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Abstract

We study the optimal proportional reinsurance and investment problem in a general
jump-diffusion financial market. Assuming that the insurer’s surplus process follows
a jump-diffusion process, the insurer can purchase proportional reinsurance from the
reinsurer and invest in a risk-free asset and a risky asset, whose price is modelled by
a general jump-diffusion process. The insurance company wishes to maximize the
expected exponential utility of the terminal wealth. By using techniques of stochastic
control theory, closed-form expressions for the value function and optimal strategy are
obtained. A Monte Carlo simulation is conducted to illustrate that the closed-form
expressions we derived are indeed the optimal strategies, and some numerical examples
are presented to analyse the impact of model parameters on the optimal strategies.
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1. Introduction

Since insurers can control their risk by investing their surpluses in financial markets
and purchasing reinsurance, optimal investment or optimal reinsurance problems with
various objectives have become more important in insurance risk management, and
they have gained much interest in the actuarial literature. For example, Azcue and
Muler [1], Hipp and Plum [13], Schmidli [22, 23], Liu and Yang [17], Promislow and
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Young [20] and Luo et al. [18] studied the optimal investment or reinsurance problem
and the investment problem of minimizing the ruin probability.

Besides ruin probability minimization, some scholars focused on maximizing
the expected utility of insurers’ terminal wealth. Browne [6] obtained an optimal
investment strategy for an insurer whose surplus process is modelled by a drifted
Brownian motion. Besides, the insurer is allowed to invest his (her) surplus in a
risky asset with the price governed by a geometric Brownian motion (GBM). Yang
and Zhang [26] studied the optimal investment problem for an insurer with a jump-
diffusion surplus process, in which the price of the risky asset is described by a GBM.
Wang [24] extended the results of Yang and Zhang [26] to the case of multiple risky
assets. Later, Bai and Guo [2] discussed the optimal reinsurance and investment
problem for an insurer with a diffusion approximation claim process. Moreover,
the insurer can invest in multiple risky assets whose prices are driven by GBMs.
Xu et al. [25] investigated a problem similar to Bai and Guo [2] for a perturbed classical
risk model. Bai and Guo [3] studied the problem in their earlier paper [2] again with
the assumption that the insurer purchases excess-of-loss reinsurance. Liang et al. [15]
studied an investment and proportional reinsurance problem with constrained control
variables. Other related works can be found in Cao and Wan [7], Chen et al. [8],
Gu et al. [11], Zhou et al. [28] and so on.

Among most of the articles mentioned above, the risky assets’ prices are assumed
to be driven by GBMs. But much empirical evidence shows that the risky assets’ price
follows a jump-diffusion model which is more similar to the real financial markets than
the GBM. The jump-diffusion financial market is a natural extension of the GBM, and
has been extensively studied in other optimal problems. For maximizing the expected
utility of the returns with jump-diffusion price processes, Bardhan and Chao [4]
and Jeanblanc-Picqué and Pontier [14] studied the optimal investment-consumption
problem. Guo and Xu [12] considered the portfolio selection problem in which
the prices of the stocks follow jump-diffusion process. They obtain a closed form
expression for the efficient frontier. Zeng and Li [27] investigated continuous-time
asset-liability management under benchmark and mean-variance criteria in a jump-
diffusion market. In the field of insurance actuarial science, only the following two
papers explore the reinsurance-investment problem in the jump-diffusion financial
market. Lin and Yang [16] studied an optimal investment and proportional reinsurance
policy which maximizes the expected exponential utility of the terminal wealth. Bi
and Guo [5] studied the optimal investment and reinsurance problem for an insurer
under the criterion of mean-variance where the price of the risky asset follow a jump-
diffusion process.

To our knowledge, there is little work in the literature on the common constraints
of the control variables. Most of these literature results are obtained with no common
constraints on the control variables. It means that the proportional reinsurance strategy
may be larger than one. We argue that this result is unrealistic from an economic point
of view. For this reason, Bai and Guo [2] placed a no short-selling constraint on
the Brownian motion risk model, and considered the optimal reinsurance–investment
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problem with multiple risky assets. Under the constraint of no short-selling, the
retention level belongs to the interval [0, 1].

