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In this paper, we propose a numerical model to simulate gas–liquid–solid interaction
problems, coupling the lattice Boltzmann method and discrete element method
(LBM–DEM). A cascaded LBM is used to simulate the liquid–gas flow field using a
pseudopotential interaction model for describing the liquid–gas multiphase behaviour.
A classical DEM resorting to fictitious overlaps between the particles is used to simulate
the multiple-solid-particle system. A multiphase fluid–solid two-way coupling algorithm
between LBM and DEM is constructed. The model is validated by four benchmarks:
(i) single disc sedimentation, (ii) single floating particle on a liquid–gas interface, (iii)
sinking of a horizontal cylinder and (iv) self-assembly of three particles on a liquid–gas
interface. Our simulations agree well with the numerical results reported in the literature.
Our proposed model is further applied to simulate droplet impact on deformable granular
porous media at pore scale. The dynamic droplet spreading process, the deformation of the
porous media (composed of up to 1277 solid particles) as well as the invasion of the liquid
into the pores are well captured, within a wide range of impact Weber number. The droplet
spreading dynamics on particles is analysed based on the energy budget, which reveals
mechanisms at play, showing the evolution of particle energy, surface energy and viscous
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dissipation energy. A scaling relation based on the impact Weber number is proposed to
describe the maximum spreading ratio.

Key words: drops, porous media, particle/fluid flow

1. Introduction

The dynamic behaviour of multiphase flow in gas–solid–liquid mixture systems plays an
important role in various processes in the petroleum industry, biochemical processing,
chemical and metallurgical industries, food technology, water treatment and sub-seabed
CO2 storage (Hu et al. 2011; Huppert & Neufeld 2014; Zhao, de Jong & van der Meer
2019; Panda et al. 2020; Bhaskaran et al. 2022), in addition to being ubiquitous in natural
and built environments. Understanding the detailed gas–liquid–solid interactions at play
is beneficial to the advancement of these fields. Numerical simulations can give detailed
insights into gas–liquid–solid interaction problems by providing time-resolved full-field
information. However, for any numerical method, it is challenging to predict the complex
dynamics of the liquid–gas interfaces which may move, deform, coalesce, break up and
disappear (Li et al. 2016a). The problem becomes even more complicated if movable
solid objects are included, involving multi-particle interactions and contact-line dynamics
(Onishi et al. 2008; Jiang et al. 2022).

Since the surface tensions among different phases and the contact angle at the
three-phase boundary are the natural consequence of intermolecular interactions,
mesoscopic methods may be suited for considering the interfacial dynamics in multiphase
systems (Zhang, Liu & Zhang 2020). The lattice Boltzmann method (LBM), as a
mesoscopic method based on the kinetic theory, has been very successful in simulating
various complex multiphase flows in the past three decades (Karlin, Ferrante & Öttinger
1999; Guo & Shu 2013; Huang, Sukop & Lu 2015; Succi 2015, 2018). The mesoscale
nature of the LBM allows the easy incorporation of interactions among molecules and
molecular clusters, while the highly local algorithm of the LBM makes it very efficient in
large-scale parallel computations (Li et al. 2016a). So far, the LBM has been widely used in
liquid–gas two-phase flows (Huang et al. 2015; Li et al. 2016a; Gan et al. 2022), water–oil
two-component flows (Liu et al. 2016; Chen et al. 2022), liquid–vapour phase-change
processes (Li et al. 2015; Fei et al. 2023; Qin et al. 2023) and gas–solid two-phase
flows (Peng, Ayala & Wang 2019, 2020). However, modelling gas–liquid–solid three-phase
systems based on the LBM (Zhang et al. 2020; Jiang et al. 2022) remains a challenge, as
discussed in the following.

First, the fluid–solid interaction forces need to be carefully addressed. At the fluid–solid
boundary, a velocity boundary condition (usually the non-slip condition) is imposed,
which results in a force applied to the solid phase due to the change of local fluid
momentum near the boundary. Such a hydrodynamic force can be treated by different
algorithms, mainly the immersed boundary method (Suzuki & Inamuro 2011), the
momentum-exchange method (Ladd 1994a,b) and the stress-integration method (He &
Doolen 1997; Inamuro, Maeba & Ogino 2000). Among them, the momentum-exchange
method is widely used, since it is based directly on the distribution functions and
the hydrodynamic force is obtained simply by summing the momenta passing through
the boundary without any interpolation or extrapolation schemes (Wen et al. 2012).
Another important force exerted on the solid phase is the capillary force, which originates
from the surface tension at the three-phase contact lines. The capillary force is oriented

975 A20-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

82
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.822


Coupled LBM–DEM model for gas–liquid–solid interactions

along the liquid–gas interface and thus points away from the solid phase. Capillary force
depends, often in a non-trivial way, on many factors, such as wettability conditions and
geometry information and its mode of calculation in the LBM depends on the multiphase
approach used. For the pseudopotential LBM, Joshi & Sun proposed to obtain the capillary
force by adding up the adhesive force contributions along all relevant directions at all
liquid–solid boundary nodes (Joshi & Sun 2009). Other multiphase lattice Boltzmann
models may have difficulty in approximating the integral of the surface tension along
the perfectly sharp contact line using the information across the diffused interface. For
example, Connington, Lee & Morris (2015) proposed a capillary force calculation method
by introducing an order-parameter-based weight function for the phase-field LBM, which
has been recently improved by Zhang et al. (2020) using an alternative Dirac function. For
the perfect wetting scenario, Jiang et al. (2022) proposed a simplified scheme by summing
the surface tension contributions at all liquid–solid boundary nodes.

Second, to simulate gas–liquid–solid systems, the gas–liquid two-phase LBM needs to
be further coupled with a granular media solver. For single solid body or particle, the
particle dynamics could be simply solved based on Newton’s law using the aforementioned
hydrodynamic force and capillary force as inputs. When two or more solid particles
are involved, the interactions among particles must be carefully addressed. The distance
between the surface of two particles may reduce such that the number of fluid nodes
lying between is insufficient to resolve the lubrication forces, leading to lattice Boltzmann
simulations suffering from numerical instability. To eliminate this effect, Kromkamp et al.
(2006) added a lubrication force between each pair of interacting particles suspended in
single-phase external fluid. To prevent the breakdown of simulations, a Hookean repulsion
force has been introduced in their model when the distance among particle surfaces
decreases to extremely small spacing, i.e. ≤0.1 lattice spacing. The method has been
extended to simulate particle suspensions in gas–liquid two-phase flows by Joshi & Sun
(2009). Jansen & Harting (2011) used a Hertzian contact force to mimic interactions
between particles and a lubrication correction to avoid numerical instabilities when the
particle distance is smaller than 2/3 of the lattice spacing. Similarly, a repulsive force has
been simply applied in the models of Onishi et al. (2008) and Zhang et al. (2020) based
on a Lennard-Jones or other types of potential functions. Note that the above lubrication
and/or repulsive forces are introduced with certain simplifications and their cut-off
distances are chosen more or less empirically, which may limit the range of application of
these models (Onishi et al. 2008). To simulate granular assemblies, the discrete element
method (DEM) (Cundall & Strack 1979) has been widely used. In the DEM, a granular
system is modelled as an assembly of discrete particles. The particle–particle interaction
is evaluated through well-tested contact laws. Recently, coupling algorithms between
multiphase LBM and DEM have been proposed to investigate gas–liquid–solid interaction
problems. Ding & Xu (2018) proposed a multiphase fluid–solid coupling algorithm of
LBM–DEM to simulate debris flow with a free-surface model, where the flow in the gas
phase was neglected. Jiang et al. (2022) developed a coupled colour-gradient LBM–DEM
algorithm for simulating the three-phase interaction problem and applied it to study the
upward migration of leaked gas bubbles through a brine-filled sediment column. However,
in their method, the density ratio of the two fluids is set to unity and the perfect wetting
condition is imposed on the solid particle surface.

A third challenge lies in the refilling of the so-called newborn or fresh node. When solid
bodies/particles move in a base fluid, their representations on the lattice nodes change at
each time step. Namely, some fluid nodes disappear when covered by the solid phase, while
some other nodes emerge from the solid region to the fluid domain. The initialization (or
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refilling) of the newborn or fresh fluid nodes is crucial in three-phase coupling systems,
since it markedly affects both numerical accuracy and instability (Lallemand & Luo 2003;
Li, Jiang & Hu 2016b). A simple refilling scheme is setting the unknown distribution
functions at the newborn fluid nodes to be the equilibrium distributions with approximate
density and velocity, as tested by Lallemand & Luo (2003) for simulating suspended rigid
particles in single-phase flow. However, the equilibrium distribution only recovers the
macroscopic Euler equation without the viscous term, which is inconsistent with the bulk
flow where the Navier–Stokes equation is recovered. Lallemand & Luo also considered
a second-order extrapolation scheme to reconstruct the unknown distributions and the
results were improved compared with the equilibrium scheme, in terms of decreasing the
oscillation of the force evaluation. As expected, the oscillation of the force can be further
suppressed using a higher-order extrapolation scheme (Wen et al. 2014). Nevertheless,
extrapolation-type refilling schemes are not very suitable in gas–liquid–solid three-phase
systems, since the fluid density changes significantly near the liquid–gas interface, and
thus extrapolation of distributions often leads to numerical instabilities. Considering that
the viscous term is recovered from the non-equilibrium distributions, Caiazzo (2008)
proposed a non-equilibrium refilling scheme by simply copying the non-equilibrium part
from a neighbour of the newborn fluid node and adding it to the equilibrium part. Such
a methodology is quite similar to the non-equilibrium extrapolation scheme by Guo,
Zheng & Shi (2002) for velocity and pressure boundary conditions. The non-equilibrium
refilling scheme indeed outperformed the equilibrium refilling scheme, in terms of both
increasing the order of accuracy and decreasing the numerical oscillation. A more robust
but more complicated non-equilibrium refilling scheme has also been proposed by Li et al.
(2016b). In addition, Jiang et al. (2022) showed that the non-equilibrium refilling scheme
is compatible with gas–liquid–solid three-phase systems.

