LOCALLY NILPOTENT SUBGROUPS OF GL*n*(*D*[\)](#page-0-0)

R. FALLAH-[M](https://orcid.org/0000-0002-6869-1042)OGHADDAM $\mathbf{\mathbb{D}}^{\boxtimes}$ **and H. R. DORB[I](https://orcid.org/0000-0002-8736-0476)DI**

(Received 27 July 2024; accepted 18 August 2024)

Abstract

Let *A* be an *F*-central simple algebra of degree $m^2 = \prod_{i=1}^{k} p_i^{2\alpha_i}$ and *G* be a subgroup of the unit group of *A* such that $F[G] = A$. We prove that if *G* is a central product of two of its subgroups *M* and *N*, then $F[M] \otimes_F F[N] \cong F[G]$. Also, if *G* is locally nilpotent, then *G* is a central product of subgroups H_i , where $[F[H_i]: F] = p_i^{2\alpha_i}, A = F[G] \cong F[H_1] \otimes_F \cdots \otimes_F F[H_k]$ and $H_i/Z(G)$ is the Sylow p_i -subgroup of $G/Z(G)$ for each *i* with $1 \le i \le k$. Additionally, there is an element of order *n*; in *F* for each *i* with $1 \le i \le k$. for each *i* with $1 \le i \le k$. Additionally, there is an element of order p_i in F for each *i* with $1 \le i \le k$.

2020 *Mathematics subject classification*: primary 16K20; secondary 15A30, 20H25.

Keywords and phrases: division ring, locally nilpotent subgroup, central product of groups, crossed product.

1. Introduction

The multiplicative group of a noncommutative division ring has been investigated in various papers by Amitsur [\[3\]](#page-9-0), Herstein [\[13,](#page-9-1) [14\]](#page-9-2), Hua [\[15,](#page-9-3) [16\]](#page-9-4), Huzurbazar [\[17\]](#page-9-5) and Scott [\[23,](#page-10-0) [24\]](#page-10-1). Given a noncommutative division ring *D* with centre $Z(D) = F$, the structure of the skew linear group $GL_n(D)$ for $n \geq 1$ is generally unknown. A good account of the most important results concerning skew linear groups can be found in [\[25\]](#page-10-2), as well as in [\[26\]](#page-10-3) particularly for linear groups. For instance, it is shown in [\[12\]](#page-9-6) that there is a close connection between the question of the existence of maximal subgroups in the multiplicative group of a finite-dimensional division algebra and Albert's conjecture concerning the cyclicity of division algebras of prime degree. In this direction, in [\[20\]](#page-9-7), it is shown that when *D* is a central division *F*-algebra of prime degree p, then D is cyclic if and only if D^* contains a nonabelian soluble subgroup. Furthermore, a theorem of Albert (see [\[6,](#page-9-8) page 87]) asserts that *^D* is cyclic if *^D*[∗]/*F*[∗] contains an element of order *p*.

The structure of locally nilpotent subgroups of $GL_n(D)$ is studied in many papers. The basic structure of locally nilpotent skew linear groups over a locally finite-dimensional division algebra was studied by Zaleeskii [\[30\]](#page-10-4). One important problem raised by Zaleeskii remains open, namely, is every locally nilpotent subgroup of $GL_n(D)$ hypercentral. In [\[10\]](#page-9-9), Garascuk proved a theorem that shows this question has a positive answer in the case where $[D: F] < \infty$. A treatment of such results

[©] The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

which is both more elaborate and more refined may be found in [\[4,](#page-9-10) [25](#page-10-2)[–29\]](#page-10-5). For example, it is shown in $[29]$ that when *H* is a locally nilpotent normal subgroup of the absolutely irreducible skew linear group *G*, then *H* is centre-by-locally-finite and $G/C_G(H)$ is periodic. In special cases, the structure of maximal subgroups of $GL_n(D)$ has been investigated (see [\[1,](#page-9-11) [2,](#page-9-12) [5,](#page-9-13) [7,](#page-9-14) [9\]](#page-9-15)). For instance, it is shown in [\[1\]](#page-9-11) that

when *D* is a finite-dimensional division ring with infinite centre *F* and *M* is a locally nilpotent maximal subgroup of $GL_n(D)$, then *M* is an abelian group. Also, by [\[25,](#page-10-2) Theorem 3.3.8], when *D* is an *F*-central locally finite-dimensional division algebra, every locally nilpotent subgroup of $GL_n(D)$ is soluble.

Another important property of locally nilpotent subgroups arises in crossed product constructions. Let *R* be a ring, *S* a subring of *R* and *G* a group of units of *R* normalising *S* such that $R = S[G]$. Suppose that $N = S \cap G$ is a normal subgroup of *G* and $R = \bigoplus_{t \in T} tS$, where *T* is some transversal of *N* to *G*. Set $H = G/N$. We summarise this construction by saying that (R, S, G, H) is a crossed product. Sometimes, we say that R is a crossed product of *S* by *H*. Let *O* be the class of all groups *H* such that every crossed product of a division ring by *H* is an Ore domain. In [\[25,](#page-10-2) Remark 1.4.4], it is shown that the group ring *EG* is an Ore domain for any division ring *E* and any torsion-free locally nilpotent group *G*. In addition, any hyper torsion-free locally nilpotent group is in O .