Unlike most of the existing literature, in this paper we study the optimal
proportional reinsurance and investment problem in a general jump-diffusion financial
market. In our model, the company is allowed to invest all of its surplus in a financial
market consisting of a risk-free asset and a risky asset. The price of the risky asset is
assumed to follow a general jump-diffusion process. In the aspect of reinsurance,
we adopt a proportional reinsurance strategy and limit the retention rate to [0, 1].
Aiming to maximize the expected exponential utility of the terminal wealth, we use
the Hamilton–Jacobi–Bellman (HJB) approach and derive the corresponding HJB
equation. The main contribution of this paper is two-fold: (1) we add a general
jump in the price of the risky asset; then the financial market follows a general
jump-diffusion model which is more similar to the real financial market than the
models in the literature; (2) we consider a reasonable constraint on the proportional
reinsurance strategy, which makes the model more reasonable and realistic. Through
some calculations, closed-form expressions for the value function and optimal strategy
are derived. Moreover, we find that with a constraint on the proportional reinsurance,
the value function is still a classical solution to the corresponding HJB equation.

The rest of the paper is organized as follows. In Section 2, the model assumptions
are formulated. The main results and explicit expressions for the optimal values are
derived in Section 3. In Section 4, a Monte Carlo simulation is conducted to support
that the results we derived are indeed the optimal strategies, and some numerical
examples are presented to show the impact of model parameters on the optimal
strategies. The paper concludes with some discussions in Section 5.

2. Model formulation

We consider a jump-diffusion risk model, in which the surplus Xt of the insurer at
time t is

Xt = u + ct −
N1(t)∑
i=1

Yi + βB1
t ,

where u ≥ 0 is the initial surplus; c > 0 is the premium rate; {Yi, i ≥ 1} is a sequence
of independent and identically distributed nonnegative random variables with common
distribution F(y), density function f (y), mean value µ1 = E(Yi) and moment generating
function MY (s) = E[esYi ]; Yi denotes the amount of the ith claim; {N1(t), t ≥ 0} is a
Poisson process with rate λ1 > 0, representing the number of claims up to time t;
B1

t is a standard Brownian motion; and β is a constant, representing the diffusion
volatility parameter. We assume that E[YesY ] = M′Y (s) exists for 0 < s < ζ, and
lims→ζ E[YesY ] = ∞ for some 0 < ζ ≤ +∞. Further, we assume that {N1(t), t ≥ 0},
{Yi, i ≥ 1} and {B1

t , t ≥ 0} are mutually independent.
As an effective tool to reduce risk, we allow the insurance company to reinsure a

fraction of its claim with the retention level q ∈ [0, 1]. That is, for a claim Yi, the
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insurer pays qYi and the reinsurer pays (1 − q)Yi. Let δ(q) be the premium rate for
the reinsurance; then the premium rate remaining for the insurer is c − δ(q). Here
we assume that the insurer can choose a dynamic strategy q = {qt, t ≥ 0}, that is, the
retention level can be adjusted continuously. Throughout the paper, we assume that
the reinsurance premium is calculated according to the expected value principle:

δ(q) = (1 + η)(1 − q)λ1µ1,

where η > 0 is the safety loading of the reinsurer. Let θ = c/(λ1µ1) − 1 > 0 be the safety
loading of the insurer. Without loss of generality, we assume that η > θ. In order that
the net profit condition (see the book by Rolski et al. [21, p. 162]) is fulfilled, that is,

c − (1 + η)(1 − q)λ1µ1 − qλ1µ1 ≥ 0,

we require

q ≥ q = 1 − θ/η.

The corresponding surplus process of the insurance company after proportional
reinsurance becomes

dXq
t = [c − (1 + η)(1 − q)λ1µ1] dt + β dB1

t − q
∫ ∞

0
yN1(dt, dy),

where N1(dt, dy) is the Poisson random measure corresponding to the compound
Poisson process

∑N1(t)
i=1 Yi.

Moreover, the company is allowed to invest all of its surplus in a financial market
consisting of a risk-free asset (bond) and a risky asset (stock). The price of the risk-free
asset is given by

dRt = rRt dt, r > 0,

where r is the risk-free interest rate. The price process Pt of the risky asset is assumed
to follow a general jump-diffusion process, that is, Pt satisfies the stochastic differential
equation

dPt = Pt−

[
a dt + σ dB2

t +

∫
R
γ(t, z)Ñ2(dt, dz)

]
, (2.1)

where a (> r), σ are positive constants and γ(t, z) ≥ −1; B2
t is another standard

Brownian motion; and Ñ2(dt, dz) is a compensated Poisson random measure, that is,

Ñ2(dt, dz) = N2(dt, dz) − λ2g(z) dt dz.