As a final fourth point, the solid phase, e.g. comprised of solid particles, is not
only moving in the fluid phase but also has complex boundaries. In many cases, a
non-slip condition is assumed at the boundary between fluid and solid phases. The
half-way bounce-back scheme has been widely used to deal with such non-slip boundary
conditions in the lattice Boltzmann community because it is simple to implement
and conserves strictly mass and momentum. In the half-way bounce-back scheme, the
equivalent boundary node is located exactly at the middle point in a lattice link between
a fluid point and a solid point (Ladd 1994a), which means that a curved solid wall is
approximated as a series of stair steps with this treatment. Generally, such an approach
is only first-order-accurate for moving boundaries. To treat curved boundaries, Filippova
& Hänel (1998) proposed the first curved lattice Boltzmann boundary scheme based on
a linear combination of the bounce-back distribution function and a fictitious equilibrium
distribution function. It has been improved by Mei, Luo & Shyy (1999) using a different
fictitious velocity and combination coefficient. Bouzidi, Firdaouss & Lallemand (2001)
proposed an interpolated (linear interpolation and quadratic interpolation) bounce-back
scheme by employing an interpolation of the distribution functions in the interior fluid
region. A unified interpolation scheme for curved walls has been developed by Yu, Mei &
Shyy (2003b). Originally, all the mentioned curved boundary schemes were developed for
single-phase fluid flows. They mostly suffer from violation of mass conservation (Krueger
et al. 2016), owing to the mass imbalance between the outgoing and incoming distribution
functions at each boundary node. Recently, some modified mass-conservative curved
boundary schemes for two-phase lattice Boltzmann simulations have been proposed
(Yu, Li & Wen 2020; Yao et al. 2022), while these schemes have not been tested in
three-phase systems with moving solid boundaries.
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As reported above, many challenges remain in modelling gas–liquid–solid three-phase
systems using the LBM. In this work, we propose to model such problems based on a
two-way coupling algorithm using multiphase LBM for the flow field and DEM for the
solid grains. More specifically, the single-component pseudopotential LBM originally
proposed by Shan & Chen (1993, 1994) is adopted in the present work, combined with
the improved cascaded collision scheme (Fei & Luo 2017) and the mechanical stability
condition adjustment scheme (Li, Luo & Li 2012, 2013) to improve numerical stability
and thermodynamic consistency. The rest of the paper is structured as follows. In § 2,
the proposed LBM–DEM is described in detail. Validation of the model is given in § 3.
Section 4 presents the application of the model to droplet impact on a deformable porous
medium at pore scale. Finally, in § 5, we evaluate the proposed model and conclude the
paper.

2. Model development

In this section, we give a detailed description of the coupled LBM–DEM model for
gas–liquid–solid interaction problems, including the LBM solver for the fluid field and
the DEM solver for the particle dynamics, the calculation of various forces and torques
exerted on the solid phase and the implementations of contact angle, curved boundary
and initialization (or refilling) of newborn fluid nodes. Since the time steps in the LBM
and DEM do not need to be identical, we also discuss the unit conversion between the
lattice units (used in LBM) and physical units (used in DEM) and the co-evolution scheme
between the two solvers.

The fluid field, including the flow in the gas phase and in the liquid phase as well as the
dynamics at the gas–liquid interface, is simulated using the pseudopotential LBM (Shan
& Chen 1993, 1994). The cascaded LBM (CLBM) with the consistent forcing scheme
(Fei & Luo 2017) is used to improve the numerical instability, and the forcing scheme is
slightly modified based on the mechanical stability condition adjustment scheme (Li et al.
2012, 2013) to impose thermodynamic consistency. The hydrodynamic force exerted on
the solid phase is calculated by the Galilean invariant momentum exchange method by
Wen et al. (2014) given its improved accuracy. The capillary force is obtained by adding
up the adhesive force contributions (Joshi & Sun 2009) since it is consistent with the
pseudopotential force calculations between gas and liquid phases. The present work is
limited to two dimensions.

2.1. Lattice Boltzmann method for gas–liquid two-phase flows
The LBM is a mesoscopic numerical approach based on the simplified kinetic models,
which solves a specific discrete Boltzmann equation for the density distribution functions
(DDFs) fi, designed to reproduce the macroscopic Navier–Stokes equations in the
low-Mach-number limit. In the standard LBM algorithm, an iteration of ‘collision and
streaming’ is repeatedly executed until convergence (for steady problems) or the target
time (for unsteady problems), where the collision step represents the relaxation towards the
local equilibrium state due to molecular collisions and streaming represents molecular free
streaming afterward. The streaming step is trivial, as it always transports the post-collision
DDFs ( f ∗

i ) at the present lattice node (x, t) to their neighbours along directions of a set of
discrete velocities ei within a time step �t, i.e.

fi(x + ei�t, t +�t) = f ∗
i (x, t). (2.1)
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To execute the next collision step, the equilibrium DDFs f eq
i (or their moment

representations) are needed based on the updated hydrodynamic variables (density ρ and
velocity u):

ρ =
∑

i

fi, ρu =
∑

i

fiei +�tF/2, (2.2a,b)

where F is the total force exerted on the fluid.
In the lattice Boltzmann community, various collision schemes, such as the

single-relaxation-time scheme (Qian, d’Humières & Lallemand 1992), multiple-
relaxation-time (MRT) scheme (Lallemand & Luo 2000), cascaded or central-moment
scheme (Geier, Greiner & Korvink 2006) and the entropic-MRT scheme (Karlin, Bösch
& Chikatamarla 2014), can be employed to suit the problems under investigation. These
schemes have been discussed in detail and integrated into a unified framework (Fei
& Luo 2017; Fei, Luo & Li 2018). In this work, the cascaded scheme is used as it
possesses excellent numerical stability (Geier et al. 2006), while it allows achieving
non-slip boundary conditions (Fei & Luo 2017; Fei et al. 2018). In the CLBM, the DDFs
are first projected onto the central moment space, then the central moments of different
orders are relaxed separately and finally the post-collision DDFs are reconstructed. To
make the implementation more efficient, the collision step can be described as follows
(Fei & Luo 2017; Fei et al. 2018):

f ∗
i (x, t) = fi (x, t)− (M−1N−1SNM)

[
fi (x, t)− f eq

i (x, t)
]

+�tM−1N−1(I − S/2)NMRi (x, t) , (2.3)

where f eq
i is the equilibrium DDF, M is a transformation matrix, N is a lower triangular

shift matrix, I is the unit matrix, S is a (block) diagonal relaxation matrix and Ri represents
the forcing term in the discrete velocity space. The explicit formulations of M , N and their
inverses depend on the discrete velocity model and the adopted central moment set. In this
work, we use the two-dimensional nine-velocity lattice (Qian et al. 1992) with the discrete
velocity set:

|eix〉 = [0, 1, 0,−1, 0, 1,−1,−1, 1]T,∣∣eiy
〉 = [0, 0, 1, 0,−1, 1, 1,−1,−1]T,

}
(2.4)

where i = 0, 1, . . . , 8, |·〉 denotes a nine-column vector and T denotes the transposition.
To construct the CLBM, the raw and central moments of fi are introduced:

kmn =
〈

fi|em
ixen

iy

〉
, k̃mn = 〈

fi|(eix − ux)
m(eiy − uy

)n〉
, (2.5)

where m and n are positive integers. The equilibrium raw and central moments kk,eq
mn and

k̃k,eq
mn are defined analogously by replacing fi with their equilibrium counterparts f eq

i . Then,
one needs to choose an appropriate moment set. The following natural raw moment set is
used in the present work:∣∣∣Tk

i

〉
=
[
kk

00, kk
10, kk

01, kk
20 + kk

02, kk
20 − kk

02, kk
11, kk

21, kk
12, kk

22

]T
, (2.6)

in which the first three moments represent the component density and momentum, and the
middle three and last three stand for the viscous stress and high-order non-hydrodynamic
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moments, respectively. Such a choice gives very concise and sparse expressions for M and
N according to the relation (Fei & Luo 2017)∣∣∣T̃k

i

〉
= N

∣∣∣Tk
i

〉
= NM

∣∣∣ f k
i

〉
. (2.7)

The explicit expressions for M and N are given in Appendix A. In the implementation
of (2.3), the explicit formulations of f eq

i and Ri and the related matrix calculations are
not needed because their central moments can be consistently defined by matching the
continuous integration of the Maxwellian distribution (Fei & Luo 2017). More specifically,
for the considered moment set in (2.6), we have∣∣∣T̃eq

i

〉
= NM

∣∣ f eq
i
〉 = [

ρ, 0, 0, 2ρkc2
s , 0, 0, 0, 0, ρkc4

s

]T
,

|Ci〉 = NM |Ri〉 =
[
0,Fx,Fy, 0, 0, 0,Fyc2

s ,Fxc2
s , 0

]T
.