Let *D* be an *F*-central division algebra and *G* a subgroup of $GL_n(D)$. The *F*-algebra of *G*, that is, the *F*-subalgebra generated by elements of *G* over *F* in $M_n(D)$ is denoted by *F*[*G*]. Further, *G* is absolutely irreducible if $F[G] = M_n(D)$. When $M_n(D)$ is a crossed product over a maximal subfield *^K*, from [\[6,](#page-9-8) page 92], *^K*/*^F* is Galois and we can write $M_n(D) = \bigoplus_{\sigma \in \text{Gal}(K/F)} K_{\sigma}$, where $e_{\sigma} \in \text{GL}_n(D)$ and for each $x \in K$ and $\sigma \in \text{Gal}(K/F)$, there exists $\sigma(x) \in K$ such that $e_{\sigma}x = \sigma(x)e_{\sigma}$. Several recent papers investigate the group theoretical properties which give useful tools to realise maximal Galois subfields of central simple algebras in terms of absolutely irreducible subgroups (see [\[1,](#page-9-11) [8,](#page-9-16) [9,](#page-9-15) [11,](#page-9-17) [18–](#page-9-18)[20\]](#page-9-7)).

We say a group *G* is a central product of two of its subgroups *M* and *N* if $G = MN$ and $M \subseteq C_G(N)$. In fact, a central product of two groups is a quotient group of $M \times N$. If *F* is a field and *FG* denotes the group algebra of *G*, then it is well known that *FM* \otimes *F FN* \cong *F(M* × *N)*. We prove a similar result for skew linear groups. Let *A* be an *F*-central simple algebra of degree $n^2 = \prod_{i=1}^{k} p_i^{2\alpha_i}$ and *G* be a subgroup of the unit group of *A* such that $F[G] = A$. We prove that if *G* is a central product of two of its subgroups *M* and *N*, then $F[M] \otimes_F F[N] \cong F[G]$. Also, if *G* is locally nilpotent, then *G* is a central product of subgroups H_i , where $[F[H_i] : F] = p_i^{2\alpha_i}$, $A = F[G] \cong$ $F[H_1] \otimes_F \cdots \otimes_F F[H_k]$ and $H_i/Z(G)$ is the Sylow p_i -subgroup of $G/Z(G)$ for $1 \le i \le k$. Additionally, there is an element of order p_i in F for $1 \le i \le k$.

2. Notation and conventions

We recall here some of the notation that we will need throughout this article. Given a subset *S* and a subring *K* of a ring *R*, the subring generated by *K* and *S* is denoted by

K[*S*]. The unit group of *R* is written as R^* . For a group *G* and subset $S \subset G$, we denote by $Z(G)$ and $C_G(S)$ the centre and the centraliser of S in G and the same notation is applied for *R*. We use $N_G(S)$ for the normaliser of *S* in *G* and *G'* for the derived subgroup of *G*. A group *G* is a central product of its subgroups H_1, \ldots, H_k if $G =$ $H_1 \cdots H_k$ and $H_i \subseteq C_G(H_i)$ for each $i \neq j$.

Let *F* be a field, and *A* and *B* be two unital *F*-algebras. Let *H* be a subgroup of *A*[∗] and *G* be a subgroup of B^* . We define $H \otimes_F G$ by

$$
H \otimes_F G = \{a \otimes b \mid a \in H, b \in G\}.
$$

Note that $(a \otimes b)^{-1} = a^{-1} \otimes b^{-1}$, so it is easily checked that $H \otimes_F G$ is a subgroup of $(A \otimes B)^*$. Also, $F[H] \otimes_F F[G] = F[H \otimes_F G]$ in $A \otimes_F B$.

Given a division ring *D* with centre *F* and a subgroup *G* of $GL_n(D)$, the space of column *n*-vectors $V = D^n$ over *D* is a *G–D* bimodule; *G* is called irreducible, completely reducible or reducible according to whether *V* is irreducible, completely reducible or reducible as a *G*–*D* bimodule.

An irreducible group *G* is said to be imprimitive if for some integer $m \geq 2$, there exist subspaces V_1, \ldots, V_m of *V* such that $V = \bigoplus_{i=1}^m V_i$ and for any $g \in G$, the mapping $V \to gV$ is a permutation of the set $\{V, V\}$ otherwise *G* is called primitive $V_i \rightarrow gV_i$ is a permutation of the set $\{V_1, \ldots, V_m\}$; otherwise, *G* is called primitive.

The following important results on central simple algebras will be used later.

THEOREM 2.1 (Double centraliser theorem; [\[6,](#page-9-8) page 43]). *Let B* ⊆ *A be simple rings such that* $K := Z(A) = Z(B)$ *. Then,* $A \cong B \otimes_K C_A(B)$ *whenever* $[B : K]$ *is finite.*

THEOREM 2.2 (Centraliser theorem; [\[6,](#page-9-8) page 42]). *Let B be a simple subring of a simple ring A, K* := $Z(A) \subseteq Z(B)$ *and n* := $[B: K]$ *be finite. Then:*

- $(C_A(B) \otimes_K M_n(K) \cong A \otimes_K B^{\text{op}};$
- (2) $C_A(B)$ *is a simple ring*;
- (3) $Z(C_A(B)) = Z(B)$;
- (4) $C_A(C_A(B)) = B;$
- (5) *if* $L := Z(B)$ *and* $r := [L : K]$ *, then* $A \otimes_K L \cong M_r(B) \otimes_L C_A(B)$ *;*
- (6) *A* is a free left (right) $C_A(B)$ -module of unique rank n;
- (7) *if, in addition to the above assumptions, m* := $[A : K]$ *is also finite, then A is a free left (right) B-module of unique rank m/n* = $[C_A(B):K]$ *.*

THEOREM 2.3 [\[6,](#page-9-8) page 30]. *Let* A, *B* be K-algebras, $K := Z(A) \subseteq Z(B)$ a field and *either* [*A* : *K*] *or* [*B* : *K*] *finite. Then, A* ⊗*^K B is a simple ring if and only if A and B are simple rings.*

3. Central products of skew linear groups and tensor products of central simple algebras

In this section, we prove a theorem which relates a central decomposition of an absolutely irreducible group *G* to the tensor product decomposition of *F*[*G*].

