nuclear translocation, interfering with early membrane
events involved in activation of NF-xB via TLR-4 and
action via GPR120 which initiates an anti-inflammatory
signalling cascade that inhibits signalling leading to NF-xB
activation (Fig. 3). The extent to which these three
mechanisms are interlinked is not clear at this stage.

n-3 Fatty acids affect the formation of signalling
platforms (rafts) in the plasma membrane of T-cells
and in other immune cells

In cell cultures both EPA and DHA inhibit T-cell
proliferation!*1¢%8-190 anq the production of the key
T-helper 1 type cytokine IL-2'3%199 " Apimal feeding
studies with fairly high amounts of fish oil, or of individual
n-3 fatty acids, have also reported reduced T-cell pro-
liferative responses'®' 1" and alterations in T-helper 1
cytokine gene expression''’? and production''®®. Studies
in human subjects are less consistent, although some stu-
dies have shown that increased intake of EPA+DHA
decreases human T-cell proliferation®*~® and IL-2 pro-
duction®®. These functional effects of n-3 fatty acids on
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Fig. 3. Summary of different mechanisms by which n-3 fatty acids inhibit activation of the
pro-inflammatory transcription factor NF-kB. COX, cyclooxygenase; GPR, G-protein coupled
receptor; PPAR, peroxisome proliferator activated receptor. Dotted lines indicate inhibition.
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T-cells have been linked with changes in membrane
order"®, altered patterns of eicosanoid pl‘OduCthH(l6) and
modification of early signal transduction events within the
plasma membrane, including reduced generation of dia-
cylglycerol'®*!® and inhibition of the activation of
specific isoforms of protein kinase C'%>'% and of mito-
gen-activated protein kinases"'””'%®. Until fairly recently,
the earliest event reported to be affected by n-3 fatty acids
following T-cell activation was the phosphorylation of the
signalling enzyme phosphohpase C-yl which was
decreased by fish oil feeding in rats'*”. This latter effect
was confirmed in a T-cell line exposed to EPA"'? and was
extended to demonstrate further uolzstream events of EPA
on signalling proteins in T-cells"" %112 The earliest event
affected by EPA was reported to be the inhibition of the
anchoring of the protein called linker of activated T-cells
into the plasma membrane'''?. These in vitro studies
identified that the effects of EPA on early signalling events
in T-cells seem to involve the disruption of the formation
of 51gnalhn% Platforms in the plasma membrane termed
lipid rafts"!

Lipid rafts are regions of membranes with a distinct,
characteristic structural composmon(116 D), They are par-
ticularly rich in sphingolipids and cholesterol, and the side
chains of the phospholipids are usually highly enriched in
SFA compared with the surrounding non-raft regions of the
membrane. As a result of the presence of cholesterol and
SFA, lipid rafts are more ordered (‘less fluid’) than the
surrounding (non-raft) portions of the membrane. Cyto-
plasmic proteins that are covalently modified by SFA
(palmitoyl or myristoyl moieties) and cell surface proteins
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that are attached via a glycosyl phosphatidylinositol anchor
are highly concentrated within lipid raft regions. Many
proteins involved in signal transduction, such as Src family
kinases, G proteins, growth factor receptors, mitogen-
activated protein kinases and protein kinase C are pre-
dominantly found in lipid rafts, which appear to act as
s1gnalhng platforms by bringing together (i.e. co-localising)
various signalling components, facilitating their interac-
tion. The importance of rafts has been well demonstrated
with respect to T-lymphocyte responses to activation’' %121
and research now suggests that raft disruption under-
lies the mechanism of action of n-3 fatty acids on
T-cellsM+1512D and  other immune cells®+!'2%!129),
As indicated earlier, cell culture studies have demon-
strated that exposure to EPA modifies raft formation in
T-cells in a way that impairs the intracellular signall-
ing mechanisms in these cells"'®"". Feeding studies
with n-3 fatty acids in mice confirm modifications
of raft structure and function, linked to altered T-cell
responses 24129,

In addition to n-3 fatty acids affecting lipid rafts in
T cells in wa;ls that are linked to functional changes in the

ells 107115124135 “offects on lipid rafts are also relevant
to the influence of n-3 fatty acids on other cells of the
immune system including inflammatory macrophages,
dendritic cells and B-cells. In an earlier section it was
described how Wong et al.®® had demonstrated that
opposing effects of lauric acid and DHA and of LPS and
DHA on responses of macrophages involved differential
effects on lipid raft formation, ultimately linked to the
NF-kB activation cascade. A series of studies has evaluated
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Table 2. Summary of the mechanisms of action of n-3 fatty acids (EPA +DHA) on immune and inflammatory cells

Effect

Mechanism(s) likely to be involved

Decreased production of eicosanoids from arachidonic acid

Increased production of (weakly inflammatory) eicosanoids from EPA
Increased production of inflammation resolving resolvins and protectins

