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Abstract. The amplitude-time lag ("A A-At") relation is considered in order to describe be-
haviour of the emission-line spectrum of an active galactic nucleus during a separate active event. 
Here AA, called the amplitude, is the maximum relative increment of the flux in a line, and At is 
the time lag between the maximum of the ionizing continuum flare and the maximum of the flare 
in a Une. As suggested by Shevchenko (1988), the construction and analysis of such relations can 
be used to discriminate between broad-line region models. Comparison of theoretical "AA-At" 
relations with the observed one composed by data for flares in various Hnes during a separate 
active event, is proved to be a useful tool for investigating the geometry of a broad-line region, 
for studies of the form of phase functions of a typical line-emitting cloud in various Hnes, as 
well as for clearing up the duration and amplitude of the initial flare in the ionizing continuum. 
The advantage of this method is that it utiHzes the most general observed characteristics of the 
emission-line flares and nevertheless provides basic information on the allowed BLR models before 
the detailed modelling of emission-line Hght curves is performed. 

1. Introduction 

Since the discovery of rapid emission-Hne variabüity of A G N in emission lines (Lyu-

tyj and Cherepashchuk, 1971; Cherepashchuk and Lyutyj, 1973), this phenomenon 

has been extensively studied (cf. review by Peterson, 1993). It has been usuaUy 

analyzed in the framework of the "reverberation mapping" approach, introduced 

by Blandford and McKee (1982). This technique requires detailed information on 

emission-Hne Hght curves. A supplementary approach consists in an attempt of 

interpretation of basic characteristics of emission-Hne variations such as time lags 

and ampHtudes (Shevchenko, 1984, 1985a, 1988). Here the interrelation between 

these characteristics is discussed. 

2. The model of a B L R and the phase functions 

Hereafter the standard picture of a broad-line region is adopted, according to which 

the BLR is an aggregate of a large number of Hne-emitting clouds surrounding 

the central source of ionizing radiation; the Hne emission of an individual cloud 

responds to continuum variations instantaneously as compared to the Hght-crossing 

time of the BLR (cf. e.g. the review by Peterson, 1993). The duration of the ionizing 

flare is assumed to be much less than that of the accompanying Hne variation, i.e. 

the whole analysis is performed in a flare approximation. The dependence of the 

luminosity of a BLR cloud in a Hne upon the incident ionizing flux is represented 
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by the power law L ex F8 (s > 0); the index of this power law is referred to as "the 
parameter s". 

Let us specify the form of phase functions defining how the flux in a line re-
ceived by a distant observer from an individual cloud depends on the cloud phase 
angle. These functions are important because the anisotropy of line emission, upon 
which a typical cloud emits mainly from the side iUuininated by the ionizing source, 
represents a necessary condition for a time lag to occur in case of a spherically sym-
metric BLR, if one adopts the flare approximation (Shevchenko, 1984). Hereafter 
the time lag of the maximum of a line variation is implied. Assume that the sur-
face of the cloud emits in a line orthotropically, and the dependence of the line 
luminosity of the surface element on the incident ionizing flux is described by the 
power law l oc f8. First let the cloud represent a flat "pancake" orthogonal to the 
direction to the ionizing source. Then the phase function has the form 

where θ is the angle between the ionizing source and the observer as seen 
from the cloud. Consider next the case of a spherical cloud under the same as-
sumptions. A close approximation to the phase function of a sphere, according to 
Shevchenko (1985b), is as follows 

The simplest possible model of cloud distribution is the homogeneous one; it turns 

out to be very illuminâting. Define a = ση = const, where σ is the mean section 

of a typical cloud in the plane orthogonal to the ionizing source direction, and η 

is the number of clouds in a unit volume. The BLR radius in the homogeneous 

model is nothing but the radius of the illuminated domain, confined by cloud 

shadowing. This radius R is of order a " 1 , hereafter we adopt R = a~l. The general 

covering factor formally equals to unity, but due to large velocities of clouds the 

line photons may freely escape from the BLR. Formally this model is equivalent to 

a non-homogeneous one with no cloud shadowing (zero covering factor), but with 

an exponential cut-off in radial distribution of clouds. 

According to Shevchenko (1985a, 1988), if there is a central cavity of radius Ro 

in the homogeneous cloud aggregate, the time lags are described by the relation 

oc cos θ + I cos θ I, (1) 

(2) 

valid on the interval 0 < s < 2. 

