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THE EFFECTIVE VERSION OF BROOKS' THEOREM 

JAMES H. SCHMERL 

One of the fundamental results on graph coloring is the following 
classical theorem of Brooks. 

BROOKS' THEOREM. Suppose that k è 3 and that G is a k-regular graph 
which does not induce a (k + I)-clique. Then G is k-colorable. 

Brooks proved his theorem in [1]; several more recent proofs have 
appeared in [3], [4] and [5]. All the proofs of this theorem have the 
common feature of applying only to finite graphs; the transition to 
infinite graphs can be accomplished by a very standard implementation 
of the Compactness Theorem (or some other equally noneffective device 
such as the theorem of deBruijn and Erdôs [2] asserting that a graph is 
^-colorable if and only if each of its finite subgraphs is). Thus, it is not 
immediately apparent that an effective version of Brooks' Theorem 
exists. It is our purpose to show, however, that the effective analogue of 
Brooks' Theorem is indeed true. 

THEOREM. Suppose that k ^ 3 and that G is a recursive k-regular graph 
which does not induce a (k + 1)-clique. Then G is recursively k-colorable. 

It behooves us at this point to make precise the notions in the theorem. 
A graph G is a pair (V, £ ) , where V is a set of vertices and E, the set of 
edges, is a set of 2-subsets of V. If F is a subset of co, the set of natural 
numbers, and both V and E are recursive (in the sense of recursive func­
tion theory [6]), then G is recursive. If X C V, then set 

N(X) = {y G V: {x, y) 6 E for some x G X\, 

and N(x) = N({x}) for x £ V. Then G is locally finite if N(x) is finite 
for each vertex x. The degree of x, denoted by deg x, is |7V(x)|, so that G 
is k-regular if and only if deg x = k for each vertex x. A k-coloring of G 
is a function x : V —> {0, 1, . . . , k — 1} such that whenever x, y are 
vertices and x 6 N(y), then x(#) ^ xbO- A graph is k-colorable if there 
is a k-coloring of it, and it is recursively k-colorable if there is a recursive 
^-coloring. The graph G is a (k + 1)-clique if it is ^-regular and has 
exactly k + 1 vertices. 

Throughout this paper, all subgraphs considered will be induced sub­
graphs, so we will unambiguously identify a subgraph with its set of 
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vertices. For a graph G, if X C G, then we define Nt(X) inductively 
on i by 

No(X) = X and 7Vm(X) = Nt(X) U N(Nt(X)). 

The theorem will be proved by an induction on k, the most difficult 
portion being the basis step k = 3. We will begin with the proof of the 
inductive step, which is essentially the content of the following lemma. 
Recall that a subset X of a graph G is independent if and only if X P 
N(X) = 0. 

LEMMA 1. Suppose that k > 3 and that G is a recursive k-regular graph 
which does not induce a (k + 1)-clique. Then there is a recursive, indepen­
dent X C G such that: 

(1) whenever x £ G — X, then N(x) P X 9e 0; 
(2) if C ÇZ G is a k-clique, then C P X 9e 0. 

Proof. It is easy to see that if C C G is a ^-clique, then there is at most 
one ^-clique D 9* C such that D P G 5̂  0. Let 

i = {x (: G:x = min ( C P Z)) for distinct ^-cliques C, D Ci G}. 

Clearly, Xi is recursive and independent. 
Now let *& be the set of ^-cliques C Ç G such that whenever D 9e C 

is a ^-clique, then .D P C = 0. We will obtain a recursive independent 
X2 Ç G such that 

(3) | X 2 P G| = 1 for each C G ^ ; 

(4) X2 c U <£\ 

To do so, let & be the set of all finite independent F Ç U ^ which 
satisfy: 

(5) whenever x, 3> £ F and G € *$ are such that x ^ ) / and C P 
iV(x) ^ 0 ^ G P N(y), then G P F ^ 0. 

Notice that & 9e- 0 since 0 G ^ . Thus, to show the existence of X2 

it suffices to verify the claim: whenever F 6 <%/ and C Ç ^ , then there 
is Z e & such that Y Q Z and Z P G ^ 0. 

