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Variants of Arnold’s Stability Results
for 2D Euler Equations

Michael Taylor

Abstract. We establish variants of stability estimates in norms somewhat stronger than the H'-norm
under Arnold’s stability hypotheses on steady solutions to the Euler equations for fluid flow on planar
domains.

1 Introduction

Let €2 be a smoothly bounded planar region and let u°(¢,x) be solutions to Euler
equations on R x 2,

(1.1) ou +V,u' =Vq, divu =0, u |09,

with initial data u°(0) = u§. Assume u°(t, x) = u(x) is a smooth, steady solution to
(LI). V. Arnold found conditions on us guaranteeing the stability estimate

(12) ||ME(1') — us”Hl(Q) < CHM(E) — uSHHl(Q)v Vte ]R{,

at least as long as the right side of (L2)) is sufficiently small. The analysis was based
on use of conserved quantities of the form

H(u):/[%|u|2+cp(w)] dA+Zaj/u~dx.
Ly

Q

Here w = rotu and I'; are the connected components of J€). The function ¢ is
obtained as follows. Set w; = rotu, and let 1), denote the stream function of u,
satistying u, = JV1),, where ] represents counterclockwise rotation by 90°. Assume
s = ®(ws), with ® smooth and monotone, and take ¢ such that ©’(A) = ®(\).
We can assume o’ to be linear for A large (positive or negative). It is then possible to
specify a; € R such that u; is a critical point of H. A calculation gives

D*H(ug)(v,v) = /[|V|2 + (rotv)* " (w)] dA,
Q

or equivalently D*H(us) (v, v) = Q(v, v), with

Q(v,v) = ||| + (rot v, ®(w,) rotv) 2.
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For more details, see [1, pp. 89—94] or [9, pp. 106-111].
The form D*H(u;) = Q is positive definite on

(1.3) ViQ) = {v e H'(Q,R?) : divv = 0, |09},
provided
(1.4) ®'(ws) > K >0 on .

On the other hand, D*H (1) is negative definite provided (2 is simply connected,
(1.5) —®'(w) > K >0,

and, for some 6 > 0,

(1.6) V|7 < (K =8| Av[7., V¢ e HX Q) NH(Q).

In either such case, we have

(1.7) [H(u) = H(u)| ~ ||u” — w5,

provided the right side of is sufficiently small, and one has the stability result
(L2). (We mention that JV, = —V 11, as defined in [9, (2.12)], which accounts
for an apparent sign difference between (L.4)—(L.5) and the results stated there.)

Our goal in this paper is to estimate u° (t) —u; in stronger norms, under hypotheses
on u; that imply (I.2). In Section 2 we first establish a stability estimate for ||u°(¢) —
ug]| <, valid for all £, and then a slow growth estimate on || rot u°(t) — rot u|| 1, i.e.,
growth at most linear in |¢|, with rate roughly proportional to ||u§ — u|| g1 (cf. @3)).
We then deduce such a slow growth estimate for u°(¢t) — u;, in the norm of the Zyg-
mund space C1(€), and also in a bmo;-norm. These are slightly weaker than the
C'(Q)-norm, but nevertheless have implications for the flow generated by u°(¢). Go-
ing from estimates in these slightly weaker norms to a C!(£2)-estimate seems to in-
volve a “phase shift” in the stability estimates, which shoot up to exponentially in-
creasing in time, and further shoot up to doubly exponentially increasing for higher
norm estimates. These matters are discussed in Section 3.

One ingredient in the analysis in Section 2 is an estimate similar in flavor to
estimates of Brezis, Gallouet, and Wainger [3,4]. We discuss such variants in Ap-
pendix A.

2 Stability/Slow Growth in Stronger Norms

As in Section 1, we assume that {2 is a smoothly bounded planar region and u; €
C>(£2,R?) is a stationary solution to (L)), satisfying stability hypotheses that lead
to (L.Z). We assume u has additional smoothness, and we desire to obtain long time
estimates on u°(t) — u, in other norms. Let us set w; = rot u, and

V() =ut(t) —us, Vo =up—us, w(t) =rotu(t), Q(t) =w(t) — ws.
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We assume ||u§ — u]|g1 = ||v5 || is small enough that (T2)) holds. This implies
2.1 10 < Collvillm, Ve €R.
We next want to estimate the L>°-norm of +*(¢). We use the following inequality:

Al

1/2 3 £
) 1@l + Ol

(2.2) v ()1 < c(log

This is similar to estimates arising in [3] and [4]. See Appendix A for a discussion of
this estimate. Note that conservation of vorticity implies

1)l < flw ()l + flwsllzes = llwpllzoe + llwsllz=-
Note also that
a\ 1/2 1/2 1\ 1/2
< — < - .
0<ﬁ<a,ﬁ_1:>(logﬂ) B_(loga)+ﬁ+<logﬂ) 8

Hence we have
/2
@3) VOl < C(logAwilli= + fudlii=] ) I

/2
+C|log ) IOl + Clv Ol

LN
12 (0],

provided ||Q°(¢)||> < 1. We now assume Co||vi|;n < e~ '/?, which then fits into
(). Noting that (log %) 1/2)/ /' for0 < y < e7'/2, we deduce that

. 1z
@4) VOl < C(logA |l + llwelli=] ) 5 s
1 1/2
+C(log——) Il
Pl /1

for all ¥ € R, noting that the term C||v*(¢)||2 in (2.3) can be absorbed.

