CORRIGENDUM ## The influence of surface roughness on postcritical flow over circular cylinders revisited – CORRIGENDUM Anil Pasam, Daniel Tudball Smith, John D. Holmes, David Burton and Mark C. Thompson doi:10.1017/jfm.2023.846, Published by Cambridge University Press, 21 November 2023 In our recent article (Pasam *et al.* 2023), there is an error in table 3 where the relative roughness for which the shear layer momentum thickness was estimated, has been mistakenly reported as $k_s/D = 1.4 \times 10^{-3}$ in the first two entries. This should instead be $k_s/D = 1.9 \times 10^{-3}$. The revised version is given in table 1 below. | Relative roughness k_s/D | Re | Θ/D at $(x/D = 0.25)$ | Θ/D at $(x/D = 0.5)$ | |----------------------------|---------------------|------------------------------|-----------------------------| | 1.9×10^{-3} | 2.9×10^{5} | 0.0092 | 0.0212 | | 1.9×10^{-3} | 3.8×10^{5} | 0.0112 | 0.0239 | | 1.1×10^{-3} | 3.8×10^{5} | 0.0068 | 0.0203 | | 1.1×10^{-3} | 4.7×10^{5} | 0.0092 | 0.0224 | Table 1. Momentum thickness (Θ/D) of the shear layer at different streamwise locations. The authors would like to apologise for this oversight. ## REFERENCE PASAM, A., TUDBALL SMITH, D., HOLMES, J.D., BURTON, D. & THOMPSON, M.C. 2023 The influence of surface roughness on postcritical flow over circular cylinders revisited. *J. Fluid Mech.* **975**, A36.