⎫⎪⎬
⎪⎭ (2.8)

To mimic the interaction between the liquid phase and gas phase, the pseudopotential-
based interaction force model (Shan & Chen 1993, 1994), which has been successfully
applied to various complex multiphase flows (Li et al. 2016a), is adopted:

F int = −Gψ(x)
∑
i /= 0

wiψ(x + ei�t)ei, (2.9)

where w is the weight with w1−4 = 1/3 and w5−8 = 1/12, andψ(x) is the pseudopotential
function. The square-root form pseudopotential ψ = √

2( pEOS − ρc2
s )/Gc2 is used (Yuan

& Schaefer 2006), which incorporates the non-ideal equation of state (EOS) pEOS into
the system. For such a choice, the interaction strength is fixed to be G = −1, and c = 1
and cs = √

1/3 are the lattice speed and sound speed, respectively. In the present work,
Peng–Robinson non-ideal gas EOS is used (Peng & Robinson 1976):

pEOS = ρR̄T
1 − bρ

− aϕ(T)ρ2

1 + 2bρ − b2ρ2 , (2.10)

where ϕ(T) = [1 + (0.37464 + 1.54226� − 0.26992� 2)(1 − √
T/Tc)]2, and we set the

gas constant R̄ = 1 and the acentric factor � = 0.344. The critical pressure pc and
temperature Tc are determined by a = 0.4572R2T2

c /pc and b = 0.0778RTc/pc. Unless
specified, in the present work, the saturation temperature is set as Tsat = T/Tcr =
0.775, and a = 1/40 and b = 2/21 are chosen, which leads to a density ratio ρl/ρg =
7.452/0.147 ≈ 50 and interface thickness W ≈ 5�x.

When such a square-root-form pseudopotential is used, the system suffers from the
so-called thermodynamic inconsistency in that the liquid–vapour coexistence densities by
the mechanical stability solution deviate from those of the Maxwell construction. To solve
the problem, Li et al. (2012, 2013) proposed to adjust the mechanical stability condition
to be consistent with the Maxwell construction. Recently, such an adjustment method has
been extended to the CLBM for single-component thermal multiphase systems, such as
two-dimensional convective boiling (Saito et al. 2021) and three-dimensional pool boiling
(Fei et al. 2020). More specifically, the central-moment forcing terms in (2.8) are slightly
modified as (Saito et al. 2021)

|Ci〉 =
[
0,Fx,Fy, η, 0, 0,Fyc2

s ,Fxc2
s , ηc2

s

]T
, (2.11)

where η = 4σ |F int|2/[ψ2�t(1/sb − 0.5)] and the tuning parameter is chosen as σ =
0.117.
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Using the Chapmann–Enskog analysis, the above CLBM with the pseudopotential
model recovers the following macroscopic equations:

∂tρ + ∇ · (ρu) = 0,

∂t(ρu)+ ∇ · (ρuu) = −∇(ρc2
s )+ ∇ · [ρν(∇u + (∇u)T)+ ρ(νb − ν)(∇ · u)I

]
+ F − 2G2c4σ∇ · (|∇ψ |2I),

⎫⎪⎪⎬
⎪⎪⎭

(2.12)

where ν = c2
s�t(1/sv − 0.5) and νb = c2

s�t(1/sb − 0.5) are the kinetic and bulk
viscosities, respectively, and sv and sb are relaxation rates for second-order central
moments in the diagonal relaxation matrix S = diag(s0, s1, s1, sb, sv, sv, s3, s3, s4). The
last term can be absorbed into the pressure tensor, leading to a thermodynamically
consistent mechanical stability condition (Li et al. 2013).

2.2. Discrete element method for particle dynamics
The DEM calculates the translational and angular velocities (Ua and Ωa, respectively) of
a classical multi-body system by applying Newton’s second law to each grain to describe
the deformation of the granular assembly:

Ma · dUa

dt
= F a, Ia · dΩa

dt
= T a (a = 1, 2, . . . ,N), (2.13)

where N is the number of grains in the system and Ma and Ia are the mass and the moment
of inertia of the a-th grain, respectively. The method consists of calculating the total force
F a and total torque T a acting on each particle and the numerical solution of the ordinary
differential equation (2.13) (Cundall & Strack 1979). In the present work, we consider each
grain as a two-dimensional circular particle (disc) with radius ra and all grains are made
of the same material with density ρp; therefore we have Ma = ρpπr2

a and Ia = ρpπr4
a/2.

The angular velocity Ωa = ωk has only one non-zero component ω (k is the unit vector
perpendicular to the paper).

The total force in (2.13) is composed of the contact interaction forces F b
a (between

particles a and b), hydrodynamic force F h
a, capillary force F cap

a and body force F va. Each
force leads to a torque contribution, except for the body force that always acts along the
centre of mass. Thus,

F a =
∑

b

F b
a + F h

a + F cap
a + F va, T a =

∑
b

T b
a + T h

a + T cap
a . (2.14a,b)

The hydrodynamic force, capillary force and their torques come from the interaction
between the fluid and solid particles, and are discussed in the next subsection. The
body force is most often the gravity force, F va = −Mag j, where g is the magnitude of
gravitational acceleration and j is the unit vector in the vertical direction.

In the DEM, the solid particles are not deformable, but they can overlap in the sense
they are considered to be rigid while their contact is assumed to be soft. Considering
two particles a and b in contact, as shown in figure 1, the overlap zone at the contact
is limited to be very small by introducing a repulsive normal force Fn. Related to the
relative tangential motion, there is a tangential force in addition to the normal force Ft.
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t
n

Xa

Xb

y

xO

rb

δn

δrra

β

Figure 1. Illustration of the interaction between particles a and b.

Therefore, the contact interaction force can be decomposed into two components:

F b
a = Fnn + Ftt, (2.15)

where n and t are unit vectors along the normal and tangential directions, respectively. The
particle contact torque is

T b
a = (X c − X a)× Ftt, (2.16)

where X a and X b are the vectors fixing the particle centre and contact point, respectively.
Following Luding et al. (1994), we consider the contact as a linear spring with damping.
The repulsive normal force depends linearly on the mutual compression distance δn, which
is defined as

δn = |X a − X b| − ra − rb. (2.17)

The normal force appears when δn < 0 and is controlled by the stiffness of the grain
particle kn. Also, another damping term that opposes the relative velocity of two contact
particles is added to consider energy dissipation. The normal force can be explicitly written
as (Luding et al. 1994)

Fn =
{

0, δn ≥ 0

−knδn − γn
dδn

dt
, δn < 0,

(2.18)

where γn is the normal damping constant and the relative normal velocity is calculated by
dδn/dt = (Ua − Ub) · n. To avoid the appearance of an attractive force, one can simply
set Fn = 0 when (2.18) produces Fn > 0 (Pöschel & Schwager 2005). The tangential force
is defined similarly, and is assumed to obey Coulomb’s friction law, i.e.

Ft =

⎧⎪⎨
⎪⎩

sgn(F̂t) · μf Fn,

∣∣∣F̂t

∣∣∣ ≥ μf Fn

F̂t,

∣∣∣F̂t

∣∣∣ < μf Fn

F̂t = −ktδt − γt
dδt

dt
, (2.19)

where kt is the stiffness of the tangential spring, γt is the damping constant, μf is the
friction coefficient and the relative tangential velocity is calculated by dδt/dt = (Ua −
Ub) · t − (raΩa + rbΩb)× n. To save memory, we only consider a particle interacting
with those particles within a cut-off radius, which is achieved using the Verlet list
algorithm (Verlet 1967). By default, the DEM parameters in (2.18) and (2.19) are set
according to the physical properties of granite sand (Soundararajan 2015).
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Internal fluid

node

Boundary node

Wall node

Solid node

|xb – xw |

|xb – xs|

xs

xw

eiei

xb

xf

δ�x
�x

δ =

Figure 2. Illustration of fluid–solid interactions and the curved boundary scheme. The solid line connected
by wall points represents the boundary of particle a.