The estimate (2.4) is complementary to but not stronger than (L2)). An advantage
of (Z4) is that it gives us the ability to exploit the vorticity equation d;w° +V sw® = 0
as follows. We have

OV +V, Q= —V,ew,, Q9(0) = wy — wy,
so Q°(t, x) is obtained by integrating — V,:w; along integral curves of J; + V.. Hence

[19° () ||ze < [|Q°(0)||oc +C sup ||V (s)]|re~ - £,
0<s<t

for t > 0, with an analogous estimate for t < 0, so bringing in (2:4) gives the follow-
ing conclusion.
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Proposition 2.1 Under hypotheses such as (L4) or (LA)—-(L8), and assuming the
right side of (L2) is sufficiently small, one has

(2.5) 197 ()]s < |lwg — wsllpee + CK(ug, us)||vglle - |t], * €R,
where
i 1/2 1 1/2
(2.6) K(ug, us) = (logA[Hw()HLoo + ||w5||Loo]> + (log - ) .
+ (EA R

Remark 1. Of course, for large |¢| one has the bound
17|z < [l (®)loe + lwslloe = llwpllee + llwslroe-

The content of (Z5) is that for given (small) 6 > 0, if [|wj — ws|lL== < I, then
[1€2°(2)|| = < 26 for a time interval of length

1) 1 1/2
~c2 o= =l (log ——) "
7 ; s~ alle

To proceed with further estimates on v*(t) = u°(¢) — u;, we use the fact that since
vE(t) € VI(Q) and rot v (t) = Q°(t), we have

(2.7) vV (t) = JVATIQ (1) + PV (1),

where A™! solves the Dirichlet problem and P is the orthogonal projection of
L*(©2,IR?) onto a finite dimensional space of harmonic vector fields in C*(Q, R?),
(cf. [10, Chapter 17, Lemma 3.5]). (P = 0 if Q2 is simply connected.) Given the es-
timate (T2 on ||v*||z1, we have global control on Pv*(¢) in quite strong norms. To
estimate JVA Q¢ (¢) via (2.3), we note the following mapping property of A~

(2.8) ATHILZ(Q) — CL(Q),

where C2(Q) is a Zygmund space; (cf. [10, Chapter 13, Section 9]). Combining (Z.3))-
(Z.8), we have the following.

Proposition 2.2 In the setting of Proposition[2.1]
(2.9) [V Ollcr @) < Cllwg — wsllzee + Cllvg |l + CK (g, us) [vg [l - [2]-

One significant aspect of such an estimate as (2.9)) is the log-Lipschitz modulus of
continuity possessed by elements of CL(Q):

(2.10) [v(x) — v(y)| < Clog

1
lx =yl lvller, |x—yl <=

lx —y| -2

Because of this modulus of continuity, Osgood’s theorem applies to show that the
t-dependent vector field u° () generates a uniquely defined flow, though estimates on
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such a flow are not as good as they would be if the C () estimate could be replaced
by an equally strong C' (£2) estimate. In Section 3 we will obtain C!(£2) estimates, but
the upper bounds will be larger than they are in (2.9).

The work of Chang, Dafni and Stein [5] produces a slightly sharper result than
(2.9). By Theorem 5.8 of that paper,

la] <2 = ED*A™': L°(Q) — bmo(R?),

where for a function f on 2, one sets Ef(x) = f(x) forx € Q, 0 for x € R?\ .
Consequently, (29) is sharpened to

(2.11)  [|EVV (1) |lbmore) < Cllwg — wsl|zee + Cl|vg || + CK (ug, us)||vglm - |2]-

While (2.17)) is stronger than (2.9), it does not yield a modulus of continuity estimate
stronger than (2.10]).

Remark 2. In addition to applicability to results on flows generated by the velocity
field ¢, another advantage of the estimates in Proposition 2.1] over the H 1_estimate
(L2) arises from the following consideration (pointed out by the referee). One does
not have a uniqueness result for weak solutions to the Euler equation (L) with initial
data u§ in V'(Q), defined by (L3). However, under the additional condition that
rot uj belong to L>°(£2), one does have global existence and uniqueness; (cf. 7, 8]).

