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Abstract

In this paper, we propose a new urn model. A single urn contains b black balls and
w white balls. For each observation, we randomly draw m balls and note their colors, say
k black balls and m−k white balls. We return the drawn balls to the urn with an additional
ck black balls and c(m − k) white balls. We repeat this procedure n times and denote by
Xn the fraction of black balls after the nth draw. To investigate the asymptotic properties
of Xn, we first perform some computational studies. We then show that {Xn} forms a
martingale, which converges almost surely to a random variable X. The distribution of
X is then shown to be absolutely continuous.
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1. Introduction

An urn model is constructed by imagining a number of urns, some or all containing balls
of various colors. Sequences of experiments (trials) in which balls are drawn from and
possibly returned to the urns according to certain rules are considered. These rules may
include requirements for the addition to or removal of balls from certain urns at various stages
of the experiment. Why have people investigated urn models? As explained by Kotz and
Balakrishnan [10], there are three reasons. Firstly, urn models give an efficient way to describe
the concept of ‘random choice’. Secondly, urns and chance experiments can be compounded
into new ones. Thirdly, as Pólya ably displayed over thirty years ago, an urn model allows
a complex random (chance) process to be ‘simulated’. Here, the term ‘simulation’ can be
interpreted as a statistical equivalent to the mathematical concept of an isomorphism, which is
essentially associated with urn models. As a result, an urn model plays a fundamental role in
many problems.

The study of urn models has a long history. In 1657, Huygens proposed problems about
urns in his treatise (see [11, pp. 48–55]), but he did not use the term ‘urn’. James Bernoulli
(1713) may have been the first person to mention problems in the language of urns (see [10]).
Bernoulli discussed the problem, in the third book of his Ars Conjectandi, of drawing ‘calculi’
out of urns. The results on urn models up to 1977 were summarized in the book Urn Models and
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Their Application [9, pp. 176–181]. This book stimulated many probabilists and statisticians to
investigate different kinds of urn model. After two decades, Kotz and Balakrishnan published
the survey paper [10]. This covered almost all kinds of urn model and their properties.

This paper is organized as follows. In Section 2, a brief survey on Pólya–Eggenberger
models, taken from published material, is given. The model formulations and the asymptotic
properties of the corresponding urn models are especially emphasized. In Section 3, a new
urn model that draws m balls each time from an urn with black and white balls is proposed.
Some computational studies are also conducted to compare the fitted beta distribution with the
distribution of the fraction Xn of black balls in our models. These are illustrated in figures. In
Section 4, {Xn} is shown to form a martingale that converges almost surely (a.s.) to a random
variable X. The absolute continuity of X is then proved through combinatorial and algebraic
arguments. The complete characterization of X still remains to be resolved in the future. In
the appendix, more figures are used to illustrate the effects of different initial numbers of black
balls b and white balls w, and different numbers of balls drawn m.

2. The Pólya–Eggenberger urn model and its generalizations

In this section, we will sketch the Pólya–Eggenberger urn model and its generalizations and
modifications.

Eggenberger and Pólya [3], in 1923, proposed an urn model with a single urn initially
containing b black balls and w white balls. A ball is drawn at random and then replaced
together with c balls of the same color. The procedure is repeated n times and we denote by
Xn the proportion of black balls after the nth draw. It is known that {Xn} is a martingale.
Furthermore, limn→∞ Xn = X exists, and X has a beta distribution with parameters b/c and
w/c (see [4, p. 226]).

In 1980, Hill et al. [8] proposed a generalized Pólya–Eggenberger urn model. It was the
same as the Pólya–Eggenberger urn model except that the probability of drawing balls, instead
of being Bn/(Wn + Bn), was f (Bn/(Wn + Bn)), where Bn and Wn denote the number of black
balls and white balls, respectively, at the nth stage, and f is any function mapping [0, 1] into
itself. They showed that, under a condition on f at p0, where p0 ∈ {x : f (x) = x}, the fraction
of black balls converges to p0 with positive probability. Moreover, if p0 is an unstable fixed
point of f (i.e. f (p0) = p0 and, in some neighborhood of p0, f (x) < x for x < p0 and
f (x) > x for x > p0) then P(Bn/(Wn + Bn) → p0) = 0.

