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1. Introduction. A collection of n + 1 convex subsets of a Euclidean 
space E will be called an n-set in E provided each n of the sets have a common 
interior point although the intersection of all n + 1 interiors is empty. It is 
well-known that if {C0, d\ is a 1-set, then Co and G can be separated by a 
hyperplane. In the present note this result is generalized (Theorem I) by 
showing that if {Co, . . . , Cn\ is an n-set in E, then there is a variety V of 
deficiency n'mE such that F intersects no set1 Int d although in each direction 
away from V, V has a translate which intersects some set Int d. This theorem 
is then used to prove the converse (Theorem II) of Horn's recent generalization 
[2] of Helly's theorem [1] on the intersection of convex sets. The method of 
proof is essentially an elaboration of that of [3] and [4]. All theorems are 
stated only for a finite-dimensional Euclidean space £ , although most of the 
proofs apply in rather general linear spaces. 

2. A preliminary result. The following result will be useful in the sequel. 

(2.1) Suppose that Co, . . . , Cn are closed convex subsets of E, each n of which 
have a point in common, and that VJQC* is convex. Then there is a point in 
common to all the d's. 

Proof. We may assume without loss of generality that all the Ci s are 
compact. For n — 0 the theorem is trivial. Now suppose it holds for n = k — 1 
and consider the case n = k. If C^Ci = A then Co and P = C\\Ci are dis­
joint compact convex sets, so they can be separated by a hyperplane H dis­
joint from both of them. Let C» = Ci C\ H(l ^ i ^ k). For an arbitrary 
integer j between 1 and k let X = H Ci (1 ^ i ^ ky i 9e j). Since each k 
of the Ci s have a point in common, X intersects Co. And since furthermore 
P C. X, X must intersect H and hence H C j ^ A (1 ^ i ^ k, i ^ j). But 
UiC ' t is convex, so it follows from the inductive hypothesis that C\\C'» ^ A. 
Since this contradicts the fact that P C\ H = A, the proof is complete. 

This remark may also be of interest. 

(2.2) Suppose that T is a collection of closed convex subsets of E such that 
(i) either T is finite or some set in T is compact ; 

(ii) every finite subcollection of T has either a convex union or a non-empty 
intersection. 

Then there is a point in common to all sets of Y. 
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Proof. We need merely show that F has the finite intersection property, 
and this follows easily by an inductive argument which uses (2.1). 

3. The "separation theorem" for n-sets. Let be points of 
E\ then [x0, X\, . . . , xn] will denote the convex hull of the set {x0, Xi, . . . , xn}, 
and [xo, X\, . . . , xn] = [xo, Xi, . . . , xn] — {#o}, etc. (The sign — is used for 
both set and vector differences, since in each case the meaning is clear from the 
context; + is used for vector sum; KJ for set union.) 

The proof of Theorem I is effected by means of two lemmas, the first of 
which is the following: 

(3.1) 7/ { Co, . . . , Cn] is an n-set in E, then there are convex sets Ki D Ci such 
that [Ko, . . . , Kn\ is an n-set which covers E. 

Proof. We will show that if x is an arbitrary point of E then there are 
convex sets C % ~D d such that {Co, . . . , C'i} is an w-set and, in addition, 
x G W oC»; (3.1) follows from this fact by a straightforward application of 
Zorn's lemma. 

For 0 ^ j ^ n, Dj = C\ iytjlnt Cz. If for some j we cannot have dyG 
(CJ, x), with dj£Dj and Cj^Cj, then we merely let Cj be the convex hull of 
Cj \J {x}, Ci = Ci for i 7± j , and the sets C» will have the desired properties. 
Suppose this is not the case; that is, that there are points do, . . . , dn, Co, . . . , cn 

such that for 0 ^ i ^ n, d G Ci, and d* 6 P>% C\ (ciy x). For each j let X,- = 
(CJ, do, . . . , <iy_i, ^y+i, . . . , dn). Then Xy C Int Cj. But by use of Cramer's 
rule it can be shown that all the X / s have a point in common and hence that 
Ho ln t d 9e A, which is a contradiction, completing the proof of (3.1). 

A linear subset of E is called a subspace, and each translate of a subspace is a 
variety. The deficiency in £ of a subspace (and of its translates) is the dimension 
of a subspace complementary to it. 

(3.2) Suppose that {KQ, . . . , Kn\ is an n-set which covers E and that V = 
C\oKi. Then V = E — \JQ Int Ki, and is a variety of deficiency n in E. 

Proof. Let W = E - KJQ Int Kt and (for each j) Try = f\vy Int K{. 
From (2.1) we see that V is non-empty. We show first that V C.W. For if 
not, there is a point p and an integer j such that p G V C\ Int Kj. Let çG 717. 
Then, since for each i 9^ j we have p G Ki and $ G Int Ki, (p, q) C ?ry. But 
also p G Int Kj, so (£, g) intersects Int Kj and P\3 Int Ki 9^ A, which is a 
contradiction. 

