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A CELLULAR CONSTRAINT IN SUPERCOMPACT
HAUSDORFF SPACES

MURRAY G. BELL

1. Introduction. In this paper we prove a cardinal inequality for super-
compact Hausdorff spaces which gives insight into the cellular structure of
such spaces and yields new examples of compact Hausdorff non-supercompact
spaces.

The notion of supercompactness was introduced by J. de Groot in [6]. A
family of sets is linked if every two members have non-empty intersection. A
family of sets is binarv if every linked subcollection has non-empty intersection.
Aspace X is supercom pact if X possesses a binary closed subbase. By Alexander’s
lemma, a supercompact space is compact. Many compact spaces are super-
compact, for example; all compact ordered spaces, all compact metric spaces
[11] and [3] and all compact tree-like spaces [2] and [9]. Moreover, super-
compactness is a productive property. Thus, all Tychonov cubes 7% and all
Cantor cubes 2% are supercompact. Also, every space has many supercompact
extensions, known as superextensions—see A. Verbeek's book [12].

J. de Groot had asked whether all compact ITausdorff spaces were super-
compact (at the times, A. Verbeek had an example of a compact 7 non-
supercompact space). It is now known that there are numerous compact
[Tausdorff non-supercompact spaces. The author [1] has shown that for X
non-pseudocompact, 8X is non-supercompact. The following two results were
subsequently established in [4].

[A] (J. van NMill). Let X be « supercompact Hausdorl space. If ¥V 1s « con-
Linitous 1image of a closed neighbourhood retract of X, then for «ll countably infinite
subsels Koof ¥, all but countably many cluster points of K are the limit of some
non-trivial sequence in Y (not necessarily in K).

{B] (E. van Douwen). Let X be « supercompact Hausdorff space. Then, no
continious image of « closed neighbourhood retract of X 1s homeomorphic to any
compactification of « «k-Cantor tree (cf. \. E. Rudin [10]) where o < « = c.

J.van Mill used [A] to give a different proof that X supercompact implies X
pseudocompact, furthermore he showed that an infinite supercompact Haus-
dorff space has a non-trivial convergent sequence. I£. van Douwen used [B] to
construct a compact FHausdorfl non-supercompact space of cardinality w; and
a compact IHausdorff non-supercompact first countable space of cardinality c.
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All spaces considered are completely regular, infinite and Ilausdorfl. N
denotes the countably infinite discrete space and BX denotes the Cech-Stone
compactification of X. The weight of a space, w(X), is the least cardinal of an
open base for X. The cellulurity of a space X, ¢(X), is the supremum of |%],
where & is a disjoint collection of open sets of X. The density of a space X,
d(X), is the least cardinal of a dense subspace of X. The spread of a space X,
s(X), is the supremum of |D|, where D is a discrete subspace of X. For a
cardinal «, " denotes the smallest cardinal larger than . w is the first infinite
ordinal, w; is the first uncountable ordinal and ¢ is the cardinality of the
continuuni.

2. Cellularity in supercompact spaces.

2.1 Leanis. Let X be « subspace of weight x of a space V. Let {1, a < k7
VU a < xt} be open sets of YV such that

(1) Fora < 8 < «t, Cly Vo M Cly Vs is a compact set of X.

(2) Fora < «-, Cly 1, C Us.
Then, there exists {U,:n = 0} C { Uy o < &7} (relabelled for convenience) such
that sup {m: U, contuins «ll 2-fold intersections of m Cly17)s, n = 1} = w.

Proof. Let & be an open hase for X, closed under finite unions, of cardinality
k. Fora < 8 < «T, choose Bys € & such that

ClyVa N Cly Ve © Bag © Ua M Us.

For2 £ m < w,define D,, = {a < «': U, contains all 2-fold intersections of m

other Cly Vy's}. Tt suffices to show that for cach m 2 2, |le < k':a € D,}| =
k. For then, just choose 0 ¢ M {D,: m = 2} and the corresponding finite
collections to make up the U,’s for n = 1. To this end, the proof for D; is
given, the general case is identical only longer.