It is well known that every finite dimensional division algebra is isomorphic to a tensor product of division algebras of prime power degree [\[6,](#page-9-8) page 68]. Since each central simple algebra is isomorphic to some $M_n(D)$, we easily obtain the following result.

LEMMA 3.1. Let A be an *F*-central simple algebra of degree $m^2 = \prod_{i=1}^{k} p_i^{2\alpha_i}$. Then, $A \cong A_1 \otimes_F \cdots \otimes_F A_k$, where A_i *is a unique (up to isomorphism) F-central simple* a *lgebra of degree* $p_i^{2\alpha_i}$.

Additionally, we have the following easy lemma.

LEMMA 3.2. Let A, B be two F-central simple algebras, and $M \leq A^*$ and $N \leq B^*$. *Then, M and N are absolutely irreducible if and only if M* ⊗*^F N is an absolutely irreducible subgroup of A* \otimes *F B*.

LEMMA 3.3. *Let F be a field, A, B be two unital F-algebras and* $a \in A, b \in B$ *. Then,* $a \otimes b = 1 \otimes 1$ *if and only if a, b* ∈ *F and ab* = 1*.*

PROOF. First, if $a, b \in F$ and $ab = 1$, then $a \otimes b = ab \otimes 1 = 1 \otimes 1$.

Conversely, assume $a \otimes b = 1 \otimes 1$. It is clear that $a \neq 0$ and $b \neq 0$. First, assume that $a, b \notin F^*$. Then, $\{1, a\}$ is an *F*-linearly independent set in *A* and $\{1, b\}$ is an *F*-linearly independent set in *B*. By [\[6,](#page-9-8) Theorem 4.3], $\{a \otimes b, 1 \otimes 1\}$ is an *F*-linearly independent set in *A* \otimes _{*F*} *B*. Therefore, $a \otimes b \neq 1 \otimes 1$. Next, assume that $a \notin F^*$ and $b \in F^*$. Then, $ab \notin F^*$ and $\{1, ab\}$ is an *F*-linearly independent set in *B*. Thus, $\{1 \otimes ab, 1 \otimes 1\}$ is an *F*-linearly independent set in *A* \otimes *F B* and *a* \otimes *b* = 1 \otimes *ab* \neq 1 \otimes 1. When *b* \notin *F*^{*} and *a* ∈ *F*[∗], the proof is similar. We conclude that if *a* ⊗ *b* = 1 ⊗ 1, then *a*, *b* ∈ *F*[∗]. Now, we have $1 \otimes 1 = a \otimes b = ab \otimes 1 = ab(1 \otimes 1)$. Consequently, $ab = 1$, as we desired. $□$

The following result shows that any absolutely irreducible skew linear group can be viewed as an absolutely irreducible linear group.

PROPOSITION 3.4. *Let F be a field and D be a finite dimensional F-central division algebra such that* $[D : F] = n^2$. Let K be a maximal subfield of D and G be an *absolutely irreducible subgroup of* $GL_m(D)$ *. Then,* $M_m(D) \otimes K \cong M_{mn}(K)$ and $G \otimes_F 1$ *is an absolutely irreducible subgroup of* $U(M_m(D) \otimes_F K) \cong GL_{nm}(K)$ *isomorphic to G.*

PROOF. By [\[21,](#page-10-6) Propositions 13.5 and 13.3], there exists a maximal subfield *K* of *D* such that $[D: K] = [K: F] = n$ and $D \otimes_F K \cong M_n(K)$. Therefore, $M_m(D) \otimes_F K \cong$ $M_m(F) \otimes_F (D \otimes_F K) \cong (M_m(F) \otimes_F M_n(F)) \otimes_F K \cong M_{mn}(K)$. Now, by Lemma [3.3,](#page-3-0) the map ϕ : $G \rightarrow G \otimes_F 1$ given by $\phi(g) = g \otimes 1$ is an isomorphism. However, G is an absolutely irreducible subgroup of $GL_m(D)$, so $F[G] = M_m(D)$. Also, $M_m(D) \otimes_F K =$ *F*[*G*] ⊗*F* $K = K[G \otimes_F K^*]$ ⊆ $K[G \otimes_F 1]$ ⊆ $M_m(D) \otimes_F K$. Consequently, $K[G \otimes_F 1]$ = $M_m(D) \otimes_F K$. This means $G \otimes_F 1$ is an absolutely irreducible subgroup of $GL_m(D) \otimes_F K$. *K*[∗] isomorphic to *G*. In addition, *G* is isomorphic to an absolutely irreducible subgroup of $GL_{nm}(K)$. \Box

COROLLARY 3.5. *Let F be a field and D be a finite dimensional F-central division algebra. Assume that G is a subgroup of* $GL_m(D)$ *such that* $F[G]$ *is a simple ring. Then, there exists an absolutely irreducible linear group H isomorphic to G.*

THEOREM 3.6 [\[25,](#page-10-2) page 7]. *Let F be a field, D a locally finite-dimensional division F-algebra and G a subgroup of* $GL_n(D)$ *. Set* $R = F[G] \subseteq M_n(D)$ *.*

- (1) *If G is completely reducible, then R is semisimple Artinian.*
- (2) *If G is irreducible, then R is simple Artinian.*

Using Theorem [3.6,](#page-4-0) we obtain the following result.