Here N2(dt, dz) is another Poisson random measure corresponding to the compound
Poisson process

∑N2(t)
i=1 Zi, {N2(t), t ≥ 0} is a Poisson process with rate λ2 > 0 and

{Zi, i ≥ 1} are independent identically distributed random variables with a common
distribution G(z) and density function g(z). We assume that {Yi, i ≥ 1}, {N1(t), t ≥ 0},
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{Zi, i ≥ 1} and {N2(t), t ≥ 0} are mutually independent. Let ρ denote the correlation
coefficient of the two standard Brownian motions, that is, E[B1

t B2
t ] = ρt.

Let At denote the total amount of money invested in the risky asset at time t. The
remaining portion of the surplus is invested in the risk-free asset. At any time t ≥ 0,
q = qt and A = At are chosen by the insurance company; we denote πt = (At, qt). Once
the strategy πt is chosen, the dynamics of the wealth process of the insurance company
becomes

dXπ
t = [(a − r)At + rXπ

t + c − (1 + η)(1 − qt)λ1µ1] dt + β dB1
t

+ Atσ dB2
t − qt

∫ ∞

0
yN1(dt, dy) + At

∫
R
γ(t, z)Ñ2(dt, dz), (2.2)

Xπ
0 = x.

Remark 2.1. In this paper, we assume that continuous trading is allowed, no
transaction cost or tax is involved in trading and all assets are infinitely divisible. We
also assume that all processes and random variables are defined on a filtered probability
space (Ω,F ,Ft, P) satisfying the usual conditions.

A control strategy πt = (At, qt) is said to be admissible if At and qt are predictable
with respect to Ft and satisfy the conditions

q ≤ qt ≤ 1 and E
[∫ t

0
A2

s ds
]
<∞

for all t ≥ 0. We write Π for the set of all admissible strategies for the insurance
company.

Assume now that the insurer is interested in maximizing the expected utility from
terminal wealth, say at time T . The utility function is u(x), which satisfies u′ > 0 and
u′′ < 0. Then the objective function is

Jπ(t, x) = E[u(Xπ
T )|Xπ

t = x]

and the corresponding value function is

V(t, x) = sup
π∈Π

Jπ(t, x). (2.3)

Here we assume that the insurer has an exponential utility function

u(x) = m −
κ

ν
e−νx

with κ > 0 and ν > 0. This utility has constant absolute risk aversion parameter
(CARA) ν; such utility functions play a prominent role in insurance mathematics and
actuarial practice, since they are the only utility functions under which the principle
of zero utility gives a fair premium that is independent of the level of reserves of an
insurance company (see the book by Gerber [10, p. 68]).

Let C(1,2) be the space of φ(t, x) such that φ and its partial derivatives φt, φx,
φxx are continuous on [0, T ] × R. To solve the above problem, we use the dynamic
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programming approach described in Fleming and Soner [9]. From standard arguments,
we see that if the value function V ∈ C(1,2), then V satisfies the following HJB equation
for t < T :

sup
π∈Π
AπV(t, x) = 0 (2.4)

with the boundary condition

V(T, x) = u(x), (2.5)

where Aπ denotes the generator of the surplus process Xπ
t controlled by the control

policy πt = (At, qt). Applying Itô’s formula [19, Theorem 1.14, p. 6] for the jump-
diffusion process to the value function V(t, x),

AπV(t, x) = Vt + [(a − r)A + rx + c − (1 + η)(1 − q)λ1µ1]Vx

+
1
2

(A2σ2 + β2 + 2Aσβρ)Vxx + λ1

∫ ∞

0
{V(t, x − qy) − V(t, x)} f (y) dy

+ λ2

∫
R
{V(t, x + Aγ(t, z)) − V(t, x) − Aγ(t, z)Vx}g(z) dz,

where Vt and Vx are the partial derivatives with respect to t and x, respectively, and
Vxx is the second partial derivative with respect to x. By the standard method used by
Fleming and Soner [9], we now have the following theorem.

Theorem 2.2. Let W ∈ C(1,2) be a classical solution of (2.4) that satisfies (2.5). Then
the value function V given by (2.3) coincides with W, that is, W(t, x) = V(t, x).
Furthermore, let π∗ = (A∗, q∗) ∈ R × [q, 1] be such that Aπ∗V(t, x) = 0 holds for all
(t, x) ∈ [0, T ] × R. Then the strategy π∗ = (A∗, q∗) is the optimal strategy, that is,
W(t, x) = V(t, x) = Vπ∗(t, x).