In the time evolution of the DEM, a suitable numerical scheme is needed to integrate
(2.13) twice, i.e. to obtain the particle linear and angular velocities as well as the
translational and angular positions. Here we use the Verlet integration algorithm (Verlet
1967) since it has second-order accuracy, is fast to implement and requires less storage
memory. The Verlet scheme first evaluates the velocities at the half-integer time steps and
computes the new positions:

Ua

(
t + �tDEM

2

)
= Ua(t)+ �tDEM

2
· F a(t)

Ma
,

ωa

(
t + �tDEM

2

)
k = ωa(t)k + �tDEM

2
· T a(t)

Ia
,

X a(t +�tDEM) = X a(t)+�tDEMUa

(
t + �tDEM

2

)
,

ϕa(t +�tDEM) = ϕa(t)+�tDEMω

(
t + �tDEM

2

)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.20)

where ϕa is particle angular position and �tDEM is the time step in the DEM, which is
not necessarily equal to �t in the LBM, as is discussed later. Using the new position
information, the particle velocities are updated as

Ua(t +�tDEM) = Ua

(
t + �tDEM

2

)
+ �tDEM

2
· F a(t +�tDEM)

Ma
,

Ωa(t +�tDEM) = Ωa

(
t + �tDEM

2

)
+ �tDEM

2
· T a(t +�tDEM)

Ia
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.21)

2.3. Fluid–solid interactions
The hydrodynamic force is calculated based on the momentum-exchange method (Ladd
1994a). The basic consideration is as sketched in figure 2: at a boundary point xb, some
post-collision DDFs f ∗

i (xb, t) stream into the solid particle and each of them contributes
a momentum to the particle, i.e. f ∗

i (xb, t)ei, while at the solid point xs, the opposite
post-collision DDFs f ∗

i (xs, t) stream out of the solid particle and each of them contributes
a momentum decrement f ∗

i (xs, t)ei. Wen et al. (2014) proposed that the relative velocity
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(discrete velocity displaced by the wall velocity uw) should be used in the momentum
computation and proposed the following Galilean invariant momentum-exchange method:

F h
a =

∑[
(ei − uw)f ∗

i (xb, t)− (ei − uw)f ∗
i (xs, t)

]
,

T h
a =

∑[
(ei − uw)f ∗

i (ub, t)− (ei − uw)f ∗
i (xs, t)

]× (xw − X a),

⎫⎬
⎭ (2.22)

where X a is the particle centre and the summation runs over all the fluid–solid links.
Similar to (2.5), the Galilean invariant momentum-exchange method in (2.22) is based
on central moments of the post-collision distributions, which is therefore very consistent
with the central-moment-based CLBM used in § 2.1. The velocity of each wall point xw is
determined by

uw = Ua + ωk × (xw − X a). (2.23)

The capillary force calculation depends on the contact angle scheme. In this work, the
improved virtual-density contact angle scheme by Li, Yu & Luo (2019) is used due to its
simplicity and locality. The basic idea is that the solid points in the neighbourhood of the
liquid are allocated virtual densities by

ρs =
{
φρave(xs), θ ≤ 90◦,
ρave(xs)− δρ, θ > 90◦, (2.24)

where ρave(xs) is calculated based on the weighted average of the density at the
neighbouring fluid points (Li et al. 2019). The parameters φ and δρ are used to tune the
contact angle θ . Then, the pseudopotential at the solid point is substituted into (2.9) to
calculate the interaction force at the boundary point. The capillary force and torque are
obtained by adding up the adhesive force contribution along all the fluid–solid links:

F c
a =

∑
xb

Gψ(xb)
∑

xb+ei�t=xs

wiψ(xb + ei�t)ei,

T c
a =

∑
xb

(xw − X a)×
⎡
⎣Gψ(xb)

∑
xb+ei�t=xs

wiψ(xb + ei�t)ei

⎤
⎦ .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.25)

2.4. Curved boundary treatment
In (2.22), the opposite post-collision DDFs f ∗

i (xs, t) at the solid point node are needed.
However, inside the solid particle, the lattice Boltzmann solver is not implemented. This
requires boundary condition treatment: how does one obtain f ∗

i (xs, t) or fi(xb, t +�t) after
the streaming step? A simple and straightforward strategy is the half-way bounce-back
scheme, i.e. fi(xb, t +�t) = f ∗

i (xb, t). Since it is first-order-accurate, more lattice nodes
are needed to resolve one solid particle using the half-way bounce-back scheme, which
limits the total number of particles in our system. Many second- and higher-order curved
boundary schemes have also been proposed in the literature (Yu et al. 2003a), among
which the method originally proposed by Filippova & Hänel (1998) is used in the present
work.

As sketched in figure 2, the physical boundary intersects the fluid–solid link between
the boundary node xb and the solid node xs at the wall node xw. The fraction of the
intersected link in the fluid region is defined as δ = |xb − xw|/|xb − xs|. To obtain a
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second-order scheme, Filippova & Hanel proposed to obtain f ∗
i (xs, t) using the following

linear interpolation:

f ∗
i (xs, t) = (1 − χ) f ∗

i
(xb, t)+ χ f eq

i (xs, t)+ 2ωiρ(xb)
ei · uw

c2
s
, (2.26)

where χ is a weighting factor. The main feature of the scheme by Filippova & Hanel lies
in that it introduces a fictitious equilibrium distribution function given by

f eq
i
(xs, t) = ωiρ(xb, t)

[
1 + ei · us

c2
s

+ (ei · ub)
2

2c4
s

− ub · ub

2c2
s

]
, (2.27)

where us is the fictitious velocity at xs, and the weightsωi are defined asω0 = 4/9,ω1−4 =
1/9 and ω5−8 = 1/36. The weighting factor χ depends on δ and us. In this work, we use
the original choice by Filippova & Hanel for δ ≥ 1/2 and the improved scheme by Mei
et al. (1999) for δ < 1/2, namely

δ > 1/2 : us = (δ − 1)
δ

uf + 1
δ

uw, χ = (2δ − 1)sv,

δ ≤ 1/2 : us = uf , χ = (2δ − 1)sv
(1 − sv)

,

⎫⎪⎪⎬
⎪⎪⎭ (2.28)

where uf is the fluid velocity at the node next to the boundary node xf = xb − ei�t.
The above scheme performs well for the fixed curved boundary in single-phase flows.

However, in multiphase systems, the scheme leads to mass leakage due to the unbalance
of outgoing and incoming mass at the boundary nodes. As a result, for a static droplet
resting on a disc or sphere, the droplet shrinks or expands spontaneously (Yu et al. 2020;
Yao et al. 2022). To overcome mass leakage, Yu et al. (2020) proposed a simple strategy
by adding a compensation term in the rest DDFs:

f0(xb, t +�t) = f ∗
0 (xb, t)+

⎡
⎣ ∑

outgoing

f ∗
i (xb, t)−

∑
ingoing

fi(xb, t +�t)

⎤
⎦ . (2.29)

Yao et al. (2022) proposed another scheme which also uses the above compensation term
but slightly modified, fi(xb, t +�t), by considering the non-ideal force effect. It may be
noted that both schemes are developed for a fixed curved boundary, in the sense that the
particle cannot move. For a moving curved boundary, the third term has been added in
(2.26) to include the boundary velocity effect. Based on simple tests, we find (2.29) still
leads to sensible mass leakage for moving boundary problems, and we propose to use the
following alternative scheme by removing the velocity correction term in fi(xb, t +�t),
i.e.

f0(xb, t +�t) = f ∗
0 (xb, t)

+
⎛
⎝ ∑

outgoing

f ∗
i (xb, t)−

∑
ingoing

[
fi(xb, t +�t)− 2ωiρ(xb)

ei · uw

c2
s

]⎞⎠ .
(2.30)
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xb

xd

xc

xe

Neighbouring

fluid node

Newborn

fluid node

t + �t
t

Figure 3. Illustration of refilling scheme.

2.5. Refilling scheme and effective hydraulic particle radius
For our considered problems, some nodes may emerge from the solid region to the fluid
domain due to the movement of particles in the time interval t to t +�t, as sketched in
figure 3. To initialize the DDFs at these points, we use the following non-equilibrium
refilling scheme:

fi(xb, t +�t) = f eq
i [ρave(xb),u(xb)] + f neq

i (xb, t +�t), (2.31)

where ρave(xb) is calculated based on the weighted average of the density at the
neighbouring fluid nodes, and u(xb) is calculated according to the particle velocity:

u(xb) = Ua + ωa(xb − X a). (2.32)

Previously, Caiazzo (2008) simply copied the non-equilibrium part from a neighbour of
the new fluid node. However, such a neighbour of the present new fluid node along a
certain discrete velocity direction could as well be a new fluid node or even a solid node,
which, for either, the non-equilibrium part is unknown. To avoid ambiguity and improve
stability, we use a weighted average method to approximate the non-equilibrium part:

f neq
i (xb, t +�t) ≈

∑
ωi
[
fi(x + ei�t, t +�t)− f eq

i (x + ei�t, t +�t)
]

∑
ωi

, (2.33)

where the summation runs over all the old neighbouring fluid nodes. Taking xb in figure 3
as an example, the summation includes xc , xd and xe.

As discussed by Jiang et al. (2022), two-dimensional simulations may encounter the
problem that there are no connected paths for fluid to flow through densely packed
sediments, while in three dimensions pore spaces may actually be interconnected. In
addition, when two particles are in contact with each other, it brings difficulties in treating
curved boundary conditions using the scheme discussed in above. To solve this problem,
we employ a method similar to that proposed by Boutt, Cook & Williams (2011), by
introducing an effective hydraulic radius ra,h for each particle a in LBM simulations. By
default, the effective hydraulic radius in the LBM is 2.5�x smaller than the particle radius
in the DEM, i.e. ra,h = ra − 2.5�x.

2.6. Unit conversion and time-step matching
Usually, lattice units are used in LBM simulations while physical units are used in DEM
simulations. In the coupled LBM–DEM model, information exchange is needed at the
interface of the LBM and DEM solvers. For example, we need to convert the lattice unit

975 A20-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

82
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.822


L. Fei and others

hydrodynamic force and capillary forces calculated based on DDFs and pseudopotential
functions into physics units for solving particle dynamics. We also need to convert the
physical unit particle locations and velocities into lattice units to deal with the boundary
conditions and refilling in the LBM solver. To this aim, unit conversion is needed. The
variables in lattice units can be converted into physical units based on the reference
variables, and we consider the following three primary variables, namely reference length
�xr, reference time �tr and reference mass mr, i.e.