COROLLARY 3.7. *Let F be a field and D be a finite dimensional F-central division algebra. If G is an irreducible subgroup of* GL*m*(*D*)*, then there exists an absolutely irreducible linear group H isomorphic to G.*

When *F* is a field, a subgroup *G* of $GL_n(F)$ is said to be absolutely irreducible if it is an irreducible subgroup of $GL_n(K)$ for any extension K of F. Hence, we obtain the following result.

COROLLARY 3.8. *Let F be a field and D be a finite dimensional F-central division algebra. If G is an irreducible subgroup of* GL*m*(*D*) *such that either G is irreducible or* $F[G]$ *is a simple ring, then there exists an algebraically closed field* $Ω$ *and an irreducible* Ω*-linear group H isomorphic to G.*

THEOREM 3.9 [\[25,](#page-10-2) page 8]. *Let F be a field, D a division F-algebra and G a subgroup* of $GL_n(D)$ *. Set* $R = F[G] \subseteq M_n(D)$ *.*

- (1) *If R is semiprime (for example, if R is semisimple Artinian), then G is isomorphic to a completely reducible subgroup of* $GL_n(D)$ *.*
- (2) If R is simple Artinian, then for some $m \le n$, the group G is isomorphic to an *irreducible subgroup of* GL*m*(*D*)*.*

Using Theorem [3.9,](#page-4-1) we obtain the following result.

COROLLARY 3.10. *Let F be a field and D be a finite dimensional F-central division algebra such that* $[D : F] = n^2$. Let $A = M_m(D) \subseteq M_{n^2m}(F) = B$ be an F-central simple *algebra. If G is a subgroup of* $GL_m(D)$ *such that either G is irreducible or* $F[G]$ *is a simple ring, then for some* $s \leq mn^2$ *, the group G is isomorphic to an irreducible subgroup of* $GL_s(F)$ *.*

THEOREM 3.11 [\[26,](#page-10-3) page 111]. *Let V be a finite dimensional linear space over a division ring D and G an irreducible subgroup of* GL(*V*) *which can be represented in the form G* = *HF, where H and F are elementwise permutable normal subgroups of G. Then, the irreducible components of H*(*F*) *are pairwise equivalent.*

PROPOSITION 3.12. *Let F be a field and D be a finite dimensional F-central division algebra. Assume that G is an absolutely irreducible subgroup of* $GL_n(D)$ *. If* $G = MN$ *is a central product decomposition of G, then* $F[M] \otimes_F F[N] \cong F[G]$ *and under*

this isomorphism, $M \otimes_F N \cong G$. Additionally, $F[M]$ and $F[N]$ are F-central division *algebras.*

PROOF. By [\[25,](#page-10-2) Theorem 1.2.1], *G* is irreducible. Using [\[25,](#page-10-2) Theorem 1.1.7] and Theorem [3.11,](#page-4-2) we conclude that *M* is a homogeneous completely irreducible subgroup. So Theorem [3.11](#page-4-2) implies $D^n \cong V^m$, where *V* is an irreducible $M - D$ bimodule. Hence, $F[N] \subseteq A = C_{M_n(D)}(M) = \text{End}_{M-D}(D^n) \cong M_m(E)$, where $E = \text{End}_{M-D}(V)$ is a division ring by Schur's lemma. Note that $F[N] \otimes F[M] \leq A \otimes_F C_{M_n(D)}(A)$. Hence, by the centraliser theorem, $[F[M] : F]FN] : F] \leq [A : F][C_{M_n(D)}(A) : F] = n^2[D : F]$. Furthermore, $F[M], F[N] \subseteq F[G]$ implies that there is a surjective homomorphism f from $F[N] \otimes_F F[M]$ onto $F[G] = M_n(D)$ such that $f(a \otimes b) = ab$ for each $a \in M, b \in N$. So $F[M] \otimes_F F[N] \cong F[G]$ by dimension counting. It is clear that *f*, the restriction of *f* to $M \otimes_F N$, is a surjective homomorphism on *G*. If $\overline{f}(a \otimes b) = ab = 1$, then *a* = *b*^{−1} ∈ *M* ∩ *N* ⊆ *Z*(*G*) ⊆ *F*. Hence, *a* ⊗ *b* = *b*^{−1} ⊗ *b* = 1 ⊗ *b*^{−1}*b* = 1 ⊗ 1. So, ker(*f*) is trivial and \overline{f} is an isomorphism from $M \otimes_F N$ to *G*. Consequently, $F[M]$ and $F[N]$ are F -central division algebras by Theorem [2.3.](#page-2-0)

The following example shows that the above result is not true in semisimple rings.

