

CORRIGENDUM

The influence of surface roughness on postcritical flow over circular cylinders revisited – CORRIGENDUM

Anil Pasam, Daniel Tudball Smith, John D. Holmes, David Burton and Mark C. Thompson

doi:10.1017/jfm.2023.846, Published by Cambridge University Press, 21 November 2023

In our recent article (Pasam *et al.* 2023), there is an error in table 3 where the relative roughness for which the shear layer momentum thickness was estimated, has been mistakenly reported as $k_s/D = 1.4 \times 10^{-3}$ in the first two entries. This should instead be $k_s/D = 1.9 \times 10^{-3}$. The revised version is given in table 1 below.

Relative roughness k_s/D	Re	Θ/D at $(x/D = 0.25)$	Θ/D at $(x/D = 0.5)$
1.9×10^{-3}	2.9×10^{5}	0.0092	0.0212
1.9×10^{-3}	3.8×10^{5}	0.0112	0.0239
1.1×10^{-3}	3.8×10^{5}	0.0068	0.0203
1.1×10^{-3}	4.7×10^{5}	0.0092	0.0224

Table 1. Momentum thickness (Θ/D) of the shear layer at different streamwise locations.

The authors would like to apologise for this oversight.

REFERENCE

PASAM, A., TUDBALL SMITH, D., HOLMES, J.D., BURTON, D. & THOMPSON, M.C. 2023 The influence of surface roughness on postcritical flow over circular cylinders revisited. *J. Fluid Mech.* **975**, A36.