�xr = Lp

Ll
, �tr = νl

νp
�x2

r , mr = ρl

ρp
�x2

r , (2.34a–c)

where L is the system size and the indexes p and l indicate a variable in physical and lattice
units, respectively. Other reference variables, such as reference acceleration, reference
force, reference torque, reference translation velocity and reference angular velocity, are
derived from the primary variables:

ar = �xr

�t2r
, Fr = mr

�xr

�t2r
, Tr = mr

�x2
r

�t2r
, Vr = �xr

�tr
, wr = 1

�tr
. (2.35a–e)

As noted above, the time steps used in the LBM and in the DEM do not need to be
identical. Considering both in physical units, the LBM time step is determined by fluid
viscosity vphys and the mesh size �xphys, i.e. �tLBM = (1/sv − 0.5)�x2

phys/3vphys, while
the DEM time step �tDEM should be smaller than a critical oscillation length scale by

�tcr
DEM = λπrmin

√
πρp/kg, (2.36)

where rmin is the smallest particle radius and the step factor λ is chosen to be around 0.1 to
ensure both stability and accuracy (Soundararajan 2015). Usually, �tDEM is smaller than
�tLBM; therefore a subcycling time integration with Nsub steps in the DEM is required to
match one LBM step. To this aim, the DEM time step is chosen as

�tDEM = �tLBM/Nsub, Nsub = ⌈
�t/�tcr

DEM
⌉+ 1, (2.37a,b)

where 	·
 is an integer round-off operator.

3. Model validation

In this section, we conduct several benchmark cases to validate our proposed LBM–DEM
model for gas–liquid–solid interaction problems. Firstly, sedimentation by gravity of a
single disc in a single-phase fluid is considered to validate the implementation of the
curved boundary scheme and refilling scheme. Secondly, a single particle floating on
the liquid–gas interface is simulated to validate the implementation of contact angle and
capillary force. Then, the sinking of a horizontal cylinder is simulated to test the model
against the experiment. Finally, we validate the implementation of particle interactions in
the DEM by considering the self-assembly process of three particles on the liquid–gas
interface.

3.1. Single-disc sedimentation in single-phase fluid
The considered problem is sketched in figure 4. A disc with diameter D is initially
released away from the channel centre, which is filled with static single-phase fluid.
Due to its higher density than that of the fluid, the disc sinks and rotates under gravity
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D

L = 4D

G

H

Figure 4. Illustration of single-disc sedimentation problem.

and the hydrodynamic force. The disc accelerates in the early stage and finally reaches a
steady state with a constant descending velocity along the centreline since the drag force
and buoyancy exactly offset gravity. To compare with the arbitrary Lagrangian–Eulerian
technique (ALE) simulation (Hu, Patankar & Zhu 2001) and previous LBM simulations
by Wen et al. (2012, 2014), the channel width is set as 4 × 10−3 m and the disc diameter is
10−3 m. The fluid density and kinematic viscosity are 103 kg m−3 and 10−6 m2 s−1. The
disc is released at 7.6 × 10−4 m away from the left wall, and the gravitational acceleration
is g = −9.8 ms−2. The channel width is resolved by 120�x, and the length-to-width ratio
is 12.5. The terminal vertical velocity vp depends on the particle density, and we consider
two cases with ρp = 1.01 × 103 and 1.03 × 103 kg m−3, leading to a terminal Reynolds
number (defined as Re = Dvp/ν) Re = 3.23 and 8.33, respectively. In the LBM solver, the
kinetic viscosity is set as 0.033, leading to sv = 1.667. The time steps in LBM and DEM
are �tLBM = 3.704 × 10−5 s and �tDEM = 6.173 × 10−6 s, respectively, with Nsub = 6.

The time-dependent trajectories, angular velocities, horizontal velocities and vertical
velocities for the two cases are shown in figures 5 and 6 together with a comparison
with the results by ALE (Hu et al. 2001) and Wen et al. (2012, 2014). In terms of
trajectories, angular velocities and horizontal velocities, the present simulations are in
excellent agreement with the two reference solutions. The present model gives slightly
lower terminal vertical velocities than Wen et al., deviates slightly from ALE for case Re =
3.23 (figure 5d) but agrees better with ALE for case Re = 8.33 (figure 6d). The difference
between the present model and Wen et al. lies in that we use the Filippova & Hanel scheme
to deal with curved boundary conditions and the non-equilibrium scheme to initialize
the newborn fluid nodes, while the quadratic interpolation scheme and second-order
extrapolation scheme have been used by Wen et al. As we have discussed above, the
interpolation/extrapolation schemes work well for suspended particles in single-phase
fluids, but suffer from numerical instabilities in two-phase fluids. Nevertheless, the
differences between our method and Wen et al. are negligible, which confirms the accuracy
of the curved boundary scheme and refilling scheme used in the present model.

In the above simulations, the resolution is chosen the same as that of Wen et al. (2014)
by setting D = 30�x. Here, we want to test the dependence of the results on the grid size
by considering another two settings, i.e. D = 20�x and D = 25�x. For the trajectories,
horizontal and vertical velocities, the differences among the results based on different
resolutions are almost negligible, as shown in figures 6(a), 6(c) and 6(d), respectively.
For the angular velocities, the differences are also very small, but the results based on
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Figure 5. Single-disc sedimentation at Re = 3.23. Time-dependent (a) trajectories, (b) angular velocities,
(c) horizontal velocities and (d) vertical velocities.

coarser meshes (especially for D = 20�x) present some oscillations, as seen in the inset of
figure 6(b). We have also conducted more simulations with different resolutions at different
Re; the trend is similar and is not shown here. Generally, we see that accurate and smooth
results can be obtained at the condition D ≥ 25�x. Such a criterion will be taken into
account in more complex cases in the following.

3.2. Single particle floating on the liquid–gas interface
We now simulate a particle with a diameter D floating at the liquid–gas interface, as
sketched in figure 7. The system has a size of 2D × 2D with non-slip boundary conditions
on all the walls and is divided into two equal parts, filled with gas phase and liquid
phase at the top and bottom, respectively. The particle is initially located in the centre
of the system. To make the particle’s steady location solely adjusted by the contact angle,
gravity is neglected in this case (Zhang et al. 2020). Due to the capillary force, the particle
will move adaptively to a steady location, where the contact angle equals the equilibrium
contact angle. In the simulations, the particle diameter is 5 mm, resolved by 100 �x. The
particle density, liquid density and liquid viscosity are chosen as ρp = 2000 kg m−3,
ρl = 1000 kg m−3 and νl = 10−4 m2 s−1, respectively. In the LBM, the viscosity is
set as νl = 0.05. For this problem, the time steps in LBM and DEM are identical,
�tLBM = �tDEM = 1.25 × 10−6 s, since �tLBM < �tcr and the subcycling step Nsub in
(2.37a,b) is set to be unity.
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Figure 7. Illustration of single particle floating on the liquid–gas interface.

We consider different cases by changing φ and δρ in (2.24) to achieve various contact
angles. Snapshots for three typical cases are shown in figure 8. According to (2.24), the
case with φ = 1.25 and δρ = 0.0 leads to a hydrophilic wetting condition; therefore the
particle moves downward with some transient oscillation and finally reaches a steady
position (seen in figure 8a–d), with a contact angle measured using ImageJ Fiji software
of θ1 = 56.2◦. For the case in figure 8(e–h) with φ = 1.0 and δρ = 0.0, a neutral wetting
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Figure 8. Evolution of a floating solid particle (in white) at the liquid–gas interface (liquid phase: in red; gas
phase: in blue): (a–d) φ = 1.25, δρ = 0.0; (e–h) φ = 1.0, δρ = 0.0; (i–l) φ = 1.0, δρ = 0.3.

condition is expected and the measured steady contact angle is θ1 = 94.2◦. Although not
exactly at 90◦, it is within the acceptable range compared with the results reported in Li
et al. (2019). The case with φ = 1.0 and δρ = 0.3 corresponds to a hydrophobic wetting
condition; accordingly the particle moves upward and finally reaches the steady position
with θ1 = 120.8◦, as seen in figure 8(i–l). Among the three cases, the transient time is
the smallest (∼0.75 s) for the case in figure 8(e–h) since its initial location is closest to
the steady state and capillary oscillation is barely present. Such an argument is further
confirmed by the transient vertical locations for different cases shown in figure 9(a), where
for the cases with larger deviation from the neutral case, either hydrophilic or hydrophobic,
the oscillation is more significant. For a consistent contact angle scheme, one may expect
that the contact angle on a moving boundary agrees with the contact angle measured on
a fixed boundary. To this aim, a static droplet sitting on a fixed particle is also simulated,
and the measured contact angle θ2 is compared with θ1 for different settings in figure 9(b).
It is clearly seen that the two contact angles agree well with each other, which confirms
the consistency of the contact angle implementation in the present model.