EXAMPLE 3.13. Let $A = F \times F$, $G = \{(1, 1), (1, -1), (-1, 1), (-1, -1)\}, M = \{(1, 1),$ $(1, -1)$, $N = \{(1, 1), (-1, 1)\}$. Then, *G* is a central product of *M* and *N*. However, $[F[M] \otimes_F F[N] : F] = 4$. So $F[M] \otimes_F F[N] \not\cong F[G] = A$.

Next we introduce some notation from [\[26\]](#page-10-3). Let *V* be a finite dimensional linear space over a division ring *D* and *G* a completely irreducible subgroup of GL(*V*). Let $D^n = V = L_1 \oplus \cdots \oplus L_r$ and suppose that L_i is a *G*-invariant *G*-irreducible subspace of *V* for $1 \le i \le r$. We determine the irreducible components of *G*, that is, the irreducible representations *di* of the form

$$
d_i: G \to GL(L_i), \quad g \to g \mid L_i, \quad i = 1, \ldots, r.
$$

By [\[26,](#page-10-3) Lemma 13.1], the irreducible components d_i and d_j of G are equivalent if and only if there exists a module isomorphism $\Psi: L_i \to L_j$ such that for any $y \in G$,

$$
d_j(y) = \Psi d_1(y)\Psi^{-1}.
$$

In addition, these representations are equivalent if and only if the modules *Li* and *L_i* have respective bases B_1 and B_2 such that for any $y \in G$, the matrix of the endomorphism $d_i(y)$ in B_1 is the same as that of $d_i(y)$ in B_2 . This observation gives the following result.

LEMMA 3.14. Let G be a completely irreducible subgroup of $GL_n(D)$ such that *the irreducible components of G are pairwise equivalent. Let r be the degree of an irreducible component of G and n* = *rs. Then, there is an isomorphism f with* $f: M_n(D) \longrightarrow M_r(D) \otimes_F M_s(F)$ *and an irreducible subgroup H of* $GL_r(D)$ *such that* $f(G) = H \otimes \{1\}.$

4. Locally nilpotent subgroups of GL*n*(*D*)

In this section, we prove that every absolutely irreducible locally nilpotent subgroup of GL*n*(*D*) is a central product of some of its subgroups which gives a decomposition of $M_n(D)$ as a tensor product of central simple algebras of prime power degree. First, we recall the following general results which play a key role in proving our main theorems.

THEOREM 4.1 [\[26,](#page-10-3) page 216]. *Let F be an arbitrary field and G be an absolutely irreducible locally nilpotent subgroup of* GL*n*(*F*)*. Then, G*/*Z*(*G*) *is periodic and* $\pi(G/Z(G)) = \pi(n)$.

THEOREM 4.2 [\[29\]](#page-10-5). *Let H be a locally nilpotent normal subgroup of the absolutely irreducible skew linear group G. Then, H is centre-by-locally finite and* $G/C_G(H)$ *is periodic.*

THEOREM 4.3 [\[22,](#page-10-7) page 342]. *Let G be a locally nilpotent group. Then, the elements of finite order in G form a fully invariant subgroup T (the torsion subgroup of G) such that G*/*T is torsion and T is a direct product of p-groups.*

THEOREM 4.4 [\[5\]](#page-9-13). *Let N be a normal subgroup in a primitive subgroup M of* GL*n*(*D*)*. Then:*

- (1) *F*[*N*] *is a prime ring;*
- (2) $C_{M_n(D)}(N)$ *is a simple Artinian ring;*
- (3) *if* $C_{M_n(D)}(N)$ *is a division ring, then N is irreducible.*

THEOREM 4.5 [\[18\]](#page-9-18). *Let D be a finite dimensional F-central division algebra. Then, Mm*(*D*) *is a crossed product over a maximal subfield if and only if there exists an absolutely irreducible subgroup G of Mm*(*D*) *and a normal abelian subgroup A of G such that* $C_G(A) = A$ *and* $F[A]$ *contains no zero divisor.*

THEOREM 4.6. Let $A = M_n(D)$ be an *F*-central simple algebra of degree $m^2 =$ $\prod_{i=1}^{k} p_i^{2\alpha_i}$ and G be an absolutely irreducible locally nilpotent subgroup A[∗]. Then:

- (1) $G/Z(G)$ *is locally finite and* $\pi(G/Z(G)) = \pi(m)$;
- (2) *^G*/*Z*(*G*) *is a p-group for some prime p if and only if m is a pth power.*

PROOF. (1) By Theorem [4.2,](#page-6-0) *G* is centre-by-locally finite. Let *K* be a maximal subfield of *D*. By Proposition [3.4,](#page-3-1) *G* is isomorphic to an absolutely irreducible subgroup of $GL_m(K)$. Now, Theorem [4.1](#page-6-1) asserts that $\pi(G/Z(G)) = \pi(m)$.

(2) This statement is clear from item (1). \Box

COROLLARY 4.7. Let $A = M_n(D)$ be an *F*-central simple algebra of degree $m^2 =$ $\prod_{i=1}^{k} p_i^{2\alpha_i}$ and G be an absolutely irreducible locally nilpotent subgroup of A[∗]. Then:

- (1) *G*/*Z*(*G*) *is locally finite and* $\pi(G/Z(G)) = \pi(m^2/[C_{M,(D)} : F]) \subseteq \pi(m);$
- (2) *if* $G/Z(G)$ *is a p-group for some prime p, then* $[F[G]:F]$ *is a pth power*;
- (3) *if m is a pth power for some prime p, then G*/*Z*(*G*) *is a p-group.*

PROOF. By Theorem [3.6,](#page-4-0) *F*[*G*] is a simple ring. From the centraliser theorem, $[F[G]: F][C_{M_n(D)}: F] = m^2$. The reminder of the proof is similar to the proof of Theorem [4.6.](#page-6-2) \Box

Now we are ready to prove the main theorem of this article.