3. The t ime lag-parameter s relation 

W(l - s ) / a c , if 0 < s < 1 - 2aR0/W 

2R0/c, if s > 1 - 2aR0/W, (3) 

where W is a constant, which in case of phase functions (1) or (2) has corre-

sponding values W = 3 . 1 9 o r W = 2 ; c i s the speed of light. 
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Define a mean harmonic radius of the BLR in a line as (R)h = ( τ * - 1 ) " , where 
luminosity of a cloud in the line L oc r~2s corrected for the local covering factor is 
used as a weight function. In the homogeneous model 

(R)h = 2(1-s)/a = 2(1-s)R, (4) 

where 0 < s < 1 (Shevchenko, 1985a). Then At = W(R)h/2c, i.e. the time lag 
is directly proportional to the mean harmonic size. Differences in time lags are 
often taken as an evidence for a "stratification" of the BLR in multiple regions 
emitting in different lines. Eq. (4) clearly demonstrates that this stratification is 
irrelevant to matter distribution. 

4. The amplitude—time lag relation 

Define the amplitude of a flare in a Une as the maximum relative increment of 
the observed flux: A A = AFm8LX/F. In case of the model with a central cavity of 
radius Ro, if one adopts phase function (2 ) , the A A dependence on s is as follows 

m ^ ^ ^ c ( s ) ( ( l + AAC)
S - 1) dr, if 0 < s < 1 - χ 

( 5 + 6 ) ( * - 1 ) ( 2 β - 1 ) ( x ( 2 ~ S ~ Χ) + Γ(3-2* ,χ ) ( 5 ) 

x(x-s + l i ^ ) ) ( ( l + AAcy-l)dr, if l - x < s < 1-dr, 

AA = 

where AAC = AFC/ Fc is the fractional amplitude of the flare in the ionizing con-

tinuum, dr = acdt/2 = c dt/2R is the duration of the continuum flare measured in 

light-crossing times of the BLR; 0.95 < c(s) < 1 for 0 < s < 1; χ = aRo — Ro/Ris 

the radius of the cavity measured in units of the characteristic radius of the BLR. 

On the reason that the duration of the ionizing flare fixes the time resolution of 

time lags, Eq. (5) is applicable if s < 1 — dr. 

Eqs (3) and (5) parametrically define the amplitude-time lag dependence. It is 

generally in accordance with observational data, presented by Cherepashchuk and 

Lyutyj (1973), Antonucci and Cohen (1983), Ulrich et al. (1984), Peterson (1993), 

as the amplitudes in lines are predicted to be much smaller than that in the 

continuum, and are expected to decrease with the time lag value. 

For realistic values of dr > 0.1 (accordingly s < 0.9) the homogeneous model 

and the model with a cavity for even high values of χ (say, equal to 0.5) differ very 

slightly, by some percent s, in the predicted amplitudes. Therefore one can hardly 

expect that any information on the amplitudes solely can say much about radial 

structure of the BLR. The "AA-At" diagram is much more informative in this 

respect. According to Eq. (3 ) , if the cavity exists, the lags smaller than some value 

constant for all lines emitted anisotropically cannot be observed, and therefore the 

diagram is strongly sensitive to deviations in radial structure. 

The ratio of amplitudes predicted for phase functions (1) and (2) in the homo-

geneous model , according to Shevchenko (1988), is confined between 0.72 and 0.88 
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for allowed values of s, i.e. the amplitudes are slightly affected by the choice of 

the phase function. The time lags are again better indicators, as they differ by 

1.6 times (see Eq. ( 3 ) ) . Therefore the "AA-At" dependence can still be used to 

discern between various forms of phase functions. 

The amplitude in a line for the BLR in a general standard model (described in 

Section (2) ) in the flare approximation can be represented as 

AA = f(s)AAq8cdt/D, (6) 

where function f(s) is shaped by the BLR geometrical structure as well as the 

form of cloud phase functions, and normally depends on s weakly and is of order of 

unity; AAq8 = (1 + AAC)
8 — 1 is the amplitude corresponding to the quasistationary 

state, for which the continuum variations are much longer in duration than the 

light-crossing time of the BLR; D is the diameter of the BLR. Thus the amplitudes 

in lines are determined mainly by the amplitude and duration of the flare in the 

continuum and by the size of the BLR, and therefore can be used to estimate them. 

The amplitudes of line variations in the flare approximation are less than in 

the quasistationary case by factor cdt/D. This marked difference indicates that 

the values of the parameter s cannot be derived by means of application of the 

quasistationary law to rapid events, whether the procedure of displacement of a 

line light curve on the value of the time lag is utilized or not. Application of 

this law is self-consistent on the time scale of slow variability, i.e., according to 

Lyutyj (1977), on the time scale of years. 

5 . Conclusions 

Consideration of the amplitude-time lag dependence may often be helpful on the 

reason that, along the amplitude axis, it is strongly sensitive to the parameters of 

the continuum flare as well as to the size of the BLR, and, along the time lag axis, 

it is affected by the BLR geometrical structure and the form of phase functions 

of the BLR clouds. Therefore this diagram can provide basic information on the 

allowed B L R models before the detailed modelling of light curves is accomplished. 
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