To verify the claim, suppose that Y P G = 0 where F £ ^ and 
G 6 ^ . Because of (5), there is a G C such that N(a) P 7 = 0. Let 
F0 = F U ( f l ) . If F0 fails to be in &, it is because (5) fails and there is 
exactly one pair x, y £ F0 for which (5) fails. Now let ^ 0 be the set of 
all finite independent F j Ç U ? such that F0 C Fi and Fx fails to be 
in ^ because (5) fails for exactly one pair x, y. For 7X £ ^ o , let 

rc(Fi) = \{y £ Fi:there is C £ ^ such that Fj P C = 0 yet 

N(Y,)n G ^ 0 } | . 
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Choose Y\ 6 ^ o which minimizes w(Fi), and let x, y 6 Fi be the unique 
pair of elements in Yi for which (5) fails. Let C\ Ç ^ be the ^-clique 
demonstrating that failure; that is, 

& H iV(x) ^ 0 ^ & r\ N(y) and d H ^ = 0. 

Choose z e Ci - iV(Fi), and let Z = Fi U {z}. Clearly, if Z € ^ 0 , 
then n(Z) < n(Fi) , contradicting minimality. Hence Z g ^ 0 , and 
therefore Z G ^ . This proves the claim and shows the existence of X2. 

It is clear that Xi U X2 is independent and recursive. Let I Ç G b e 
a recursive, maximal independent set containing X\ \J X2. Then X has 
the desired properties. 

It is clear that Lemma 1 gives us the inductive step of the proof of 
the theorem. For, if G is a ^-regular graph which does not induce a 
(k + 1)-clique, then obtain X as in Lemma 1, use the inductive hypo­
thesis to obtain a recursive (k — l)-coloring yp: (G — X) —> k — 1, and 
then set 

X = ^ U ( X X {* - 1}). 

Having proved the inductive step, we need only prove the theorem 
in the case that k = 3. The basic strategy to be used to achieve this is 
the following lemma, the proof of which constitutes the bulk of the 
proof of the theorem. 

LEMMA 2. Suppose that G is a recursive S-regular graph which does not 
induce a ^.-clique. Then with each finite X C G there is effectively associated 
some r such that if x '.Nr(X) —•> 3 is 3-coloring, then x\X can be extended to 
a 3-coloring of G. 

To see how Lemma 2 implies the theorem (in the case k — 3), let 
{xn\n < co\ be some effective enumeration of the vertices of G, and let 
Xn = {xoy Xi, . . . , xn-i}. Lemma 2 easily implies the existence of a 
recursive g\œ —> w such that whenever n < œ and \l/:Ng(n)(Xn) —> 3 is a 
3-coloring, then >f/\Xn can be extended to a 3-coloring of G. Inductively 
define 3-colorings \[/n:NÇ(n)(Xn) —> 3 so that for any n < co, \f/n+i extends 
ypn\Xn. By Brooks' Theorem r̂ 0 exists. For n > 0 \pn exists by Lemma 2, 
and \l/n can be chosen by some effective method. Thus, let x-G —» 3 be 
such that x(Xn) — ^n+i(xn). Clearly, x is a recursive 3-coloring of G. 

Thus, all that remains is to prove Lemma 2. 
For a graph G, we let 

A(G) = max({degx:x G G}); 

and we let 

8(G) = {x £ G:degx ^ 2}. 
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If P Ç G, then P is a path from # to y if P is connected, A(P) ^ 2 and 
degp x = degp y = 1. 

There are two definitions which will play important roles. 

Definition 3. A finite graph H has property A if A(H) — 3 and any 
3-coloring \l/:d(H) —> 3 can be extended to a 3-coloring x'*H —» 3. 

Definition 4. A finite graph Jf has property B if there are distinct 
vertices x,y £ H such that x $ iV^y) and there are paths Pu P2 , P3 
from x to y such that P j H P 2 = P 2 n P 3 = P 3 H Pi = {x, y}. 

The utility of these definitions with regard to Brooks' Theorem is 
demonstrated in the following lemma. 

LEMMA 5. Let H be a finite graph such that A(H) ^ 3, and let X Q H 
be such that H — X is connected and that one of the following properties 
holds: 

(1) H — X has an induced subgraph with property A; 
(2) H - X has property B; 
(3) (H - X)C\b{H) ^ 0 . 