THEOREM 4.8. Let $A = M_n(D)$ be an *F*-central simple algebra of degree $m^2 =$ $\prod_{i=1}^{k} p_i^{2\alpha_i}$ and G be an absolutely irreducible locally nilpotent subgroup A[∗]. Then:

- (1) *G*/*Z*(*G*) *is the internal direct product of* $H_1/Z(G), \ldots, H_k/Z(G)$ *, where* $H_i/Z(G)$ *is the Sylow* p_i *-subgroup of* $G/Z(G)$ *;*
- (2) *G* is the central product of H_1, \ldots, H_k ;
- (3) $A = F[G] \cong F[H_1] \otimes_F \cdots \otimes_F F[H_k]$ *and* $G \cong H_1 \otimes_F \cdots \otimes_F H_k$ *under this isomorphism and, for each i,* $A_i = F[H_i]$ *is an F-central simple algebra and* $[F[H_i] : F] = p_i^{2\alpha_i}$.

PROOF. (1) The statement follows from Theorems [4.3](#page-6-3) and [4.6.](#page-6-2)

(2) Let $i \neq j$ and take $a \in H_i$, $b \in H_j$. Then, $ab = \lambda ba$ with $\lambda \in Z(G) \subseteq F^*$. Now, $a^{p_i} \in F^*$ and $b^{p_j} \in F^*$, so $\lambda^{p_i} = \lambda^{p_j} = 1$, which gives $\lambda = 1$ and $ab = ba$. So, $H_i \subseteq C_G(H_i)$ and G is the central product of H, $C_G(H_i)$ and *G* is the central product of H_1, \ldots, H_k .

(3) This statement follows from Proposition [3.12](#page-4-3) and induction on k .

COROLLARY 4.9. *Keep the notation and assumptions of Theorem [4.8.](#page-7-0) If n* = 1 *and* $F[H_i] = D_i$, then $D \cong D_1 \otimes_F \cdots \otimes_F D_k$, where $i(D_i) = p_i^{\alpha_i}$.

Using [\[19,](#page-9-19) Theorem 2.4], we have the following proposition.

PROPOSITION 4.10. *Keep the notation and assumptions of Theorem [4.8.](#page-7-0) Then, F*[*G*] = $M_n(D)$ *is a crossed product over a maximal subfield K if and only if for each i,* $F[H_i]$ *is a crossed product over a maximal subfield Ki. In addition, under these circumstances,* $K \cong K_1 \otimes_F \cdots \otimes_F K_k$ *and* $Gal(K/F) \cong Gal(K_1/F) \times \cdots \times Gal(K_k/F)$.

THEOREM 4.11. *Let D be an F-central finite dimensional division algebra. Assume that G be a primitive absolutely irreducible locally nilpotent subgroup of* $GL_n(D)$ *. Then, Mn*(*D*) *is a crossed product over a maximal subfield K. With the notation and assumptions of Theorem [4.8:](#page-7-0)*

- (1) *there exists an abelian normal subgroup S of G such that G*/*S and* Gal(*K*/*F*) *are finite nilpotent groups and* $Gal(K/F) \cong N_{GL_n(D)}(K^*)/K^* \cong G/S$;
for each *i* there exists an abelian subgroup A, of H, such that i
- (2) *for each i, there exists an abelian subgroup* A_i *of* H_i *such that* $F[H_i]$ *is a crossed product over a maximal subfield Ki and, in addition, Hi*/*Ai and Gal*(*Ki*/*F*) *are finite nilpotent groups and* $Gal(K_i/F) \cong N_{F[H_i]^*}(K_i^*)/K_i^* \cong H_i/A_i;$
 $S \cong A_1 \otimes_S \cdots \otimes_S A_k, K \cong K_2 \otimes_S \cdots \otimes_S K_k$ and $S = A_1 \cdots A_k$
- (S) $S \cong A_1 \otimes_F \cdots \otimes_F A_k$, $K \cong K_1 \otimes_F \cdots \otimes_F K_k$ and $S = A_1 \cdots A_k$.

PROOF. By [\[25,](#page-10-2) Theorem 3.3.8], *G* is soluble. Now, using [\[26,](#page-10-3) Theorem 6, page 135], *G* contains a maximal abelian normal subgroup, say *S*, such that $|G/S| < \infty$. By Theorem [4.4,](#page-6-4) $K = F[S]$ is a field and by a result in [\[10\]](#page-9-9), *G* is hypercentral. Hence, by an exercise from [\[22,](#page-10-7) page 354], we conclude that every maximal abelian normal