3 C' and H* Estimates

We desire to complement the estimates in Section 2 on v*(¢t) = u°(¢t) — u, with
estimates in the C! norm and in H* norm. A major ingredient will be estimates in
these norms of u°(¢), given as in (LI). A crucial connection between these estimates
is given by the estimate from [2] of the following type:

e AHuEHPP € €
(3.1) HVu ||Loc SC 1+10gW Hw ||Loc +CHVM ||L2,

established in the context of bounded regions in [10, Section 3, Chapter 17]. As we
have seen, conservation of vorticity gives

(32) o (£)||1~ < C.
A standard attack on estimating || 4 (t) ||y« starts with

d .
(3.3) il = —2(PV e 1,

where P is the Helmholtz projection. Then an integration by parts combined with
Gagliardo—Nirenberg—Moser estimates give

(3.4) [(PV e, 1) | < Cl|u [l |6 || s
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(cf. (3.24) in [10, Chapter 17]. It follows that
d £112 € 112
(3.5) 2 1 e < Cllr el e
Let us set Gi(t) = Huf(t)||§{k. Using (3.0) and we see thatif k > 3,

(3.6) %Gi(t) < C(1+1log" G(t)) Gi(t).
Gronwall’s inequality then yields an estimate

(3.7) e ()| < €, 0 <t
Taking k = 3 and using (30)) and (3.2)) again, we have

(3.8) Vi (£)||p < CeS, 0 <t

Remark 3. The estimates (BI)—(3.8]) are valid for any smooth initial data u°(0,x) =
up(x), not necessarily producing a stationary solution at e = 0.

Now assume (¢, x) = u(x) is a stationary solution satisfying either the hypothe-
ses (L4) or (L.3) and (L.4), so we have estimates on v* = u° — u; and on Q¢ = rotv*
given in (L2)), (Z4), and (Z.5). Parallel to (3.I)), we have

A 1/E 3
9= < (1 +1og M) 1 = + CI T
L()C

Since ||v° ||z < [|u® ]| + || us]| > e can use (B7) to deduce that
1
TV (0) e < C(CeM +10g o ) I ()1 + C[ 7 ()]
|| ||L g ||Qe(t)||Loo || ||L || HLZ

We can insert (2.5)) and (T.2)) into this estimate, to obtain
V9 (1) e < CeCM ( s — wellzee + CK (1S, 1) |[vE |1t - \t|) .

It would be interesting to know whether one could replace the exponential factor e¢/’!
by something smaller. Such estimates are obtained in [6] in a related setting, but with
dissipation (and small forcing) added to (II) (and with 2 replaced by a torus). For

estimates there, dissipation plays a crucial role.

A Discussion of the BGW-type Estimate (2.2)

We discuss the estimate (2.2), i.e.,

Allwllze

lw[]2

1/2
(A1) | e < c(1 +log ) wllzz + Cllu iz,
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and variants, which are similar to estimates arising in [3] and [4]. (The slight dif-
ference in appearance between (2.2]) and (AJ)) can be accounted for by adjusting A.)
Here w € L*°(£2), where €2 is a smoothly bounded planar domain, and w = rotu,
with u € V1(Q), defined by (L3)). One has, as in @.7), u = ] VA~ 'w + Pu, where
A~! solves the Dirichlet problem and P is an orthogonal projection of L*(£2, R?)
onto a finite dimensional space of harmonic vector fields in C>° (€, R?). In particu-
lar, || u||g =~ ||w]||z2 + ||u|| 12, and for any given r € (0, 1), ||u|lcr < Cl|w||re +Clu]|2-
Hence (A1) follows from

Allu||cry 12
]| e < c(1 +log Alle ) [P
[l
given u € H'(Q) N C"(£2), where Q is a smoothly bounded planar domain. Standard
extension maps allow us to work instead on T2.
More generally, working on 1", we claim that

Allulle \ 1=V/p
)l

(A2) ]| e < c(1 +log
(el goor

given 1 < p < oo.
To get this, take U € C§°(R), with ¥(s) = 1 for |s| < 1, 0 for |s| > 2, and write

u=Y(ED)u+ (I — V(ED))u.

There is the elementary estimate ||(I — ¥(eD))ul|1« < Ce"||u

cr. We claim that

H/p.p+

1\ 1=1/p
(43) |¥(Dyufl= < C(log=) Il

[l

Given this, picking € such that " = Hlﬁln C/ L then gives (A2).
The estimate (A.3) is equivalent to

1\ 1=1/p
(A4) |#(EDIAT v < C(log=) (vl

where A = (1 — A)'/2. We have A—v = J, x v where, for 0 < s < n, J, € C*(T"\ 0)
and Ji(x) ~ C|x[*™", |x| < 1. It follows that ¥(¢D)A~*v = K, .v, where

Ces™"  for |x| <e,

Clx|""" for |x| > e.

Ko ()] < {

It then follows that if gs — gn + n = 0,

1
1

1Ks.c |70 < Cells=men 4 / A==l g — C + Clog -.
: €

€
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Note that
n 1 1 1 1
s= -, 7+f:1:>qsfqn+n:nq(ffl+f) =0.
p p q p q
Thus, with g = p’,
—n/p 1\ Y4
[ (eD)A™"Pv|[1e < ||Kyjpelliallvlier < C(log =) Ivlee,
p 3
which yields the asserted estimate (A.4]). The proof of (A.2) is complete.
Acknowledgment Thanks to an anonymous referee for insightful comments.
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