Then any 3-coloring \f/:X —> 3 can be extended to a 3-coloring x -H —> 3. 

Proof. If H — X is a component of H, then each of (l)-(3) implies 
that H — X is not a 4-clique, so that by Brooks' Theorem there is a 
3-coloring ^:H - X -> 3. Let x = ^ ^ ^ - Thus assume that H - X is 
not a component of H. 

Now let ao, ai, . . . , aw be a list of elements of H — X arranged so 
that for 1 ^ i ^ n, at is connected by an edge to some a$ (j < i). 
Notice that we can assign 3 colors to an, an_i, . . . , a\ in that order so 
that each a, (n ^ j ^ 1) is assigned a color different from any color 
previously assigned to a point to which it is connected by an edge. Thus, 
there is a 3-coloring \po :H — {ao} —> 3 extending ^. 

The choice of ao was so far arbitrary. We now impose some conditions 
on ao according to which of the conditions (l)-(3) is satisfied. 

Suppose (1). Let H0 be the induced subgraph of H — X with property 
A. Choose ao £ Ho — d(H0). Let <t>:H0 —> 3 be a 3-coloring of H0 extend­
ing \f/o\5(Ho). Now define x 'H -> 3 by 

(x) = | * W i f * 6 f f o - 6 ( i ? o ) ; 
Wo (x) otherwise. 

Clearly, x - # - * 3 extends ^. To see that x is a 3-coloring, consider 
x,y £ H such that x Ç iV(y). The only possibility for a problem occurs 
when, for example, x Ç. H0 — 8(H0). But then y £ H0 so that 
x(a) = 4>(x) * 4>(y) = x60-

Suppose (2) (but not (1) or (3)). Since H — X has property B there 
are x, y Ç H — X and paths Pi , P2 , P3 C H — X as in Definition 4. Let 
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a0 = x. Since deg y = 3, there are distinct vertices b, c,£ N(y) such that 
fa(b) = ^o(c). Then consider (say) P i where b, c £ Pi. Then, as in 
Brooks' proof [1] of his theorem, there is a 3-coloring x 'H —> 3 such that 

fa\(H-Pi) = x l ( ^ - P i ) . 

Clearly, x extends ^. 
Finally suppose (3) (but not (1)). Let a0 £ (H - X) C\ 5(H). Let 

7 < 3 be a color not assigned by \f/o to any point in JV(ao). Then let 

x = fowmi)). 
Clearly, x is a 3-coloring of H extending \p. 

In the next two lemmas some graphs with property A are presented. 

LEMMA 6. Let H be a finite graph such that A(H) ^ 3, and suppose that 
Z C H is such that: 

B(H) * 0 
N2(Z) = H, 

N1(Z)r>id(H) = 0, 

\NX(Z) - Z| ^ 2. 

Then H has property A. 

Proof. Let \[/:ô(H) —» 3 be a 3-coloring. By (3) of Lemma 5 there is a 
3-coloring fa:H - Z - > 3 extending ^ If \Ni{Z) - Z\ = 1, then let 
\l/i'.Ni(Z) —» 3 be a 3-coloring such that ^i(a) = ^o(a), where a G N\(Z) 
— Z. Then set x = *Ao W ^. So suppose Ni(Z) — Z = {a, 6}, where 
a ?£ b.\i each ^0 as before is such that to (a) = ^o(b), then each of a and 
& is joined to 2 points of N2(Z) — Ni(Z). Thus there are a', V G Z which 
are the only points of Z in N(a) and N(b) respectively. Then let 
i/V.Z—>3 be any 3-coloring such that fa (a') ^ \l/o(a) 9e \p(bf), and let 
X = ^o ^ 1A2. Finally, if each ^0 as before is such that ^o(a) ^ ^o(^), 
then form the graph H' by adjoining to the graph N\{Z) an edge between 
a and b. Clearly, H' has maximal degree ^ 3 and does not induce a 
4-clique, so by Brooks' Theorem there is a 3-coloring ypz'.H' —> 3. Since 
fa (a) 9e ^z(b) we can assume that \ps(a) = fa (a) and \l/*(b) = ^o(b). 
Then set x = ^o ^ ^-