3. The optimal results

To solve equation (2.4), we try to fit a solution of the form

V(t, x) = m −
κ

ν
exp[−νxer(T−t) + h(T − t)], (3.1)

where h(·) is a suitable function such that (3.1) is a solution of equation (2.4). The
boundary condition V(T, x) = u(x) implies h(0) = 0. From (3.1),

Vt = [V(t, x) − m][νxrer(T−t) − h′(T − t)],
Vx = [V(t, x) − m][−νer(T−t)],
Vxx = [V(t, x) − m][ν2e2r(T−t)],∫ ∞

0
[V(t, x − qy) − V(t, x)] f (y) dy = [V(t, x) − m]

∫ ∞

0
[exp(νqyer(T−t)) − 1] f (y) dy,∫

R
[V(t, x + Aγ(t, z)) − V(t, x)]g(z) dz

= [V(t, x) − m]
∫

R[exp(−νAγ(t, z)er(T−t)) − 1]g(z) dz.
(3.2)

https://doi.org/10.1017/S1446181115000280 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181115000280


358 H. Zhu, Y. Huang, J. Zhou, X. Yang and C. Deng [7]

Substituting (3.2) back into equation (2.4) and cancelling like terms yields

inf
π∈Π

H(t, A, q) = 0, (3.3)

where

H(t, A, q) = −h′(T − t) − [(a − r)A + c − (1 + η)(1 − q)λ1µ1]νer(T−t)

+
1
2

[A2σ2 + β2 + 2Aσβρ]ν2e2r(T−t)

+ λ1

∫ ∞

0
[exp(νqyer(T−t)) − 1] f (y) dy

+ λ2

∫
R
[exp(−νAγ(t, z)er(T−t)) − 1 + νAγ(t, z)er(T−t)]g(z) dz. (3.4)

Then, for any t ∈ [0,T ],

∂H(t, A, q)
∂q

= −νer(T−t)(1 + η)λ1µ1 + λ1νer(T−t)
∫ ∞

0
y exp(νqyer(T−t)) f (y) dy,

∂2H(t, A, q)
∂q2 = λ1ν

2e2r(T−t)
∫ ∞

0
y2 exp(νqyer(T−t)) f (y) dy > 0,

∂H(t, A, q)
∂A

= −ν(a − r)er(T−t) + βσρν2e2r(T−t) + ν2e2r(T−t)σ2A

− λ2νer(T−t)
∫

R
γ(t, z)[exp(−νAγ(t, z)er(T−t)) − 1]g(z) dz,

∂2H(t, A, q)
∂A2 = λ2ν

2e2r(T−t)
∫

R
γ2(t, z) exp(−νAγ(t, z)er(T−t))g(z) dz + ν2e2r(T−t)σ2 > 0.

Therefore, H(t, A, q) is a convex function with respect to q (or A). To get the
minimizer A1(T − t), q1(T − t) of (3.4), we solve the following two equations:

(1 + η)µ1 −

∫ ∞

0
yeyn f (y) dy = 0, (3.5)

a − r + λ2

∫
R
γ(t, z)(exp[−νAγ(t, z)er(T−t)] − 1)g(z) dz = νer(T−t)(σ2A + βσρ), (3.6)

with n = qνer(T−t), which leads to the following lemma.

Lemma 3.1. Equation (3.5) has a unique positive root % with 0 < % < ζ and equation
(3.6) has a finite root Â.

Proof. Let f1(n) = (1 + η)µ1 −
∫ ∞

0 yeyn f (y) dy. Then

f ′1(n) = −

∫ ∞

0
y2eyn f (y) dy < 0 and f

′′

1 (n) = −

∫ ∞

0
y3eyn f (y) dy < 0.

This means that f1(n) is a monotone decreasing concave function.
By the assumption that E[YesY ] exists for 0 < s < ζ, lims→ζ E[YesY ] =∞ for some

0 < ζ ≤ ∞. Then we have limn→ζ f1(n) < 0. Since f1(0) = ηµ1 > 0, equation (3.5) has
a unique positive root % with 0 < % < ζ.
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Next, let

f2(A) = a − r + λ2

∫
R
γ(t, z)(exp[−νAγ(t, z)er(T−t)] − 1)g(z) dz − νer(T−t)(σ2A + βσρ);

then

f ′2(A) = −λ2νer(T−t)
∫

R
γ2(t, z) exp(−νAγ(t, z)er(T−t))g(z) dz − σ2νer(T−t) < 0,

so f2(A) is a monotone decreasing function. Furthermore, limA→−∞ f2(A) > 0 and
limA→∞ f2(A) < 0. Hence, equation (3.6) has a finite root Â and the proof is complete.