In 1985, Bagchi and Pal [1] defined a tenable Pólya–Eggenberger urn model which described
a single urn with b0 black balls and t0 −b0 white balls, where b0 > 1 and t0 > 1. A ball is drawn
at random. Its color is noted and the ball is returned to the urn. If the color is black, then a black
balls and b > 0 white balls are added to the urn. Otherwise, c > 0 black balls and d white
balls are added to the urn. Now, let a + b = c + d ≥ 1, a �= c. For the tenable urn process,
Gouet [5] used martingale arguments to show that if max(b, c) > 0, then the fraction of black
balls converges almost surely to c/(b + c). Four years later, by using martingale transforms
and the functional central limit theorem for the tenable urn process, Gouet [6] provided weak
convergence results for the sequence of processes Bkn(t) − c(Bkn(t) + Wkn(t))/(b + c), n ∈ N,
t ≥ 0, where {kn(t)} is a sequence of deterministic time scales.

In 1990, Pemantle [12] generalized the Pólya–Eggenberger urn model by replacing c with
a function of time. He showed that the proportions of black balls converges a.s. and the limit
has no atoms except possibly at 0 or 1. Necessary and sufficient conditions for the limit to
concentrate entirely on the set {0, 1} were given.
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In 2001, Schreiber [13] studied the asymptotic behavior of a class of generalized Pólya–
Eggenberger urn model by using an ordinary differential equation (ODE) method. He also
formulated a generalized Pólya–Eggenberger urn model called the replicator process.

Two balls are selected at random with replacement from an urn and new balls are added or
removed, at varying rates, according to probabilities that depend only on the colors of the
chosen balls.

Schreiber proved that

(i) the number of balls increases asymptotically at a linear rate,

(ii) the distribution x(n) of the strategies at the nth update is a noisy Cauchy–Euler approx-
imation to the mean limit ODE of the process, and

(iii) the limit set of x(n) is a.s. a connected, internally chain-recurrent set for the mean limit
ODE.

3. A new urn model and some computational studies

In this section, we briefly introduce the Pólya–Eggenberger urn model and its generalizations
and modifications. Drawing one ball at random each time is the common property of these
models. We now introduce a new model in which more than one ball is drawn randomly each
time.

Model M. A single urn contains b black balls and w white balls. We draw m balls at random,
say k black balls and m − k white balls, and their colors are noted. Return these balls to the
urn with ck black balls and c(m − k) white balls. Repeat the procedure n times.

To gain some insight into this new model, we perform some computational studies. Let Yn

be the number of black balls after the nth draw. Using the Markov property of {Yn} (see (4.1),
below), the probability P(Yn = k) is computed recursively. The result is shown as solid curves
in Figures 1 and 2. The dashed curves show the density of the fitted beta distribution. Here, the
parameters of the beta distributions are estimated by the least-squares method assuming that
{P(Yn = k)(b + w + cmn)} is the data set. All programs are executed using MAPLE®6.

The graphs for the fractions of black balls are obtained under the condition c = 1. In Figures 1
and 2, we denote our new model by M(b, w, m) and a beta distribution with parameters α and β

by beta(α, β). Figures 1 and 2 demonstrate the effects of different values of b, w, and m. More
experiments are given in the appendix. Note that in Figures 1 and 2 the values of b are less
than or equal to w. If we were to exchange the values of b and w, the new graphs would be
symmetric with the old ones with respect to the line x = 0.5. Therefore, we do not consider
the cases with b > w.

In Figure 1, we can see that the peak of the curve is higher and skews to the left if the value
of w increases and w ≥ b. This is reasonable since the probability of drawing white balls is
getting larger and the fraction of black balls is getting smaller.