3.3. Sinking of a horizontal cylinder
In order to further test the performance of our proposed LBM–DEM for the
gas–liquid–solid interaction problems in the presence of moving contact lines, the sinking
of a horizontal cylinder is investigated. The problem has been studied experimentally
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Figure 9. (a) Transient vertical location of a solid particle floating at the liquid–gas interface. (b) Comparison
between the contact angles measured from a floating particle (θ1: top left inset) and a static droplet sitting on a
fixed particle (θ2: bottom right inset).
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Figure 10. Geometry set-up of the sinking of a cylinder from the liquid–gas interface.

by Vella, Lee & Kim (2006) and numerically by He et al. (2019) and Zhang et al.
(2020). As sketched in figure 10, a circular cylinder with a diameter D = 5 mm (long
enough in the axial direction) lies horizontally at the liquid–gas interface. The density
of the cylinder is chosen as ρd = 1920 kg m−3 such that the capillary force and the
weight of the displaced liquid (of density ρl = 1000 kg m−3) are not sufficient for the
cylinder to remain afloat. Therefore, the cylinder sinks rapidly to become completely
immersed in the bulk fluid. Length h is the distance between the cylinder’s centre and
the undeformed free surface; β is the angle between the position of the contact line
and the vertical direction. In the simulation, the cylinder is initially half-immersed at
the liquid–gas interface. The computational domain is chosen as 12D × 4.8D, which is
sufficiently wide so that the capillary waves reflected by the sidewalls will not affect the
sinking dynamics, and the cylinder diameter is resolved by 100�x. The four boundaries
are set as solid walls with a contact angle of 90◦. The initial liquid–gas interface is
beneath the top wall, with a distance D. The cylinder contact angle is set as the averaged
value of the contact angles in the experiments (Vella et al. 2006), i.e. θ = 111◦ (φ = 1.0
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t = 0.02 s t = 0.04 s

t = 0.06 s t = 0.102 s

(b)(a)

Figure 11. Snapshots of the sinking process at different time frames. (a) Experimental results from Vella
et al. (2006) and (b) the corresponding simulation results of the present model.
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Figure 12. Quantitative comparison between experiments (Vella et al. 2006) and the present LBM–DEM
simulations. (a) Time evolution of the cylinder’s centre and (b) time evolution of the angle between the contact
line and the vertical direction.

and δρ = 0.21). To match the experimental conditions, we choose the Weber number
as We = ρlgD2/γ = 3.7 and the Ohnesorge number as Oh = ρlνl/

√
ρlDγ = 0.017, with

ρl = 7.452, gravity g = 4.9 × 10−6, surface tension γ = 0.098 and νl = 0.02 in lattice
units.

Figure 11 shows snapshots of the sinking process, where the simulation results
(figure 11b) are compared with the experimental results (figure 11a). A good agreement is
observed at different instants. To be more quantitative, we also plot the evolutions of the
cylinder’s centre and the angle of the contact line relative to the centreline in figure 12.
According to Vella et al. (2006) and He et al. (2019), h and t have been normalized by
the characteristic length

√
γ /ρlg and the characteristic time (γ /ρlg3)1/4, respectively. It

is seen that the cylinder’s centre experiences acceleration (due to gravity) in the beginning
stage, then goes to a steady stage showing a linear drop of h∗ with t∗ and finally is
subject to a slight deceleration (maybe due to the snap-off). Our present simulations
agree very well with the experiments, as shown in figure 11(a). The angle β decreases
slightly in the beginning, which is as expected due to the hydrophobic condition, although
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Figure 13. Geometry set-up of the self-assembly of three hydrophilic particles on a liquid–gas interface.

the experimental data are missing at t∗ < 0.7. Afterward, β increases approximately
linearly with time in both experiments and our simulations. The small differences between
simulations and experiments may be attributed to the fact that the dynamic contact angle
θd ∈ [97◦, 125◦] in experiments (Vella et al. 2006) has been replaced by its mean value
θ = 111◦ in simulations. Nevertheless, the accuracy of the present simulation is within an
acceptable range.

3.4. Self-assembly of three particles on a liquid–gas interface
In this subsection, we test the ability of our model for multi-particle liquid–gas–solid
interactions by simulating the self-assembly of three hydrophilic particles on a liquid–gas
interface. Following the previous simulations by the diffuse-interface immerse-boundary
method (Liu, Gao & Ding 2017) and LBM (Zhang et al. 2020), three equal-size hydrophilic
particles, marked as A, B and C, are initially half immersed at the liquid–gas interface
with different distances between each other, as sketched in figure 13. The particle diameter
is D = 5 mm, resolved by 100 �x, the contact angle is θ = 56.2◦ and the system size
is 30 mm × 20 mm. Non-slip velocity and neutral wetting conditions are set on all the
wall boundaries. The liquid density, particle density and liquid viscosity are chosen as
ρl = 1000 kg m−3, ρp = 400 kgm−3 and νl = 5 × 10−6 m2 s−1, respectively. Gravity
is included with g = −9.8 m s−2. In the LBM, the viscosity is set as νl = 0.04. Based
on the unit conversion, the time step in the LBM is �tLBM = 5 × 10−6 s, and the time
step in the DEM is �tDEM = 2.5 × 10−6 s by setting Nsub = 2. The surface tension
based on the Laplace test in lattice units is γ = 0.098, equivalent to 0.075 N m−1.
The corresponding Weber and Ohnesorge numbers are We = ρlgD2/γ = 3.3 and Oh =
ρlνl/

√
ρlDγ = 0.033, respectively.

Figure 14 shows the self-assembly process of the three particles at different times.
From the figure, it is clear that there are three stages in the process: at the first stage,
particle A moves towards B which remains almost stationary, while particle C slightly
moves close to the right wall; when particle A meets with B, they move together towards
the right until they collide with particle C; finally, the three particles assemble and
adhere to the right wall. The physical origin of such a self-assembly behaviour can be
explained with a force analysis, as done by Vella & Mahadevan (2005). For a quantitative
description, the time evolutions of the particle horizontal centres and vertical centres
are plotted in figure 15. Figure 15(a) displays the above-mentioned three stages (marked
as I, II and III), and the stage transitions (I/II and II/III) that happen at t ≈ 0.5 s and
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Figure 14. Snapshots of the three-particle self-assembly process on a liquid–gas interface.
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Figure 15. Evolution of normalized three-particle centres in the horizontal direction (a) and vertical direction
(b) during their self-assembly process on a liquid–gas interface.

t ≈ 0.85 s, respectively. During the assembly process, the particles float up and down, as
evidenced by the oscillation behaviours in figure 15(b). In the end, particle A lies lower
than B and C, which is due to the fact that the liquid–gas interface is lower to its left than
its right and particle A must adaptively locate lower to obtain sufficient buoyancy. The
present simulation results are in good agreement with the results reported in the literature
(Liu et al. 2017; Zhang et al. 2020), which confirms the ability of our model for simulating
complex liquid–gas–solid problems involving capillary force, gravity, moving boundary
and multi-particle interactions.

4. Applications

What happens when a rain droplet falls on a dry sandy beach or a pool of mud?
Droplets impacting deformable porous substrates such as sand may lead to cratering, and
rearrangement of the particles and substrate (Katsuragi 2010), which has been studied
to some extent experimentally (Katsuragi 2010; Delon et al. 2011; Zhao, de Jong & van
der Meer 2017). Recently, droplets impacting on rigid porous substrates have also been
studied based on pore network modelling (Rahimi et al. 2016) and the LBM (Wang, Fei
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Figure 16. A schematic diagram of droplet impact on a deformable porous medium.

& Luo 2021). However, a droplet impacting on a ‘soft’ substrate, involving movable and
rearranging particles, has not been simulated at the pore scale. In this section, we take
up the ‘step-out’ challenge to do a preliminary numerical study of a droplet impacting a
deformable porous medium at the pore scale using the above proposed LBM–DEM model.

As sketched in figure 16, a droplet with diameter D0 = 2 cm is initialized with a velocity
U, impacting the deformable porous medium, which is composed of 1277 movable solid
particles (discs). The system size is set as 5D0 × 2.5D0 to allow sufficient spreading after
droplet impact, and is resolved by 2000�x × 1000�x. The particle diameter ranges from
1.03 to 1.77 mm, with an average diameter 〈d〉 = 1.42 mm, leading to a large diameter
ratio D0/〈d〉 ≈ 14, satisfying the condition D0 � 〈d〉, as suggested in experiments
(Katsuragi 2010). The liquid–gas density ratio is about 17 and the interface thickness is
about 5�x by setting Tsat = 0.86, and a = 3/49 and b = 2/21. In physical units, the liquid
density and solid density are set as 1000 and 2650 kg m−3 to mimic liquid water and
granite sand, respectively (Soundararajan 2015). From current knowledge of the dynamics
of droplet impact upon a solid surface, the droplet spreading behaviour is governed by
the interplay of various forces, including viscosity, dissipation, surface tension and inertia,
leading to scaling dependence on Reynolds number (Re = D0U/vl), Weber number (We =
ρlU2D0/γ ) and wettability (Lee et al. 2016b). For this study, we look at the dependence on
We while maintaining Re = 240 by varying U and vl simultaneously, in order to simplify
the study of the after-impact behaviour, i.e. when liquid flow is coupled with movable
particles. We consider eight cases as detailed in table 1, and for each case, we consider
two wettability conditions, i.e. θ = 90◦ and θ = 60◦. Periodic boundary conditions are
imposed along the x direction, while the non-slip boundary condition is used on the bottom
and top walls.

The impact process at We = 4.4 is shown in figure 17. For both contact angle
cases, we can generally see two periods: a spreading period from t = 0 to t = tmax,
when the droplet spreading length D is increasing, followed by a receding period with
decreasing D. The time to reach maximum spread, tmax, is almost the same for both
cases. Compared with the case θ = 90◦ shown in the left column, in the right column
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Case U (LU) νl (LU) �tLBM (s) �tDEM (s) We

1 0.012 0.020 2.00 × 10−6 5.00 × 10−7 4.4
2 0.015 0.025 2.50 × 10−6 5.00 × 10−7 6.9
3 0.020 0.033 3.33 × 10−6 5.56 × 10−7 12.4
4 0.025 0.042 4.20 × 10−6 5.21 × 10−7 19.3
5 0.033 0.055 5.50 × 10−6 5.50 × 10−7 33.6
6 0.042 0.070 7.00 × 10−6 5.38 × 10−7 54.5
7 0.054 0.090 9.00 × 10−6 5.63 × 10−7 90.0
8 0.070 0.117 1.17 × 10−5 5.56 × 10−7 151.3

Table 1. Numerical set-up for droplet impact on deformable porous media.