�

Therefore, we get νq1(T − t)er(T−t) = % and thus q1(T − t) = (%/ν)e−r(T−t). Here % is
a constant, and it depends only on the safety loading η and the claim sizes distribution.
Since the retention level qt ∈ [q, 1], we discuss the optimal values in the following
three cases.

Remark 3.2. If (%/ν)e−rT ≥ 1, then q < (%/ν)e−rT < q1(T − t) for any t ∈ [0,T ] and thus
the net profit condition becomes trivial; if (%/ν)e−rT < 1 and q > %/υ, then q > q1(T − t)
for any t ∈ [0, T ] and thus q∗t = q; if (%/ν)e−rT < 1 and (%/ν)e−rT ≤ q ≤ %/ν, then there
exists a t0 such that q1(T − t0) = q. Therefore, in the following first two cases, we
assume that (%/ν)e−rT ≤ q ≤ %/ν.

Case I: % ≤ ν or, equivalently, 0 < η ≤ (1/µ1)M′Y (ν) − 1. Then q1(T − t) ≤ 1 for any
t ∈ [0, T ]. Let t0 = T + (1/r) ln[(1 − θ/η)ν/%]; therefore, the optimal reinsurance
strategy is

q∗t =


1 −

θ

η
if 0 ≤ t < t0,

%

ν
e−r(T−t) if t0 ≤ t ≤ T.

When 0 ≤ t < t0, substituting A∗t = A1(T − t) = Â, q∗t = q into (3.3) yields

h′0(T − t) = −[(a − r)Â + c − (1 + η)(1 − q)λ1µ1]νer(T−t)

+
1
2

[Â2σ2 + β2 + 2Âσβρ]ν2e2r(T−t)

+ λ1

∫ ∞

0
[exp(νqyer(T−t)) − 1] f (y) dy

+ λ2

∫
R
[exp(−νÂγ(t, z)er(T−t)) − 1 + νÂγ(t, z)er(T−t)]g(z) dz

and, by integration,

h0(T − t) = h̃0(T − t) + M0, (3.7)
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where

h̃0(T − t) = −

∫ T−t

0
[(a − r)Â + c − (1 + η)(1 − q)λ1µ1]νer(T−s) ds

+
1
2

∫ T−t

0
[Â2σ2 + β2 + 2Âσβρ]ν2e2r(T−s) ds

+ λ1

∫ T−t

0

∫ ∞

0
[exp(νqyer(T−s)) − 1] f (y) dy ds

+ λ2

∫ T−t

0

∫
R
[exp(−νÂγ(s, z)er(T−s)) − 1 + νÂγ(s, z)er(T−s)]g(z) dz ds

and M0 is a constant that will be determined later.
When t0 < t ≤ T , replacing A∗t = A1(T − t) = Â, q∗t = q1(T − t) back into equation

(3.3) yields

h′1(T − t) = −[(a − r)Â + c − (1 + η)(1 − q1(T − t))λ1µ1]νer(T−t) +
1
2

[Â2σ2 + β2

+ 2Âσβρ]ν2e2r(T−t) + λ1

∫ ∞

0
[exp(νq1(T − t)yer(T−t)) − 1] f (y) dy

+ λ2

∫
R
[exp(−νÂγ(t, z)er(T−t)) − 1 + νÂγ(t, z)er(T−t)]g(z) dz, (3.8)

together with the initial condition h1(0) = 0.
Let M0 = h1(T − t0) − h̃0(T − t0); then h1(T − t0) = h̃0(T − t0) + M0 = h0(T − t0).

Case II: ν < % < νerT or, equivalently, (1/µ1)M′Y (ν) − 1 < η < (1/µ1)M′Y (νerT ) − 1. Let
t1 = T − (1/r) ln(%/ν); then q1(T − t) < 1 for t ∈ [0, t1), q1(T − t) ≥ 1 for t ∈ [t1, T ].
Therefore, the optimal reinsurance strategy can be given as

q∗t =


1 −

θ

η
if 0 ≤ t < t0,

%

ν
e−r(T−t) if t0 ≤ t < t1,

1 if t1 ≤ t ≤ T.