If we compare Figure 1(a) with Figure 2, it is easy to see that the peaks get higher and higher
as b increases. Moreover, if b = w = m then M(b, b, b) is close to beta(α, α) for some α. It
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Figure 1: Two examples with n = 100.
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Figure 2: Two examples with n = 100.

would be of interest to see the relationship between b and α. Figures 1 and 2 seem to indicate
that the general limiting distributions for m > 1 may not be beta distributed, as they are for
m = 1. Although they cannot help us in guessing the exact behavior of the limiting distribution
at this moment, they do provide some insight. For example, they indicate the existence of the
limiting distributions and the densities. These will be shown in Section 4.

4. Martingale property and absolute continuity of the limit

In this section, we show that in Model M the fraction of black balls forms a martingale. This
martingale converges a.s. to a limit X. We then prove that X is absolutely continuous.

4.1. Martingale

Recall our new urn model defined in Section 3. Let Yn be the number of black balls after n

draws and let Xn = Yn/γn be the fraction of black balls, where γn = b + w + cmn is the total
number of balls after n draws. Also, let Fn be the σ -field generated by Y1, Y2, . . . , Yn.

Theorem 4.1. For Model M, {Xn, Fn, n ≥ 1} is a martingale, i.e. E[Xn+1 | Fn] = Xn.
Furthermore, Xn converges a.s. to a random variable X with 0 ≤ X ≤ 1.

Proof. It is clear that

P(Yn+1 = j | Yn = k, Yn−1 = kn−1, . . . , Y0 = b) = P(Yn+1 = j | Yn = k). (4.1)

Thus, {Yn} is a discrete-time Markov process, and so is {Xn}. Since {Xn} is a discrete-time
Markov process, E[Xn+1 | Fn] = E[Xn+1 | Yn]. Since 0 ≤ Xn ≤ 1, {Xn, Fn, n ≥ 1} is a
martingale if we can prove that

E[Xn+1 1{Yn=k}] = E[Xn 1{Yn=k}],
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for k = b, b + 1, . . . , b + cmn, where 1{·} is the indicator function. By definition,

E[Xn+1 1{Yn=k}] =
m∑

�=0

k + �c

γn+1
P(Yn+1 = k + �c | Yn = k) P(Yn = k)

=
m∑

�=0

k + �c

γn+1

(
k

�

)(
γn − k

m − �

)(
γn

m

)−1

P(Yn = k), (4.2)

where (
n

m

)
=

⎧⎨
⎩

n!
m! (n − m)! if n ≥ m,

0 if n < m.

To simplify (4.2), we need the following two identities:

m∑
�=0

(
k

�

)(
γn − k

m − �

)
=

(
γn

m

)
, (4.3)

m∑
�=0

�

(
k

�

)(
γn − k

m − �

)
= k

(
γn − 1

m − 1

)
. (4.4)

Here, (4.3) can be derived by comparing the coefficients of the term xm in the expressions of
both sides of the identity (1 + x)k(1 + x)γn−k = (1 + x)γn . Identity (4.4) can then be derived
from (4.3). If we simplify (4.2) using (4.3) and (4.4), then we obtain

E[Xn+1 1{Yn=k}] = P(Yn = k)

[
k

(
γn

m

)
+ kc

(
γn − 1

m − 1

)][
γn+1

(
γn

m

)]−1

= P(Yn = k)k

γn

= E[Xn 1{Yn=k}].

The last identity holds since Xn = k/γn when Yn = k. Since 0 ≤ Xn ≤ 1, n = 1, 2, . . . ,
we can apply the martingale convergence theorem (see [7, p. 18]) to claim that there exists an
X, 0 ≤ X ≤ 1, such that Xn

a.s.−→ X as n → ∞.

Remark 4.1. When m = 1, our model becomes the classical Pólya–Eggenberger urn model.
It has been proved that Xn

a.s.−→ X and X has a beta distribution with parameters b/c and w/c

(see [9]). Theorem 4.1 can be viewed as a generalization of this result.