Decreased production of inflammatory cytokines

Decreased leucocyte chemotaxis
Decreased T-cell reactivity

Decreased antigen presentation

Decreased arachidonic acid in membrane phospholipids

Inhibition of arachidonic acid metabolism

Decreased expression of cyclooxygenase-2 gene (via decreased
activation of NF-kB)

Increased EPA in membrane phospholipids

Increased EPA and DHA in membrane phospholipids

Inhibition of arachidonic acid metabolism

Decreased expression of inflammatory cytokine genes (via
decreased activation of NF-«kB)

— Induction and activation of PPARy
— Decreased generation of intracellular signals due to disruption
of membrane lipid rafts

— Activation of GPR120 signalling

Decreased production of some chemoattractants

Decreased expression of chemoattractant receptors

Decreased generation of intracellular signals due to disruption of
membrane lipid rafts

Decreased MHC expression due to disruption of membrane lipid
rafts

the in vitro effects of EPA and DHA and the effect of fish-oil
feeding to mice on raft clustering in B-cells and the func-
tional significance of the effects seen''?*"*Y An in vitro
study using a B-cell line found that DHA, but not EPA,
decreased raft clustering and that this was associated with
increased movement of MHC 1 into rafts(127), although
these findings contrast with earlier observations that DHA
decreased MHC I expression on the surface of B-cells
due to an impairment of trafficking of MHC I from the
endoplasmic reticulum to the Golgi and suppressed B-cell
conjugation with T-cells""?®. Feeding mice diets contain-
ing fish oil resulted in increased CD69 expression on the
surface of stimulated splenic B-cells and increased the
ex vivo production of inflammatory cytokines'**"*?, effects
associated with im]i)aired raft clustering and modifica-
tion of raft size"'**'*”. Most recently Gurzell er al. '3V
reported that feeding colitis-prone mice an n-3 fatty acid
rich diet increased the EPA and DHA content of splenic
B-cells, diminished the clustering of rafts in B-cells and
resulted in larger membrane raft regions. These membrane
effects were associated with enhanced B-cell activation
ex vivo and increased inflammatory cytokine production.
Thus, there are generally similar effects observed with a
B-cell line in vitro''*” and with B-cells after feeding n-3
fatty acids to mice''?* '3V, The observations suggest that
n-3 fatty acids enhance B-cell function and that this may
be due to modulation of structure—function relationships
within the plasma membrane. If this is correct then the
effects of n-3 fatty acids on T-cells and B-cells might be
different, although lipid raft disruption may be involved
in both cases.

Summary and conclusions

Numerous effects of EPA and DHA on functional respon-
ses of cells involved in inflammation and immunity have
been established over the last 40 years. These include
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inhibition of leucocyte chemotaxis, adhesion molecule
expression and leucocyte-endothelial adhesive interactions,
production of eicosanoids such as PG and LT from the n-6
fatty acid arachidonic acid, production of inflammatory
cytokines like TNF and IL-6 and T-cell reactivity and
enhanced phagocytosis (Table 1). These effects have been
interpreted in the context of reducing inflammation that
would lead to benefit in inflammatory conditions, as dis-
cussed elsewhere™®. Fatty acid-induced modifications in
membrane order and in the availability of substrates for
eicosanoid synthesis are long-standing mechanisms that are
considered important in explaining the anti-inflammatory
and immunomodulatory actions of EPA and DHA. More
recently, effects on signal transduction pathways and on
gene expression profiles were identified to play a role.
Over the last 10 years or so, significant advances in
understanding the mechanisms of action of n-3 fatty acids
have been made (Table 2). These include the identification
of new actions of lipid mediators that were already
described and of novel interactions among those mediators
and the description of an entirely new family of lipid
mediators, resolvins and protectins that have anti-inflam-
matory actions and, perhaps more importantly, are critical
to the resolution of inflammation. These mediators may
explain many of the existing actions of EPA and DHA. It is
also recognised that EPA and DHA can inhibit activation of
the prototypical inflammatory transcription factor NF-xB
within classic inflammatory cells such as macrophages.
Recent studies suggest three alternative mechanisms by
which n-3 fatty acids might have this effect: activation of
PPARY which physically interacts with NF-kB preventing
its nuclear translocation; interfering with early membrane
events involved in activation of NF-xB via TLR-4;
action via GPR120 which initiates an anti-inflammatory
signalling cascade that inhibits signalling leading to NF-
KB activation. Within T-cells, as well as other cells of
relevance to immune and inflammatory responses, EPA
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and DHA act to disrupt very early events involving for-
mation of the structures termed lipid rafts which bring
together various proteins to form an effective signalling
platform. The discovery of actions of EPA and DHA on
lipid rafts and on the earliest signalling events in mem-
branes and of a membrane receptor for n-3 fatty acids
(GPR120) will re-focus attention on the membrane as the
key site of action of these important bioactive fatty acids.
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