When 0 ≤ t < t0, substituting A∗t = A1(T − t) = Â, q∗t = q into (3.3),

h2(T − t) = h̃0(T − t) + M1, (3.9)

where M1 is a constant that will be determined later. When t0 ≤ t < t1, substituting
A∗t = A1(T − t) = Â, q∗t = q1(T − t) into (3.3),

h3(T − t) = h1(T − t) + M2, (3.10)

where M2 is a constant that will be determined later.
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When t1 ≤ t ≤ T , replacing A∗t = A1(T − t) = Â, q∗t = 1 into (3.3) yields

h′4(T − t) = −[(a − r)Â + c]νer(T−t) +
1
2

[Â2σ2 + β2 + 2Âσβρ]ν2e2r(T−t)

+ λ1

∫ ∞

0
[exp(yνer(T−t)) − 1] f (y) dy

+ λ2

∫
R
[exp(−νÂγ(t, z)er(T−t)) − 1 + νÂγ(t, z)er(T−t)]g(z) dz (3.11)

together with the initial condition h4(0) = 0.
Let M2 = h4(T − t1) − h1(T − t1) and M1 = h3(T − t0) − h̃0(T − t0); then we

have h4(T − t1) = h1(T − t1) + M2 = h3(T − t1) and h3(T − t0) = h̃0(T − t0) + M1 =

h2(T − t0).

Case III: % ≥ νerT or, equivalently, η ≥ (1/µ1)M′Y (νerT ) − 1. Then q1(T − t) ≥ 1 for any
t ∈ [0, T ]. Therefore, q∗t ≡ 1 and the corresponding h(T − t) = h4(T − t). The function
h4(T − t) can be calculated by using equation (3.11).

The proof of the following theorem follows from the above discussion.

Theorem 3.3. Let % be the unique positive root of equation (3.5), Â be the finite root of
equation (3.6) and h0(T − t), h1(T − t), h2(T − t), h3(T − t) and h4(T − t) be as in the
equations (3.7)–(3.11), respectively. Then, for any t ∈ [0, T ], the optimal investment
strategy is

A∗t = Â.

Moreover:

(1) if 0 < η ≤ (1/µ1)M′Y (ν) − 1, then with t0 = T + (1/r) ln[(1 − θ/η)ν/%], for any
t ∈ [0,T ], the optimal reinsurance strategy of model (2.2) is

q∗t =


1 −

θ

η
if 0 ≤ t < t0,

%

ν
e−r(T−t) if t0 ≤ t ≤ T

and the value function is

V(t, x) =


m −

κ

ν
exp{−νxer(T−t) + h0(T − t)} if 0 ≤ t < t0,

m −
κ

ν
exp{−νxer(T−t) + h1(T − t)} if t0 ≤ t ≤ T ;

(2) if (1/µ1)M′Y (ν) − 1 < η < (1/µ1)M′Y (νerT ) − 1, then with t1 = T − (1/r) ln(%/ν),
the optimal reinsurance strategy of model (2.2) is

q∗t =


1 −

θ

η
if 0 ≤ t < t0,

%

ν
e−r(T−t) if t0 ≤ t < t1,

1 if t1 ≤ t ≤ T
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and the value function is

V(t, x) =


m −

κ

ν
exp{−νxer(T−t) + h2(T − t)} if 0 ≤ t < t0,

m −
κ

ν
exp{−νxer(T−t) + h3(T − t)} if t0 ≤ t ≤ t1,

m −
κ

ν
exp{−νxer(T−t) + h4(T − t)} if t1 ≤ t ≤ T ;

(3) if η ≥ (1/µ1)M′Y (νerT ) − 1, then for any t ∈ [0, T ], the optimal reinsurance
strategy of model (2.2) is

q∗t ≡ 1
and the value function is

V(t, x) = m −
κ

ν
exp{−νxer(T−t) + h4(T − t)}.

Remark 3.4. If we know the distributions of the claim size Y and the jump size Z of the
risky asset, and the expression of γ(t, z), then we can obtain closed-form expressions
for h0(T − t), h1(T − t), h2(T − t), h3(T − t) and h4(T − t), since h1(T − t0) = h0(T − t0),
h3(T − t0) = h2(T − t0) and h4(T − t1) = h3(T − t1). Then V(t, x) is a continuous
function for any (t, x) ∈ [0,T ] × R. By some simple calculations, we have h′1(T − t0) =

h′0(T − t0), h′2(T − t0) = h′3(T − t0) = h′1(T − t0) and h′3(T − t1) = h′4(T − t1). By (3.2),
we have V(t, x) ∈ C1,2, that is, V(t, x) is a classical solution of the HJB equation (2.4).