Remark 4.2. Let Model M be modified as follows. ‘A single urn contains balls of r different
colors. For each color i, we initially have bi balls. We draw m balls at random, say ki balls
of color i, and their colors are noted. Return these balls to the urn with cki balls of color i.
Repeat the procedure n times.’ Then Theorem 4.1 can be viewed as results about the fraction of
balls of the first color for an urn model with two colors. Similarly, if we replace Yn by Yn,i and
Xn by Xn,i in the proof of Theorem 4.1, we find that, for all i = 1, . . . , r , {Xn,i, Fn, n ≥ 1}
is a martingale and converges a.s. Therefore, Xn = (Xn,1, . . . , Xn,r ) is also a martingale and
converges a.s. to a random variable X = (X1, . . . , Xr), with 0 ≤ Xi ≤ 1 a.s. for i = 1, . . . , r .
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4.2. Absolute continuity

To understand the asymptotic performance of Model M, the distribution of X is definitely
of interest. Unfortunately, we are not able to characterize the distribution of X at this moment.
Instead, we will prove that X is absolutely continuous. That is, we will prove that the distribution
of X has a density. This is the content of the following theorem.

Theorem 4.2. For fixed b, w, c, and m, X is absolutely continuous.

The analytical complexity of proving the absolute continuity is somewhat greater than that
of proving the continuity of the distribution (see [15]). We adopt the following approach. Let
(�, F , P) be the probability space. We first find a sequence of events �� such that �� ⊂ ��+1
and P(

⋃∞
�=1 ��) = 1. Then, by restricting X to ��, we show that it has a density f�. Finally,

we prove that f = lim�→∞ f� exists and that f is the density of X.
We now show that our approach is valid using the following propositions.

Proposition 4.1. Let �� be a sequence of increasing events such that P(
⋃∞

�=1 ��) = 1. If there
exist nonnegative Borel measurable functions {f�}�≥1 such that P(��∩X−1(B)) = ∫

B
f�(x) dx

for all Borel sets B, then f = lim�→∞ f� exists almost everywhere (a.e.) and f is the density
of X.

Proof. Since ��+1 ⊃ ��, for all Borel sets B we obtain

∫
B

f�+1(x) dx = P(��+1 ∩ X−1(B)) ≥ P(�� ∩ X−1(B)) =
∫

B

f�(x) dx.

This implies that f�+1 ≥ f� ≥ 0 a.e. Let f = lim�→∞ f�, where 0 ≤ f ≤ ∞. The monotone
convergence theorem (see [16]) ensures that

∫
B

f (x) dx = lim�→∞
∫
B

f�(x) dx for all Borel
sets B. Moreover, since P(

⋃∞
�=1 ��) = 1,

∫
R

f (x) dx = lim
�→∞

∫
R

f�(x) dx = lim
�→∞ P(��) = 1.

Therefore, f < ∞ a.e. and X is absolutely continuous with density f .

The following proposition provides a way to construct the events ��.

Proposition 4.2. For fixed b, w, c, and m, let

�� = {ω : Y�(ω) ≥ cm and γ� − Y�(ω) ≥ cm},
where γn = b + w + cmn and � ≥ 1. Then ��+1 ⊃ �� and P(

⋃∞
�=1 ��) = 1.

Proof. The assertion ��+1 ⊃ �� is obvious from the fact that the number of black balls
Y� and the number of white balls γ� − Y� are increasing with �. For the second assertion, it
is equivalent to show that P(Y� ≥ cm and γ� − Y� ≥ cm for some �) = 1. Observe that it is
sufficient to prove that P(Y� < cm for all �) = 0 and P(γ� − Y� < cm for all �) = 0. In fact,
we only have to prove that

P(Y� < cm for all �) = 0.

This is because, by exchanging the roles of black balls and white balls, the second statement
can be proved similarly.
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Consider the events En, ‘at least one black ball is drawn in the sample of size m at time n’,
and Fn, ‘the first ball drawn in the sample of size m at time n is black’. Then

P(Y� < cm for all �) ≤ 1 − P(En infinitely often).