subgroup of *G* is self-centralising. Now, using Theorem [4.5,](#page-6-5) we conclude that $M_n(D)$ is a crossed product over a maximal subfield *^K*. By a result of [\[6,](#page-9-8) page 92], *^K*/*^F* is Galois and we can write $M_n(D) = \bigoplus_{\sigma \in \text{Gal}(K/F)} Ke_{\sigma}$, where $e_{\sigma} \in GL_n(D)$ and for each $x \in K$ and $\sigma \in \text{Gal}(K/F)$, there exists $\sigma(x) \in K$ such that $e_{\sigma}x = \sigma(x)e_{\sigma}$. So, $e_{\sigma} \in N_{GL_n(D)}(K^*)$. Now, using the Skolem–Noether theorem [\[6,](#page-9-8) page 39] and the fact that $C_{M_n(D)}(K) = K$, we obtain $Gal(K/F) \cong N_{GL_n(D)}(K^*)/K^*$. However, consider the homomorphism $\sigma : G \to Gal(K/F)$ given by $\sigma(x) = f$ where $f(k) = \kappa kx^{-1}$ for the homomorphism $\sigma : G \to \text{Gal}(K/F)$ given by $\sigma(x) = f_x$, where $f_x(k) = xkx^{-1}$ for $k \in K$. Clearly, ker(σ) = $C_G(K)$. Since $S \subseteq C_G(K) \subseteq C_G(S) = S$, we have $C_G(K) = S$. Choose an element $a \in Fix(Im \sigma)$. For any $x \in G$, we have $f_x(a) = a$ and hence $xa = ax$. This shows that Fix(Im σ) \subseteq $C_K(G) \subseteq C_{M_n(D)}(G) = F$. Hence, $F = Fix(Im \sigma)$ and σ is surjective. Therefore, $Gal(K/F) \cong G/S$, as we claimed.
The proof is completed by using Theorem 4.8 and P

The proof is completed by using Theorem [4.8](#page-7-0) and Proposition [4.10.](#page-7-1) \Box

We can immediately deduce the following theorem.

THEOREM 4.12. *Let D be an F-central finite dimensional division algebra such that* $[D: F] = i(D)^2 = \prod_{i=1}^k p_i^{2\alpha_i}$. If D^* contains an absolutely irreducible locally nilpotent *subgroup G, then D is a crossed product over a maximal subfield K. With the notation and assumptions of Theorems [4.8](#page-7-0) and [4.11,](#page-7-2)* $D \cong D_1 \otimes_F \cdots \otimes_F D_k$, where $F[H_i] = D_i$ *and Di is a crossed product over a maximal subfield Ki.*

PROPOSITION 4.13. Let $A = M_n(D)$ be an *F*-central simple algebra of degree $m^2 =$ $\prod_{i=1}^{k} p_i^{2\alpha_i}$ and G be an absolutely irreducible locally nilpotent subgroup A[∗]. Then, *there is an element of order* p_i *in* F *for* $1 \le i \le k$.

PROOF. Keep the notation and assumptions of Theorem [4.8,](#page-7-0) so that $[F[H_i] : F] =$ $p_i^{2\alpha_i}$. Since $F[H_i]$ is a central simple algebra, $F[H_i] \cong M_{p_i^{(\beta_i)}}(D_i)$, where D_i is an *F*-central division algebra of degree a power of p_i . Assume that K_i is a maximal subfield of D_i . By [\[26,](#page-10-3) Theorem 27.6] and Proposition [3.4,](#page-3-1) K_i contains an element *b*, say, of order p_i . Now, $[F(b): F] \leq p_i - 1$ and $[F(b): F] | [K_i : F]$. However, $[K_i : F]$ is a power of p_i , which implies $[F[b] : F] = 1$, that is, $b \in F$.

PROPOSITION 4.14. *Let D be an F-central finite dimensional division algebra and suppose that for* $p \in \pi(n)$ *, there is an element of order p in F, when* $n > 1$ *. Then,* GL*n*(*D*) *contains a finite irreducible nonabelian nilpotent subgroup G such that* $F[G] = M_n(F) \subseteq M_n(D)$.

PROOF. By [\[26,](#page-10-3) Theorem 27.6], there exists a finite nilpotent subgroup *G* of $GL_n(F)$ such that $F[G] = M_n(F) \subseteq M_n(D)$. We show that *G* is an irreducible subgroup of $GL_n(D)$. In contrast, assume that *G* is reducible in $GL_n(D)$. By [\[25,](#page-10-2) Theorem 1.1.1], there exists a matrix $P \in GL_n(D)$ such that

$$
P(F[G])P^{-1} \subseteq \begin{bmatrix} M_r(D) & B \\ 0_{(n-s)\times r} & M_{n-s}(D) \end{bmatrix}.
$$

This means that we can define a homomorphism from $M_n(F)$ to $M_r(D)$. However, $M_n(F)$ is a simple ring. Hence, this map is an injection. This contradicts [\[25,](#page-10-2) Theorem 1.1.9], which asserts that the matrix ring $M_r(D)$ contains at most *r* nonzero pairwise orthogonal idempotents. -

EXAMPLE 4.15. The multiplicative group of the real quaternion division algebra contains the quaternion group which is an absolutely irreducible 2-group. By [\[8,](#page-9-16) Corollary 3.5], if *D* is a noncommutative finite dimensional *F*-central division algebra and D^* contains an absolutely irreducible finite *p*-subgroup for some prime *p*, then *D* is a nilpotent crossed product with $[D : F] = 2^m$ for some $m \in \mathbb{N}$.

Acknowledgements

The first author thanks the Research Council of the Farhangian University for support. The second author is indebted to the Research Council of University of Jiroft for support.