To see that W C V, let 3/ G FT and 2 G TJ for some 7. Consider an arbitrary 
point x such that y G (x, z). If, for any i 9^ j , x G i£*, then we have 3/ G Int 
Ki, which contradicts the fact that y £ W. Hence x G Kj. Thus we have 
shown that y G i£;- for each j , and consequently 3/ G F. Since W (Z V and 
7 C ïF, F = IF. 

Obviously F is convex. To prove that it is actually a variety we must 
show that if y G V, z G V, and y G (#, 2), then x G F. But if x non G 7, 
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then (since V = W) x G Int Kj for some j and hence y G Int Kj, which con­
tradicts the fact that y G W. Hence F is a variety and it remains only to 
show that the deficiency of F in £ is n. 

We assume without loss of generality that V contains the origin. Let 5 
be a subspace of E complementary to V. Each point x of E has a unique 
expression in the form vx+x* where vx£V and x* G S. From the fact that V=W 
it follows that no translate of F other than F itself can intersect all the sets 
K{. This in turn implies that {i£*o, K*i, . . . , K*n} is an w-set in S. Now 
Helly's theorem applies to an arbitrary finite collection of convex sets even 
though they may not be compact, so we can conclude that S is at least n-
dimensional. 

If pi G Ti for each i then the variety U determined by {p0, . . . , pn] is 
^-dimensional. Let x be an arbitrary point of E. For a sufficiently small 
positive t we have pi + tx G iri for each i. Now for each i let Kil = Ki 
r\(U + tx). {Ko\ KI\ . . . , Kn1} is an n-set in U + tx, so F must intersect 
U + tx. From this it follows that F must intersect every translate of U, and 
hence that the deficiency of F in £ is no greater than n. This completes the 
proof of (3.2). 

THEOREM I. 7/ {Co, . . . , Cn} is an n-set in £ , then there is a variety V of 
deficiency n in E such that 

(a) V intersects no set Int C»; 
(b) if V is any variety of deficiency n — 1 which contains V, and H is either 

of the half-spaces into which V separates V, then H intersects some set Int d. 

Proof. Let the KJs be as in (3.1) and Fas in (3.2). For each j let Zj G Dj = 
C\i^jCi and let S be the variety determined by {z0, . . . , zn}. S is a variety 
which is intersected by F in a single point P , and <r = [z0j . . . , zn] is an n-
simplex whose boundary (relative to S) is contained in the union of the C/s. 
In fact, if Fj is the face determined by {zi\i ^ j}, then Fj C Int Cy. Now if 
V is a variety of deficiency n — 1 (in E) which contains F, then V intersects 
5 in a line through P. Hence to prove Theorem I we need merely show that 
P G a. But if P non G c then for some j there is a point q G Fj such that 
either q G (P, zy) or sy G (5, P ) . In the first case this implies that P G TTJ, in 
the second that Zj G Int Cy, so in either case that CSQ Int d ^ A, which is a 
contradiction, completing the proof. 

4. Horn's generalization of Helly's theorem. 

THEOREM II. Suppose that Y is a collection of compact convex subsets of E. 
Then the following statements are equivalent : 

(i) every n members of T have a point in common ; 
(ii) each variety of deficiency n in E is contained in a variety of deficiency 

n — 1 which intersects every member of V ; 
(iii) each variety of deficiency n — 1 has a translate which intersects every 

member of V. 
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Proof. That (i) implies (ii) is Horn's Theorem 4 [2; p. 928]. This (and that 
(i) implies (hi)) can also be proved by an argument which, like the proof of 
(2.1) above, leans heavily on the separation theorem and closely resembles 
Helly's proof [1] of his theorem. 

To see that (ii) implies (iii), consider an arbitrary variety V of deficiency 
n — 1 in E. We assume without loss of generality that V contains the origin. 
Now let 5 be a subspace of V, of deficiency 1 in F, and let p Ç V—S. It follows 
from (ii) that for each integer k there is a variety Vk of deficiency n — 1 in E 
such that S + kp C Vk and Vk intersects all the members of Y Now the 
sequence of sets V\, F2, . . . , must have a convergent subsequence [5, pp. 10-12] ; 
say lim Vn{ = W. Since the members of Y are compact, W intersects each 

J-»00 

member of T, and it follows by a simple argument that IF is a translate of F. 
Thus (ii) implies (iii). 

To complete the proof of Theorem II we show that if (i) is false, then so is 
(iii). For if (i) is false then for some m < n there are sets Bo, . . . , Bm in Y and 
open convex sets d D Bi such that {Co, . . . , Cm\ is an m-set. Let F be the 
variety of Theorem I. Then F is of deficiency m ^ n and intersects no set 
Int Ci. We assume without loss of generality that F contains the origin. 
Now consider an arbitrary translate F + x of F (for x non Ç F). For some 
/ > 0, F — tx intersects some set Int Cj. But then if F + x intersects Bj, V 
must intersect Int Cy, which is a contradiction. Hence F + x does not inter­
sect all the sets Bi, and the proof is complete. 
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