From the conditional Borel–Cantelli lemma (see [7, p. 32]), we have P(En infinitely often) = 1
if

∑
n P(En+1 | Fn) = ∞ a.s. Since

P(En+1 | Fn) ≥ P(Fn+1 | Fn) = Yn

b + w + cmn
≥ b

b + w + cmn
a.s.

and
∑

n(b/(b + w + cmn)) = ∞, we have
∑

n P(En+1 | Fn) = ∞ a.s. Consequently, the
claim is proved.

Next, we will show that by restricting X to ��, X has a density. It is clear that this will hold
if we can show that the restriction of X to ��j = {ω : Y�(ω) = j} has a density for each j ,
with cm ≤ j ≤ γ�−1. For this, we first need the following lemmas.

Lemma 4.1. For cm ≤ j ≤ γ�−1, n ≥ �, and k ≤ m(n + 1),

m∑
i=0

(
j + c(k − i)

i

)(
γn − j − c(k − i)

m − i

)
= γ m

n

m! + (1 − m − 2c)γ m−1
n

2(m − 1)! + · · · ,

which is a polynomial in γn of degree m with coefficients depending on b, w, m, and c only.

Proof. Since the proof is a little complex, we use two steps.

Step 1. For x, y ∈ R, define

Cx
i =

⎧⎨
⎩

1 if i = 0,

x(x − 1) · · · (x − i + 1)

i! if i > 0,

and

fm(x, y) =
m∑

i=0

Cx−ci
i C

y−c(m−i)
m−i . (4.5)

Note that fm(x, y) is a polynomial symmetric in x and y. We claim that, for m, c ∈ N,

fm(x, y) ∈ Z[x + y], (4.6)

where Z[x + y] is the ring of polynomials over Z in the indeterminate x + y (see [14] for a
definition). The remaining part of this step is to prove (4.6).

Now we proceed to prove (4.6) by induction. For m = 1, the claim is true since∑1
i=0 Cx−ci

i C
y−c(1−i)
1−i = x + y − 2c. Suppose that (4.6) holds for m = n − 1, where n ∈ N.

We use the identity

Cz
i = Cz−1

i−1 + Cz−1
i = Cz−1

i−1 + Cz−2
i−1 + Cz−2

i = Cz−1
i−1 + Cz−2

i−1 + · · · + Cz−c
i−1 + Cz−c

i ,
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which holds for z ∈ R, to obtain

fn(x, y) =
n∑

i=0

Cx−ci
i C

y−c(n−i)
n−i

=
n∑

i=1

c∑
j=1

C
x−ci−j
i−1 C

y−c(n−i)
n−i +

n∑
i=0

C
(x−c)−ci
i C

y−c(n−i)
n−i

=
c∑

j=1

fn−1(x − c − j, y) + fn(x − c, y). (4.7)

Replacing y by y + c in (4.7), we obtain

fn(x, y + c) =
c∑

j=1

fn−1(x − c − j, y + c) + fn(x − c, y + c).

Then

fn(x − c, y + c) = fn(x, y + c) −
c∑

j=1

fn−1(x − c − j, y + c).

Since fn(x, y) = fn(y, x), we obtain

fn(x − c, y + c) = fn(y + c, x) −
c∑

j=1

fn−1(x − c − j, y + c). (4.8)

By replacing x by y + c and y by x in (4.7), we have

fn(y + c, x) =
c∑

j=1

fn−1(y − j, x) + fn(y, x). (4.9)

Therefore, by (4.8) and (4.9),

fn(x − c, y + c) = fn(y, x) +
c∑

j=1

(fn−1(y − j, x) − fn−1(x − c − j, y + c)). (4.10)

Now, by the induction hypothesis, (4.6) holds for m = n − 1, i.e. there exists a polynomial
gn−1 (in a single variable) such that gn−1(x + y) = fn−1(x, y). Hence, for 1 ≤ j ≤ c,

fn−1(y − j, x) = gn−1(x + y − j) = fn−1(x − c − j, y + c). (4.11)

In view of (4.10) and (4.11), we have

fn(x − c, y + c) = fn(y, x) = fn(x, y). (4.12)

Let hn(x, y) = fn(x, y) − fn(cm, x + y − cm). To finish the induction proof, we are going to
show that, as a polynomial in x and y, hn(x, y) = 0.