4. Numerical analysis
In this section, we conduct a Monte Carlo simulation to illustrate the fact that the

derived optimal strategies in Theorem 3.3 are indeed optimal strategies. Moreover, we
present some illustrative numerical examples to study the relationships between the
optimal proportional reinsurance and investment strategy and the parameters, and also
investigate the effects of the jump on optimal investment.

Suppose that the claim sizes are exponentially distributed, that is, the density
function f (y) = (1/µ1)e−y/µ1 , y ≥ 0. Then equation (3.5) has a unique positive root

% =
1 −

√
1/(1 + η)
µ1

. (4.1)

Assume that the jump size Z of the risky asset with density

g(z) =

{
2pe−2z if z ≥ 0,
3pe3z if z < 0,

where p, p ≥ 0 represent the probabilities of upward and downward jumps,
respectively, with p + p = 1. In addition, we assume that γ(t, z) ≡ ez − 1 and ρ = 0.
Let α = νAer(T−t); then equation (3.6) becomes

λ2

[
pα − pα(2 + α)

∫ ∞

0
e−α(ez−1) dz +

p
4
−

3p
α2 −

12p
α3 −

18p
α4 −

6p
α3 eα +

18p
α4 eα

]
= σ2α − a + r. (4.2)
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(a) (b)

Figure 1. (a) Comparing the terminal wealth. (b) Comparing the density.

4.1. Monte Carlo simulation for the terminal wealth In Section 3, we have
derived the closed-form expressions for the value function and optimal strategy by
strict logical reasoning. In order to visualize our results, we conduct a simulation
which contains two strategies, namely, the optimal strategy and a suboptimal strategy
chosen at random.

To simplify our analysis, here we assume that c = 3.5, r = 0.03, a = 0.05, λ1 = 3,
λ2 = 2, µ1 = 1, ν = 0.15, η = 0.6, p = 0.2, σ = 0.2, β = 0, x = 40 and T = 40. Via Monte
Carlo simulations, we perform the sample paths of the expected wealth process under
the optimal strategy and a suboptimal strategy (At, qt), respectively (see Figure 1(a))
via the MATLAB software package. Where At ≡ 0 is predefined, qt is random and
we assume that it has a uniform distribution on [0, 1]. Based on the data generated
by Monte Carlo simulation in the last stage, we present the density functions of the
terminal wealth by kernel density estimation for the two cases as in Figure 1(a) (see
Figure 1(b)). Figure 1(a) shows that the expected wealth under the optimal strategy
is bigger than that under the suboptimal strategy not only in the terminal moment but
also throughout the period. In Figure 1(b), we find that the terminal wealth’s density
function is on the right. It means that terminal wealth under the optimal strategy will
take larger values with higher probability. Since the exponential utility function is an
increasing function of the terminal wealth, the simulation supports the fact that the
derived closed-form solutions for optimal strategies in Section 3 are indeed optimal
strategies.

4.2. The optimal proportional reinsurance strategy

Example 4.1. Assume that c = 3.5, λ1 = 3, µ1 = 1, ν = 0.1, η = 0.6, T = 40, r ∈
{0.03, 0.04, 0.05}. We calculate the optimal proportional reinsurance strategy q∗t by
(4.1). The results are presented in Figure 2(a). We see that q∗t is a decreasing function
of r. As r is the risk-free interest rate, the larger r is, the greater the expected income
of the risk-free asset, the larger the income the insurance company will obtain from
investment and hence the less risk the insurance company will wish to share in each
claim.
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(a) (b)

Figure 2. (a) Effect of r on q∗t . (b) Effect of ν on q∗t .

Figure 3. Effect of η on q∗t .

Example 4.2. Assume that c = 3.5, λ1 = 3, µ1 = 1, r = 0.02, η = 0.8, T = 40, ν ∈
{0.15, 0.2, 0.25}. We calculate the optimal proportional reinsurance strategy q∗t by
(4.1). The results are presented in Figure 2(b). Note that q∗t is decreasing in ν. As
ν is the absolute risk aversion parameter, the larger ν is, the less aggressive the insurer
will be and hence the less retention level the insurer will hold.