(θ = 60◦), the droplet penetrates deeper in the pores with the particle substrate, as also
seen in supplementary movies 1 and 2. Such a difference is as expected, since imbibition
should occur in hydrophilic pores even in the absence of inertia force (U = 0). During
receding, the surface energy is partially converted to kinetic energy, leading to the rise
of the droplet, as seen in the last frame (t = 0.147 s). Interestingly, the receding droplet
carries some particles at its base, a distinct feature of droplet impact on movable particles
compared with droplet impact upon planar or rough surfaces. For the neutral case, the
lifted particles are mainly half-immersed at the liquid–gas interface, while for the case
with θ = 60◦ they are largely or even completely submerged in the liquid phase.

When We is increased to 33.6, the deformation of the droplet after the impact is more
significant and the interplay between droplet and particles is also enhanced, as seen in
figure 18 and supplementary movies 3 and 4. A clear pancake shape is seen at t ≥ 0.101 s
for both contact angle cases, and the liquid penetration into the porous medium is more
visible for the hydrophilic condition. After reaching maximum spreading (t = tmax), some
receding behaviour of the droplet is visible but not as clearly as for the case at We =
4.4 (see figure 17), which may be attributed to the fact that more energy is dissipated by
viscosity at the present higher-We case.

Finally, when We is further increased to 151.3, as shown in figure 19, the droplet
deformation after the impact is so remarkable that it almost changes to a liquid film at
t ≥ 0.132 s. Compared with the previous two cases in figures 17 and 18, the movement of
the particles after the droplet impact is more obvious and the liquid penetration is deeper
(especially for θ = 60◦), as also evidenced in supplementary movies 5 and 6. However,
after the maximum spreading (t = tmax), the receding is so slow that for a long period,
equivalent to 2.5–3 times tmax, the contact points at the left and right ends of the flattened
droplet are in all appearance pinned.

In order to quantify the impact process, the spreading length D following droplet impact
for all the cases of We is plotted versus time in figure 20. One can observe that for all
cases (i) the spreading length D first increases monotonically until the maximum spreading
point (indicated by green filled circles) and (ii) afterwards D decreases and tends to an
asymptotic value, as also reported by the experiments of Delon et al. (2011). The recession
is less significant for larger-We cases, which is consistent with the previous results in
figures 17–19 and has also been seen in experiments (Delon et al. 2011). A higher We
leads to a larger maximum spreading length Dmax. For the same We, Dmax is also affected
by the contact angle θ . These explicit dependencies are analysed in the following.

The understanding of Dmax after the droplet impact is key to the control of droplet
dynamics in many applications. For example, in the case of a raindrop impacting on
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t = 0 s t = 0 s

t = 0.020 s t = 0.020 s

t = 0.037 s t = 0.037 s

t = tmax = 0.055 s t = tmax = 0.053 s

t = 0.097 s t = 0.097 s
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Figure 17. Evolution of droplet impact on a deformable porous medium at We = 4.4: (a,c,e,g,i,k)
θ = 90◦ (supplementary movie 1 available at https://doi.org/10.1017/jfm.2023.822) and (b,d, f,h, j,l) θ = 60◦
(supplementary movie 2).

a soil or building surface, the wetted area for liquid transport into the substrate is
directly related to Dmax (Blocken & Carmeliet 2015). For a droplet impacting upon a
non-deformable surface, the maximal spreading is governed by a balance between kinetic
energy, surface energy and viscous dissipation during spreading (Lee et al. 2016b). For
the present problem, the kinetic and potential energy of particles should also be taken
into consideration. To this aim, following Lee et al. (2016a), an energy budget analysis is
conducted and the calculation of different energy contributions is provided in Appendix B.
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Figure 18. Evolution of droplet impact on a deformable porous medium at We = 33.6: (a,c,e,g,i,k) θ = 90◦
(supplementary movie 3) and (b,d, f,h, j,l) θ = 60◦ (supplementary movie 4).

As seen in figure 21, during the spreading period, the normalized kinetic energy of the
droplet Ek decreases monotonically, while the normalized dissipation energy of the droplet
Ed increases with time, as well as the normalized particle energy Ep. For the normalized
surface energy of the droplet Es, however, the trend is not monotonic and depends on
different cases. At small We, the surface energy Es is dominant and slightly increases
after impact for the neutral wetting case, as shown in figure 21(a). For the hydrophilic
wetting condition, Es slightly decreases with time, due to the fact that the surface tension
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(b)
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(e)

(k)
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Figure 19. Evolution of droplet impact on a deformable porous medium at We = 151.3: (a,c,e,g,i,k) θ = 90◦
(supplementary movie 5) and (b,d, f,h, j,l) θ = 60◦ (supplementary movie 6).

between the liquid and solid phases is smaller than the liquid–gas surface tension. For
intermediate-Weber-number cases, the kinetic energy is more dominant in the beginning.
However, after impact, the kinetic energy of the droplet Ek decreases fast due to the
large dissipation, as shown in figure 21(b,e). Since the droplet is greatly deformed into
a pancake shape, as seen in figure 18, the surface energy increases accordingly, even
for the hydrophilic case, as shown in figure 21(e). Generally, at the maximum spreading
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Figure 20. Temporal evolution of the spreading length D following a droplet impact upon the deformable
porous medium: (a) θ = 90◦ and (b) θ = 60◦.
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Figure 21. Time evolution of energy contributions (total energy, Et; dissipation energy, Ed; surface energy,
Es; droplet kinetic energy, Ek; particle energy, Ep) during spreading of droplet impact upon deformable porous
medium. (a–c) For θ = 90◦ and We = 4.5, 33.6 and 151.3, respectively. (d– f ) For θ = 60◦ and We = 4.5, 19.3
and 151.3, respectively. All frames share the legend.

point, t = tmax, the accumulated dissipation energy is comparable to surface energy. At
large We number, We = 151.3, the droplet experiences significant deformation and is
gradually squeezed into a thin film, leading to much more energy dissipation. In addition,
a significant part of the energy is dissipated as a result of impregnation into the porous
medium. Thus, the dissipation energy eventually surpasses the surface energy, as shown
in figure 21(c, f ).
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Figure 22. Proportion of four energy terms (droplet kinetic energy, Ek; dissipation energy, Ed; surface energy,
Es; particle energy, Ep) at maximum spreading as a function of impact velocity: (a) θ = 90◦ and (b) θ = 60◦.

The contributions of different energies at the maximum spreading for all the considered
cases are plotted in figure 22. Generally, the surface energy shares the largest energy budget
at a small impact velocity, but is outperformed by the dissipation energy with increasing
impact velocity. We observe that the crossover of surface and dissipation energies occurs
at a lower velocity for the hydrophilic case. The kinetic energy remaining at maximum
spreading is almost zero (smaller than 4 % of the total energy). These features are very
consistent with the results of droplet impact on a non-deformable solid surface by Lee
et al. (2016a). Quantitatively, the surface energy contribution in the limit of low impact
velocity and the dissipation energy contribution at the high-impact-velocity limit approach
80 % and 60 % in Lee et al. (2016a), which are around 10 % higher than our results. In
all appearance, this energy difference (10 % of the total energy) can be attributed to the
particle energy in our cases, as seen in figure 22.

We now try to further understand the maximum spreading length Dmax based on the
energy budget analysis. It is known that at small We, most of the initial energy is converted
into the surface energy at the maximum spreading length, giving

ρD2
0U2 ∼ γDmax → Dmax/D0 ∼ We. (4.1)

However, such a relation encounters the problem of zero spreading length in the limit
of low We, which is not realistic. It is noted that even without impact (U = 0), a droplet
still spreads on a solid surface, and its maximum spreading length depends on the dynamic
wetting condition (Lee et al. 2016b). To take into account this behaviour, Lee et al. (2016b)
proposed to add a surface energy contribution ∼ γDmax,0 in the low-velocity limit, where
Dmax,0 is the maximum spreading length at U → 0. Then, the energy balance reads

ρD2
0U2 + γDmax,0 ∼ γDmax → Dmax − Dmax,0

D0
∼ We. (4.2)

In experiments, Dmax,0 is estimated based on extrapolations, while in our simulations is
obtained by setting a very small impact velocity (U = 0.001).

The above scaling fails at large We since the dominant energy switches to the dissipation
energy. To describe the global dependence, a scaling relation should allow a smooth
cross-over between the two limits (We → 0 and We → ∞), and its formulation is required
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Figure 23. Rescaled maximum spreading ratio as a function of the Weber number. The dashed line is the

prediction by (4.3) with fitting parameters k1 = 3.11 and k2 = 34.39.

to be as simple as possible. Following Lee et al. (2016b), the first-order Padé approximation
is used, which gives the following relation:

Dmax − Dmax,0

D0
= k1

We
(k2 + We)

, (4.3)

where k1 and k2 are two fitting parameters, depending on the wall conditions (roughness
and deformability) but independent of the wetting condition. It may be noted that the
present analysis is based on a two-dimensional configuration. In three dimensions, the
initial kinetic energy and surface energy scale as ρD3

0U2 and γD2
max, respectively, and the

right-hand side of (4.3) changes to k1We1/2/(k2 + We1/2), which is consistent with (3.6)
in Lee et al. (2016b).