Note that, for a fixed x, hn(x, y) is a polynomial in y with degree at most n. Hence, we
can write hn(x, y) = an

n(x)yn + an−1
n (x)yn−1 + · · · + a0

n(x), where ai
n(x) is a polynomial
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in x with a degree of at most n, 0 ≤ i ≤ n. Let x0 be a multiple of c. Then, by (4.12),
fn(x0, y) = fn(cm, x0 + y − cm) and, consequently, hn(x0, y) = 0. This in turn implies that
an
n(x0) = 0, an−1

n (x0) = 0, . . . , a0
n(x0) = 0 for all x0. Since there are infinitely many such

x0s,
an
n(x) = 0, an−1

n (x) = 0, . . . , a0
n(x) = 0,

for all x ∈ R. This implies that hn(x, y) is a zero polynomial.

Step 2. We substitute x by j + ck and y by γn − j − ck + cm in (4.5). Then

m∑
i=0

C
j+c(k−i)
i C

γn−j−c(k−i)

m−i = amγ m
n+1+am−1γ

m−1
n+1 +· · ·+a0 := bmγ m

n +bm−1γ
m−1
n +· · ·+b0.

In order to obtain the coefficients bm and bm−1, let k = 0 in
∑m

i=0 C
j+c(k−i)
i C

γn−j−c(k−i)

m−i .
Then

m∑
i=0

C
j+c(k−i)
i C

γn−j−c(k−i)

m−i = C
γn−j
m + C

j−c
1 C

γn−j+c
m−1 + · · ·

= γ m
n

m! + (1 − m − 2c)γ m−1
n

2(m − 1)! + · · · .

Note that j + c(k − i) ≥ 0 and γn − j − c(k − i) ≥ 0, since cm ≤ j ≤ γ�−1, n ≥ �, and
k ≤ m(n + 1). Therefore,

m∑
i=0

C
j+c(k−i)
i C

γn−j−c(k−i)

m−i =
m∑

i=0

(
j + c(k − i)

i

)(
γn − j − c(k − i)

m − i

)
.

Hence, Lemma 4.1 holds.

Lemma 4.2. For a fixed �, there exists a positive constant c′ such that, for all n ≥ �, j with
cm ≤ j ≤ γ�−1, and k ≤ m(n + 1), the following inequality holds:

m∑
i=0

P(Yn+1 = j + ck | Yn = j + c(k − i)) ≤ 1 − 1

n
+ c′

n2 . (4.13)

Proof. By Lemma 4.1, we have

(

m∑
i=0

(
j + c(k − i)

i

)(
γn − j − c(k − i)

m − i

)(
γn

m

)−1

=
(

γ m
n

m! + (1 − m − 2c)γ m−1
n

2(m − 1)! + · · ·
)(

γ m
n

m! + (1 − m)γ m−1
n

2(m − 1)! + · · ·
)−1

= 1 − 1

n
+ O

(
1

n2

)
.

Hence, there exists a constant c′ such that (4.13) holds for all n.

Now we are ready to prove Theorem 4.2.
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Proof of Theorem 4.2. Let F be the distribution function of X. Our goal is to prove that F

is absolutely continuous. By Propositions 4.1 and 4.2 and the discussion before Lemma 4.1,
it is sufficient to show that the restriction of X to ��j = {ω : Y�(ω) = j} has a density for
cm ≤ j ≤ γ�−1.