Example 4.3. Assume that c = 3.5, λ1 = 3, µ1 = 1, ν = 0.15, r = 0.03, T = 40, η ∈
{0.25, 0.3, 0.35, 0.6, 1.0, 2.0, 3.0}. We calculate the optimal proportional reinsurance
strategy q∗t by (4.1). The results are presented in Figure 3. Observe that q∗t is increasing
in η. A large η yields a high retention level of proportional reinsurance. As the
premium of reinsurance increases, the insurer should retain a greater share of each
claim.

4.3. The optimal investment strategy

Example 4.4. Assume that σ = 0.2, λ2 = 2, p = 0.8, r = 0.03, ν = 0.15, T = 40,
a ∈ {0.03, 0.04, 0.05}. We calculate the optimal investment strategy A∗t by (4.2). The
results are presented in Figure 4(a). Observe that A∗t is an increasing function of a,
which describes the rate of the income of the risky asset. The larger a is, the greater the
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(a) (b)

Figure 4. (a) Effect of a on A∗t . (b) Effect of σ on A∗t .

(a) (b)

Figure 5. (a) Effect of r on A∗t . (b) Effect of ν on A∗t .

expected income of the risky asset will be and hence the more the insurance company
will wish to invest in the risky asset.

Example 4.5. Assume that a = 0.05, λ2 = 2, p = 0.8, r = 0.03, ν = 0.15, T = 40,
σ ∈ {0.2, 0.3, 0.4}. We calculate the optimal investment strategy A∗t by (4.2). The
results are presented in Figure 4(b). We see that A∗t is decreasing in σ, which is the
volatility of the risky asset. The larger σ is, the riskier the risky asset will be and hence
the less the insurance company will wish to invest in the risky asset.

Example 4.6. Assume that a = 0.05, σ = 0.2, λ2 = 2, p = 0.8, ν = 0.15, T = 40,
r ∈ {0.03, 0.04, 0.05}. We calculate the optimal investment strategy A∗t by (4.2). The
results are presented in Figure 5(a). We see that A∗t is a decreasing function of r.
Since r is the risk-free interest rate, the larger r is, the greater the expected income of
the risk-free asset and hence the more the insurance company wishes to invest in the
risk-free asset.

Example 4.7. Assume that a = 0.05, σ = 0.2, λ2 = 2, p = 0.8, r = 0.03, T = 40,
ν ∈ {0.15, 0.2, 0.25}. We calculate the optimal investment strategy A∗t by (4.2). The
results are presented in Figure 5(b). Note that A∗t is decreasing in ν. As ν is the
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(a) (b)

Figure 6. (a) Effect of λ2 on A∗t . (b) Effect of p on A∗t .

absolute risk aversion parameter, the larger ν is, the less aggressive the insurer will be
and hence the less the insurance company will wish to invest in the risky asset.

Example 4.8. Assume that a = 0.05, σ = 0.2, ν = 0.15, p = 0.8, r = 0.03, T = 40,
λ2 ∈ {0.5, 1, 2}. We calculate the optimal investment strategy A∗t by (4.2). The results
are presented in Figure 6(a). We see that A∗t is decreasing in λ2, which is the number
of jumps of the risky asset within unit time (see (2.1)). The larger λ2 is, the greater the
expected jump size of the risky asset will be and hence the less the insurance company
will wish to invest in the risky asset.

Example 4.9. Assume that a = 0.05, σ = 0.2, ν = 0.15, λ2 = 2, r = 0.03, T = 40,
p ∈ {0.2, 0.5, 0.8}. We calculate the optimal investment strategy A∗t by (4.2). The
results are presented in Figure 6(b). We see that A∗t is a decreasing function of p.
As p represents the probability of an upward jump of the risky asset, the larger p is,
the greater the expected jump size of the risky asset will be and hence the less the
insurance company will wish to invest in the risky asset.

5. Conclusions

In this paper, we studied the optimal investment and proportional reinsurance
problem for a jump-diffusion risk model in a general jump-diffusion financial market.
Moreover, we added a reasonable constraint on the proportional reinsurance strategy
which makes the model much more reasonable and realistic. We obtained explicit
expressions for the optimal value function and optimal strategy. Finally, a Monte Carlo
simulation was conducted to illustrate that the closed-form expressions we derived
are indeed the optimal strategies, and some numerical examples were presented to
illustrate the effects of parameters on the optimal strategies as well as the economic
implications. There are some possible extensions of this paper. For example, one can
try to add some other constraints in the model, such as transaction costs for investment
and the dividend payment. Then the model may be more realistic and the problem
more interesting. These are very challenging problems that constitute the research
directions of our future work.
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