Assume Iy = {a < &7 a € D3} has cardinality x*. Choose @ I’y and con-
sider {Bus: 8 € I'y — {a}}. There exists Iy C Iy — {a}, |I'1] = «F, such that for
distinct 8 and vy in I}, Bz = Bay. Choose 8 - [ and consider {Bg,: v & I} —
{81}. There exists I's & I'y — {B}, || = &', such that for distinct y and & in I7,
Bg, = Bgs. Choose distinct y and § from .. Then

(CL VN CLT) U (CleVa N CLT) U (Cl T A CL L)
C Bas N Bay M By, C Us.

Hence 8 € Dj, a contradiction. Consequently, |Fol £ «.

Remark. At this point, let us note that if % is a binary closed subbase for X,
then without loss of generality, we may assume that.% is closed under finite
intersections. Also, a collection .%, closed under finite intersections, of closed
subsets of a compact space, is a closed subbase if and only if for each closed set
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C contained in an open set U, there exists a finite subcollection . # of . such
that C C U% C U.

Here 1s our main result.

2.2 TuroreM. Let X be « supercompact Hausdor(f space and let { be a con-
Hnnous mapping from an open set O of X onto « compact Hausdorff spuce Y. I}
there exists « compact subset K of O such that f(K) = Y, then for all dense subsels
Dof Vie(V — D) £ w(D).

Proof. Let . be a binary closed subbase for X that is closed under finite
intersections. Assume w(D) = « and choose a dense subset I£ of D with || <
x. Striving for a contradiction, assume ¢(¥ — D) > «. Let {Co: « < x7} be a
family of disjoint non-empty open subsets of ' — D. Pick 2, ¢ (, and since
V' is regular, choose an open set 117, of V such that 2, < I, and Cly+ W, M
(Y — D) C (,. Again using the regularity of 1, find IZ, C I and open sets
1’ and U, of 1" such that

Po ¢ Clyley, © 1, C Clyl, © U, € ClyU, © .

IFor cach ¢ © [£, choose an ¢ in K such that f(¢) = ¢. Choose
Go C Clgle: e & Eb — (fIK)~Y(D).

This 1s possible because fIK is a closed map onto Y and (Clyls, — D) # 0.
By continuity of f|K,

Go © Clgle: e © E C ([IK)"Y(ClyE,) C (1),

Notice that Clgfe: e & I, is a closed set of X contained in the open set
J7H(17,) of X, Using the fact that.% is a subbase for X, get S, ¢ .% such that
Se T /7T and qo & Clglfe: e ¢ o M So]. Let Fy = je © Fqooe & Sa.
Therefore, (g.) = Cly I, M (V' — D). Since |E| £ « and there are % o's,
without loss of generality we may assume there exists x ¢ [Nacyr I and thus
T C Nacnr Sae

Fora < 3 < «7, Cly 1, M Cly T is a compact subset of D, for if not, then

it would meet V' — D which is impossible since C, M C3 = 0. It follows from
Lemma 2.1. that there exists {U,: n = 0} C {U,: a« < «*} such that sup
{m: Uy contains all 2-fold intersections of m Cly17,’s, n = 1} = w. Because

ClyWo N L>)1 [Clyl, N (Y — D)] =9,
there exists U open in Y such that
UNClyWy=0 and U [ClyF, U (Y — D)]C U.
nz=1

Notice that
Clyif(g):n = 1} C ClyU C Cly (Y — Cly W)
CY—-W,CY—ClyU,.
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Therefore,
Cle{ge:n 2 1} C (K)"1Clylf(g,): n = 1} S (Y — ClyUy).

[Hence, there exists {7;: 1 <1 £ k} C.% with
k

Clelgen =21} © U 7, S [TV = ClyUy).
i—1

Choose k£ + 1 Cly17,'s such that U, contains all 2-fold intersections of the
Cly17s. By the pigeon hole principle, there exist # # mandan1 £ 7 £ &
such that {g,, ¢.} S 7" and CI, 17, N Cly 17, C U,.

The Contradiction. }S,,S,,, 1} is linked yet has empty intersection. & € .S, M
Sy @n € S, M Ty and g, € S, N T However,

Sn m Sm m Y‘i gfw1<17n) (’\f—l(lfm) [\f~l(Y - Cl)'Uf))
C UV, NV, (Y — ClyUy)] = 0.