References

- [1] S. Akbari, R. Ebrahimian, H. Momenaee Kermani and A. Salehi Golsefidy, 'Maximal subgroups of *GLn*(*D*)', *J. Algebra* 259 (2003), 201–225.
- [2] S. Akbari, M. Mahdavi-Hezavehi and M. G. Mahmudi, 'Maximal subgroups of *GL*1(*D*)', *J. Algebra* 217 (1999), 422–433.
- [3] S. A. Amitsur, 'Finite subgroups of division rings', *Trans. Amer. Math. Soc.* 80 (1955), 361–386.
- [4] J. D. Dixon, *The Structure of Linear Groups*, Van Nostrand Reinhold Mathematical Studies, 37 (John Wiley and Sons, Hoboken, NJ, 1971).
- [5] H. Dorbidi, R. Fallah-Moghaddam and M. Mahdavi-Hezavehi, 'Soluble maximal subgroups of *GLn*(*D*)', *J. Algebra Appl.* 9(6) (2010), 921–932.
- [6] P. K. Draxl, *Skew Fields* (Cambridge University Press, Cambridge, 1983).
- [7] R. Ebrahimian, 'Nilpotent maximal subgroups of *GLn*(*D*)', *J. Algebra* 280 (2004), 244–248.
- [8] R. Ebrahimian, D. Kiani and M. Mahdavi-Hezavehi, 'Supersoluble crossed product criterion for division algebras', *Israel J. Math.* 145 (2005), 325–331.
- [9] R. Fallah-Moghaddam, 'Maximal subgroups of *SLn*(*D*)', *J. Algebra* 531 (2019), 70–82.
- [10] M. S. Garascuk, 'On the theory of the generalized nilpotent linear groups', *Dokl. Akad. Nauk BSSR* 4 (1960), 276–277.
- [11] R. Hazrat, M. Mahdavi-Hezavehi and M. Motiee, 'Multiplicative groups of division rings', *Math. Proc. R. Ir. Acad.* 114(1) (2014), 37–114.
- [12] R. Hazrat and A. R. Wadsworth, 'On maximal subgroups of the multiplicative group of a division algebra', *J. Algebra* 322 (2009), 2528–2543.
- [13] I. N. Herstein, 'Finite multiplicative subgroups in division rings', *Pacific J. Math.* 3 (1953), 121–126.
- [14] I. N. Herstein, 'Multiplicative commutators in division rings', *Israel J. Math.* 31(2) (1978), 180–188.
- [15] L. K. Hua, 'Some properties of a field', *Proc. Natl. Acad. Sci. USA* 35 (1949), 533–537.
- [16] L. K. Hua, 'On the multiplicative group of a field', *Sci. Rec. Acad. Sin.* 3 (1950), 1–6.
- [17] M. S. Huzurbazar, 'The multiplicative group of a division ring', *Dokl. Akad. Nauk SSSR* 131 (1960), 1268–1271; English translation *Soviet Math. Dokl.* 1 (1960), 433–435.
- [18] T. Keshavarzipour and M. Mahdavi-Hezavehi, 'Crossed product conditions for central simple algebras in terms of irreducible subgroups', *J. Algebra* 315(2) (2007), 738–744.
- [19] D. Kiani and M. Ramezan-Nassab, 'Crossed product conditions for central simple algebras in terms of splitting fields', *Int. Math. Forum* 4(32) (2009), 1587–1590.
- [20] M. Mahdavi-Hezavehi and J.-P. Tignol, 'Cyclicity conditions for division algebras of prime degree', *Proc. Amer. Math. Soc.* 131(12) (2003), 3673–3676.
- [21] R. S. Pierce, *Associative Algebras*, Graduate Texts in Mathematics, 88 (Springer, New York, 1986).
- [22] D. J. S. Robinson, *A Course in the Theory Groups*, Graduate Texts in Mathematics, 80 (Springer, New York, 1982).
- [23] W. R. Scott, 'On the multiplicative group of a division ring', *Proc. Amer. Math. Soc.* 8 (1957), 303–305.
- [24] W. R. Scott, *Group Theory* (Dover, New York, 1987).
- [25] M. Shirvani and B. A. F. Wehrfritz, *Skew Linear Groups*, London Mathematical Society Lecture Note Series, 118 (Cambridge University Press, Cambridge, 1986).
- [26] D. A. Suprunenko, *Matrix Groups* (American Mathematical Society, Providence, RI, 1976).
- [27] B. A. F. Wehrfritz, *Infinite Linear Groups*, Ergebnisse der Mathematik und ihrer Grenzgebiete, 76 (Springer-Verlag, Berlin–Heidelberg–New York, 1973).
- [28] B. A. F. Wehrfritz, 'Locally nilpotent skew linear groups', *Proc. Edinb. Math. Soc. (2)* 29 (1986), 101–113.
- [29] B. A. F. Wehrfritz, 'Locally nilpotent skew linear groups II', *Proc. Edinb. Math. Soc. (2)* 30 (1987), 423–426.
- [30] A. E. Zaleeskii, 'The structure of several classes of matrix groups over a division ring', *Sibirsk. Mat. Zh.* 8 (1967), 1284–1298 (in Russian).

R. FALLAH-MOGHADDAM, Department of Mathematics Education, Farhangian University, P.O. Box 14665-889, Tehran, Iran e-mail: r.fallahmoghaddam@cfu.ac.ir

H. R. DORBIDI, Department of Mathematics, Faculty of Science, University of Jiroft, Jiroft 78671-61167, Iran e-mail: hr_dorbidi@ujiroft.ac.ir