Now, in view of Lemma 4.2, there exists a positive constant c′ such that, for a fixed � and
for all n ≥ 0,

max
0≤k≤m(n+1)

P(Y�+n+1 = j + ck | Y� = j)

≤ max
0≤k≤m(n+1)

{ m∑
i=0

P(Y�+n+1 = j + ck | Y�+n = j + c(k − i))

× P(Y�+n = j + c(k − i) | Y� = j)

}

≤ max
0≤k≤m(n+1)

{ m∑
i=0

P(Y�+n+1 = j + ck | Y�+n = j + c(k − i))

× max
0≤i≤mn

P(Y�+n = j + ci | Y� = j)

}

= max
0≤k≤m(n+1)

m∑
i=0

P(Y�+n+1 = j + ck | Y�+n = j + c(k − i))

× max
0≤i≤mn

P(Y�+n = j + ci | Y� = j)

≤
[

1 − 1

� + n
+ c′

(� + n)2

]
max

0≤k≤mn
P(Y�+n = j + ck | Y� = j).

This implies that, for a fixed � and for all n ≥ � + 1,

max
0≤k≤m(n−�)

P(Yn = j + ck | Y� = j)

≤
[

1 − 1

n − 1
+ c′

(n − 1)2

]
max

0≤k≤m(n−1−�)
P(Yn−1 = j + ck | Y� = j)

≤
[

1 − 1

n − 1
+ c′

(n − 1)2

][
1 − 1

n − 2
+ c′

(n − 2)2

]

× max
0≤k≤m(n−2−�)

P(Yn−2 = j + ck | Y� = j)

...
...

≤
n−1∏
i=�

(
1 − 1

i
+ c′

i2

)

≤ c′′ exp

(
−

n−1∑
i=�

1

i

)
,

for some positive constant c′′. The last inequality can be derived from the fact that 1−x ≤ e−x .
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Therefore, for any x and x′, 0 ≤ x < x′ ≤ 1,

P(x ≤ Xn ≤ x′ | Y� = j) = P(xγn ≤ Yn ≤ x′γn | Y� = j)

≤ [(x′ − x)γn + 1]c′′ exp

(
−

n−1∑
i=�

1

i

)
.

We obtain

lim sup
n

P(x ≤ Xn ≤ x′ | Y� = j) ≤ lim
n→∞[(x′ − x)γn + 1]c′′ exp

(
−

n−1∑
i=�

1

i

)

= (x′ − x)c′′′,

where c′′′ is a positive constant depending only on �. Now fix �. Let cm ≤ j ≤ γ�−1. For any
given ε > 0, let δ = ε/c′′′. Let x1 < x′

1 ≤ x2 < x′
2 ≤ · · · ≤ xs < x′

s and
∑s

i=1 |x′
i − xi | < δ.

We have, by Fatou’s lemma (see [16]),

s∑
i=1

P({xi < X < x′
i} ∩ ��j ) ≤

s∑
i=1

lim inf
n→∞ E[1{xi≤Xn≤x′

i } | Y� = j ] P(��j )

≤
s∑

i=1

lim inf
n→∞ P(xi ≤ Xn ≤ x′

i | Y� = j) P(��j )

≤
s∑

i=1

(x′
i − xi)c

′′′

< ε.

By [2, Theorem 31.7], the restriction of X to ��j thus has a density. Hence, the proof is
complete.

Remark 4.3. For the urn model with r different colors, as mentioned in Remark 4.2, our method
can also be used to prove that X = (X1, . . . , Xr) is absolutely continuous. This requires a little
modification and rewriting, i.e.

�� = {ω : Y�i ≥ cm for all i = 1, . . . , r}, ��,j = {ω : Y� = (Y�1, . . . , Y�r ) = j}
and ∑

t

P(Yn+1 = j + ck | Yn = j + c(k − t)) ≤ 1 − r − 1

n
+ c′

n2 ,

where j = (j1, . . . , jr ), k = (k1, . . . , kr ), and t = (t1, . . . , tr ).

Appendix A.

In this appendix, more examples are illustrated, in Figure 3, to show the effects of different
initial numbers of black balls b and white balls w, and numbers, m, of balls drawn each time.
As in Section 3, M(b, w, m) denotes our new model with initial data (b, w, m) and beta(α, β)

denotes a beta distribution with parameters α and β.
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Figure 3: Nine examples with n = 100.
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