In particular, if ¥'is a closed neighbourhood retract of X, a continuous image
of a closed neighbourhood retract of X, a closed neighbourhood retract of a
continuous image of a closed neighbourhood retract of X, etc., there exist a
mapping f, an open set O and a compact set K such that the hypotheses of the
theorem hold. Notice that [B] is a consequence of Theorem 2.2, since any
compactification X of a x-Cantor tree (w < x = ¢) is a compactification of N
with ¢(X — V) > w while w(N) = w. Both [A] and Theorem 2.2. show that
for X non-pseudocompact, neither X nor X — X (when X is locally com-
pact) are supercompact, since it is easy to show that in this case both X and
BX — X contain a neighbourhood retract homeomorphic to BN and ¢ (BN — N)
> w(N). Wenowgive twoexamples to illustrate the sharpness of the inequality.

2.3. Example. In the theorem, cellularity cannot be replaced by spread.
J. van Nill [8] has shown (in particular) that there exists a supercompactifi-
cation yN of N such that yN — N = 2° Since 2¢ contains a copy of BN,
s(2¢) = ¢. Hence, s(yN — N) € w(N).

2.4, Example. In the theorem, weight cannot be replaced by density. Let
BN be a copy of BN in 2% Let D = N U (2¢ — gN). Then D is open in 2°¢ and
therefore separable, i.e., d(D) = w. llowever, ¢(2¢ — D) = ¢(BN — N) = c.
Hence, ¢(2° — D) € d(D).

Our concern now is to display numerous examples of compact Hausdorff
non-supercompact spaces which are not covered by [A] or [B]. They will all
be first countable compactifications of N, vV, such that yN — N is connected
and locally connected. We use the following result of . van Douwen and
T. C. Pryzymusinski [5].

[C] Let B be an open base for « compact Hausdorff space V with |Z| < «,
VeBand® ¢ B. Assume there is « function h: B — P (N) such that
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(0) II(Y) = fV;

(1) (B) is infinite for B ¢ X ;

(2)if A, B ¢ & aredisjoint, h(4) N h(B) is finite;

(3) i A ¢ J and if F C X is finite, and if A C \JF, then h(4d) —
U ’]l(B) B C.F ) is finile.
Then there 1s a Huzzsdolﬁ com pactification yN of N such that yN — N and Y are
homeomorphic. Furthermore yN 1is first countable if 'V is first countadle.

Indeed, as the authors show, the family {B\U (k(B) — I): B ¢ #,I' T N
finite} U {{n}: n ¢ N} is an open hase for the required topology on v/
WAV

= N
N =

We make use of the following general construction. Let f: X — ¥ where X
and YV are 77 spaces. Define Xf1 to be the space with underlying set X X 1
and topology as follows: Basic open neighbourhoods of (x,vy) where
v 5% f(x) are of the form {x} X (U, — {f(x)}) where U, is an open neighbour-
hood of y in 1. Basic open neighbourhoods of (x, f(x)) are of the form [ (U, —
b)) X T U [ixt X Upn] where U,(Uysey) is an open neighbourhood of
v(f(x)) in X (V). XfVisa 15 space. Properties that XfV inherits from both X
and Y include compactness, IHausdorffness, connectedness, local connectedness
and first countability. Furthermore, the following cardinal equalities hold if

c(XfY) = |X]- (V) and w(XfY) = |X]| - w(X) - w(Y).

Recall that a space X is sequentially separable if it has a countable dense
subset D such that every point of X is the limit of some convergent sequence
of points from D.

2.4. ProrositioN. Let X be an infinile sequentially separable compact Haats-
dor(] spuce wilh no isolated points und Y be « separable compuct Hausdor(l space
with no isoluted poinls. Then, there exists « Hausdor[] compactification of N,
YN, such that yN — N and XfY are homeomorphic (for uny f).

Proof. Let % be a base for X with |%| £ ¢, 0-¢ % and " be a base for ¥

with |77 < ¢, 8 ¢ v°. Since X is sequentially separable, note that |X| = c.
Define

B ={{x}] X (1T ={fx)}:x € X, VC¥} and
By ={[(U—- &) X YU s} X V]:x ¢ U X and
fx) e Vet
Let B = #,\J %A, U [XfV}. # is a base for the open sets of XfV with
4| < ¢. Let D be a countable dense subset of X rendering X sequentially

separable and £ be a countable dense subset of V. Let ¢: N — D Dbe a bijec-
tion. IFor each x € X choose a non-trivial sequence {(1]" k < w} € D such that