To check the validity of our analysis, we plot values of (Dmax − Dmax,0)/D0 as a function
of We for all the cases considered in this work in figure 23. All points tend to collapse, over
a comparatively wide parameter range, onto a single curve which is well predicted by (4.3)
with fitting parameters k1 = 3.11 and k2 = 34.39. For the hydrophilic case at high impact
Weber number, the simulation results are slightly lower than the scaling prediction, which
may be attributed to the fact that part of the liquid penetrates into the porous medium and
therefore does not contribute to the maximum spreading length.

In addition, we note that in the above energy budget analysis, we have dropped the effect
of Re by fixing Re = 240. For a drop impacting on a rigid surface, great efforts have been
made to build the dependency of the maximum spreading ratio on Re or We, as revisited
in Laan et al. (2014), Lee et al. (2016b) and Huang & Chen (2018). Laan et al. (2014)
showed that both We and Re play important roles, and proposed a universal rescaling by
interpolating the scaling behaviours for the viscous regime (Re1/5) and capillary regime
(We1/2). Such a scaling was further extended to taking the nature and roughness of the
surface into account (Lee et al. 2016b). As shown in figure 24 in Appendix C, when Re
is increased to 500, the impacting dynamics will be quite different from the cases above.
For example, the liquid front penetrates faster into the porous medium in the beginning,
leading to a large mixing ratio at the maximum spreading, similar to the experimental
results reported by Zhao et al. (2019). In such a case, it is expected that more kinetic energy
is dissipated and also transformed into particle energy, and therefore (4.3) can no longer
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t = 0 s t = 0.025 s

t = 0.055 s t = 0.11 s

t = tmax = 0.165 s t = 0.33 s

(a)

(d )

(b)

(e)

(c)

( f )

Figure 24. Evolution of droplet impacting on a deformable porous medium at Re = 500.

describe the maximum spreading ratio. An appropriate extension of (4.3) by including Re
would be a focus in future work.

5. Conclusions

In this work, a coupled LBM–DEM model is proposed to simulate liquid–gas–solid
interaction problems. The two-phase flow fluid is solved based on the LBM and the
cascaded collision operator is used to enhance the numerical performance. The solid
phase, composed of circular particles, is solved by the classical DEM solver. The two
solves are fully coupled, in the sense that (i) each solid particle is resolved, (ii) the
movement of particles leads to disappearances and births of certain fluid points and (iii)
the solid particle dynamics is affected by both the particle–particle interactions and the
fluid–solid interactions, including hydrodynamic momentum exchange and capillary force.
To construct an accurate and robust coupling algorithm at the fluid–solid interface, a
weighted average non-equilibrium extrapolation scheme is proposed to refill the newborn
fluid points, the Galilean-invariant momentum-exchange method (Wen et al. 2014) is
used to implement the hydrodynamic force and torque, and the method of Joshi & Sun
(2009) combined with improved virtual-density contact angle scheme (Li et al. 2019)
is employed to implement the capillary force effect. To impose the non-slip boundary
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condition on curved walls, the scheme by Filippova & Hänel (1998) is extended to
two-phase fluids and moving boundaries by appropriately adding a correction term. The
developed coupling algorithm is generally local, in the sense that only the information
at one layer of neighbouring lattices (see in (2.22), (2.25), (2.26) and (2.31)) is needed
in the implementation. Compared with the colour-gradient LBM–DEM method recently
proposed by Jiang et al. (2022), our method is easier to implement, more efficient in
computation, able to deal with two-phase fluids with different densities and can change the
contact angle on moving solid walls. In addition, we also provide a detailed discussion on
the unit conversion from lattice units to physical units and time-step matching between the
two solvers. The proposed model is carefully validated against four benchmark problems.

The method is then applied to study the droplet impact upon a deformable porous
medium, which is composed of up to 1277 solid particles. The complete spreading process
after droplet impact, the deformation of the porous medium as well as the invasion of
the liquid into the pores among the solid particles are well captured. By measuring the
time evolution of different energies, it is found that, at the maximum spreading with cases
of increasing Weber number, the surface energy is dominant to be outperformed by the
accumulated dissipation energy, less energy is converted into the particle energy and the
kinetic energy decreases to almost zero. The energy dissipation due to the deformation
of the granular substrate under study is found to be 10 % of the total energy, leading to
reduced spreading. A simple scaling relation based on the dominant energy is proposed to
predict the maximum spreading length Dmax and is shown to work well for our considered
parameter range. We expect the present method will facilitate the investigation of various
complex liquid–gas–solid interaction problems, for example, the leakage of sub-seabed
stored CO2, the self-assembly of colloidal suspensions, etc.

In the future, to simulate more realistic liquid–gas–solid interaction problems, the
model will be extended to three dimensions. The DEM has been well established in
three dimensions, and the extension of the LBM to three dimensions is more or less
straightforward. For example, we have already extended the multiphase cascaded LBM to
three dimensions and applied it to simulating large-scale pool boiling (Fei et al. 2020). For
the coupling interface between the two solvers, its extension to three dimensions is also
trivial since the algorithms proposed in the present work are generally local. The main
challenge lies in the computational cost. Taking a typical case in § 4 as an example, our
code (developed based on C++ and parallelized by OpenMP) needs to run for ∼12 h with
eight processors in the Cray XC40 supercomputer at the Swiss National Super Computing
Center. A CLBM based on a three-dimensional nineteen-velocity lattice (Qian et al.
1992) approximately triples the computational cost compared with a two-dimensional
nine-velocity CLBM. Therefore, the CPU time for a three-dimensional simulation
(with 1000 lattices in the third direction) is ∼3000 times that for two-dimensional
simulations by ignoring other possible costs (such as information communications). Such
a computational cost is indeed huge but still feasible by using advanced high-performance
computing technology; for example, the Multi-GPU accelerated computations by the
hybrid OpenACC and MPI approach (Xu & Li 2023).

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.822.
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Appendix A. Transformation matrix and shift matrix in CLBM

The transformation matrix M and shift matrix N are explicitly given as

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 1 1 1 1 2 2 2 2
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1
0 0 0 0 0 1 1 −1 −1
0 0 0 0 0 1 −1 −1 1
0 0 0 0 0 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (A1)

N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0
−ux 1 0 0 0 0 0 0 0
−uy 0 1 0 0 0 0 0 0

u2
x + u2

y −2ux −2uy 1 0 0 0 0 0
u2

x − u2
y −2ux 2uy 0 1 0 0 0 0

uxuy −uy −ux 0 0 1 0 0 0
−u2

xuy 2uxuy u2
x −uy/2 −uy/2 −2ux 1 0 0

−u2
yux uy

2 2uxuy −ux/2 ux/2 −2uy 0 1 0
u2

xu2
y −2uxu2

y −2uyu2
x u2

x/2 + u2
y/2 u2

y/2 − u2
x/2 4uxuy −2uy −2ux 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(A2)

Based on the physical definitions of M and N , both of them are invertible. Moreover,
N−1 has a quite similar formulation to N , and can be obtained by simply reversing all the
odd-order velocity terms in (A2). For more details, interested readers are directed to Fei &
Luo (2017).

Appendix B. Energy budget analysis for droplet impact on deformable porous media

The kinetic energy of the droplet is calculated as

Ξk =
∫

V

1
2ρ|u|2 dV, (B1)

where V is the droplet volume. The dissipation energy can be written as (Qian, Wang &
Sheng 2006; Wang, Fei & Luo 2020)

Ξd =
∫ t

0

∫
V
Φ dV dt, (B2)
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where Φ is the dissipation function, with the following formulation in two dimensions:

Φ = μ

[
2
(
∂ux

∂x

)2

+ 2
(
∂uy

∂y

)2

+
(
∂ux

∂y
+ ∂uy

∂x

)2
]
. (B3)

The particle energy is calculated as

Ξp =
∑

a

ρp
(1

2 |Ua|2 + g(ha − ha,0)
)
, (B4)

where ha is the vertical location for particle a. The surface energy at the initial state is

Ξs,0 = γπD0. (B5)

The total energy equals the initial kinetic and surface energy of the droplet:

Ξt = Ξk,0 +Ξs,0 = 1
8ρlπD2

0U2 + γπD0. (B6)

To avoid ambiguity in estimating the contact line length at the complex porous medium
surface, the surface energy is calculated based on the energy balance:

Ξs = Ξt −Ξk −Ξp −Ξd. (B7)

For ease of analysis, we further introduce the normalized energies Ek = Ξk/Ξt, Ed =
Ξd/Ξt, Ep = Ξp/Ξt and Es = Ξs/Ξt, and therefore Et = 1.

Appendix C. Droplet impact on a deformable porous medium at Re = 500

To simulate the impact case with a larger Re, we increase both the droplet diameter and the
system size by a factor of 5/4. The impact velocity and liquid viscosity are set as U = 0.08
and νl = 0.08, respectively, leading to Re = 500 and We = 250. The contact angle is set as
θ = 60◦. All the other parameters are chosen the same as those in § 4. Typical snapshots of
the impacting dynamics are shown in figure 24. More details can be seen in supplementary
movie 7.
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