(d;*) converges to x. Consider N, = {n: g(n) € {d": k < o}}. { N x € X}
is an almost disjoint family. For each v € X, let g,: N, — I be a buectxon.
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Forx € X and VV € ¢ define
h(fx} X (17 = {f(x)})) = {n:n € Nyand g.(n) € EN TV},
Forx € U€ % and f(x) € 17 € ¢+ define

EUU = {«}) X YIU [{a} X V]) ={n:n ¢ N,and g(n) € DN U}
Uin:n € Nyand g,(n) € EN VI,

Define #(XfY) = N. It is now a straightforward exercise that i: & — Z(N)
satisfies all the hypotheses of [C] and thus there exists a compactification of IV,
vN, such that yN — N and XfY are homeomorphic.

Hence if X and V are infinite Peano spaces (compact, connected, locally
connected metrizable spaces) and f: X — V is an arbitrary correspondence,
then yN where yN — N = X[V is an example of a compact Hausdorff first
countable non-supercompact (since ¢(XfV) = ¢) space.

We remark that two further examples can be found in the theory of lexi-
cographic order. Consider the long line and the lexicographic ordered square
(cf. S. Willard [14]). Both have cellularity > o and both are remainders of N
in some compactification. These compactifications are not supercompact.

Supercompactness is not preserved in closed subspaces —witness SN in /¢—
and it is unknown whether it is preserved by continuous maps with Hausdorff
range; moreover, it is unknown if X' X X supercompact implies X is super-
compact.

3. Supercompactness in the Vietoris topology. Our attention is now
diverted to the exponential or finite topology of Vietoris [13]. The author would
like to thank A. Arhangel’skii for his motivation in this direction. An excellent
background on the Vietoris topology can be found in IZ. Michael's paper [7].
For a space X, Exp (X) denotes the collection of all nonvoid closed subsets of
X. Let

(Uy, ..., Uy =1{FecExp (X): F CU{U:1 =1 = n}and for each
L<i<n O U, #0).

Then {{(Uy, ..., U,):for1 =i =< n, U,isopen in X} serves as a base for the
open sets of Exp (X). For 4 C X, let Exp (d) = {I ¢ Exp (X): I' C A4}.
Then Exp (4) is open (closed) in Exp (X) if A is open (closed) in X. In [7],
E. Michael has shown that Exp (X) is compact lausdorft if and only if X is
compact Hausdorff.

Let X be compact Hausdorff and let f be a continuous mapping from an
open subspace O of X onto a compact Ilausdorff space Y. Consider Exp (0O)
as a subspace of Exp (X). Then the map f Exp (0O) — Exp (V) defined by
f(F) = {f(x): x € I} is continuous. Furthermore, if K is a compact subset of O
and f maps K onto ¥, then f maps Exp (K) onto Exp (V).
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3.1. ProvosimioxN. Let Exp (X) be a supercompact Hausdor[ space and let [
be « conlinious mapping from an open set O of X onto « compact Hausdor(f space
Vo If there exists « compact subsel K of O such that f(K) = Y, then for «ll dense
subsels Dof Y, c(Y — D) £ w(D).

Proof. I,ctf': Exp (0) — Exp (V) be as above. Assume D is a dense subspace
of ¥ and define (D) = }all compact subsets of D}. Then % (D) is dense in
Exp (V). :\lso,k?‘(lixp (K)) = Exp (Y). Ience, by Theorem 2.2., ¢(Exp (V) —
C(D)) £ w(?(D)). llowever, ¢(}V — D) £ ¢(Exp (V) — Z(D)). To see
this, note that if % is a collection of open sets of ¥ such that {U M (¥ — D):
U DY is cellularin 1 — D, then {Exp (U): U ¢ 1} is a collection of open
sets of BExp (1) such that {Exp (U) M (Exp (V) — % (D)): U < Y} is cellu-
lar in Exp (V) — Z(D). Also, if % is an open base for D, closed under finite
unions, of cardinality w(D), then

Loty (ClLyBy), .o Inty (CLyB))Y N F (DY By, . .., B € D)

is an open base for 4 (D) of cardinality w(D). llence w (% (D)) = w(D).
Consequently, ¢(V — D) £ w(D).

It now follows that spaces like Exp (BN), Exp (BN — N) and Exp (yN)
(where vV — N is the long line) are non-supercompact. A relevant open
question at this point is whether the supercompactness of X is equivalent to
the supercompactness of Exp (X).
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