LEMMA 7. L ^ H be a finite graph such that A(H) ^ 3, let z0 Q H and 
let Zi+i = Ni+i(Z0) — Ni(Zo). Suppose the following hold: 

H = Nh(Zo); 

\{x € Z , : iV(* )nZ< + i 9^0\ S 2fori < h; 

1 ^ |«(ff)HZj ^ 2; 
ZoÇô(iJ) Ç Z o H Z , 

Then, if h is sufficiently large, H has property A. 
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Proof. Choose h large enough so that the following proof works. (It 
appears that the least value of h for which the lemma is true is 6.) It is 
quite easy to see, using Lemma 5(3), that any 3-coloring of Z0 U . . . U Z j 
can be extended to a 3-coloring of Z0 KJ . . . W Z m . Similarly, any 
3-coloring of Z i+i U . . . W Z/, can be extended to a 3-coloring of 
Z{ U . . . U Zh. Thus, it suffices to show that there are i,j (0 ^ i < 
j ^ h) such that Zz U . . . U Z7 has property A. 

For each i < h, let at, bt £ Zz be such that 

{aubt) = M Zt:N(z)nZM ^®], 

and let 

{a*fM = b{H)C\Zh. 

Note that it is possible that at — bt. It is very easy to check that when­
ever 0 S i < h — 1 and ai+i — bi+i, then a, = 6?: if and only if ai+2 5e 

bi+2. If i <j < h are such that a* = bit ai+i — bi+i, aj = bj and 
a ; +i = bj+i, then clearly Z7- U . . . \J Zj+i has property A. Thus, without 
loss of generality, we can assume that at ^ bt for each i ^ h. 

If at and 6* are connected by an edge for j ^ i fg 7 + 3, then 
Z j U . . . U Z j + 3 is uniquely determined and is easily seen to have 
property A. Thus we can assume that at and bt are not connected by an 
edge for sufficiently many i. 

Notice that if ai+\ and bi+i are not connected by an edge, then any 
3-coloring Z0 U . . . U Zf can be extended to a 3-coloring of Zo W 
. . . \J Zi+i which assigns the same color to at+i and 6 î+i. Similarly, if 
j < h — 1 and a, and &_,- are not connected by an edge, then any 3-
coloring of Zj+2 \J . . .\J Zh can be extended to a 3-coloring of 
Zj^J...\JZh which assigns the same color to a, and bj. Furthermore, 
notice that if at and bt are connected by an edge, but ai+i and bi+x are 
not, then neither are ai+2 and bi+2. Thus, there are i,j such that 
i-\-\<j<h— 1 and au ai+u dj are not connected by edges to 
bu bi+i, bj respectively. Now let \f/:8(H) —> 3 be a 3-coloring, and let 

Xo: (Zo U . . . U Zt) U (Z, U . . . U Z,) -> 3 

be a 3-coloring extending^ such that xo(«z) = Xo(bj) and xo(^y) = xo(bj)-
Clearly there is a 3-coloring xi of Zz- W . . . U Z7 such that 

XiiPi) = Xi(&*) = Xo(a<) and 

Xifc;) = Xi(^) = Xo(aj). 

Then x = Xi ^ X2 is the desired coloring. 

LEMMA 8. Let G be a graph such that A(G) ^ 3, let X C G be finite, and 
let m < co. 77^w //^re w r (2 :g r < co) sz/c/* / t o /or mc/̂  component Y of 
NT{X) — X one of the following holds: 
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(1) Y has an induced subgraph with property A; 
(2) Y has property B; 
(3) Y P 0(G) * id; 
(4) YQNr-^X); 
(5) | F P (Nr(X) - Nr-i(X))\ è m, and whenever distinct x, y Ç Y C\ 

(Nr-i(X) — Nr-2(X)), then there is a path P from x to y such that 

P C (YnNr-2(X))U[x,y\. 

Proof. Let H = U \NS(X) :s < a?}. Choose s iè 3 large enough so that 
each component W of H — X satisfies each of the following conditions: 

(A0) W P NS(X) is a component of NS(X) - X. 
(Al) if W has an induced subgraph with property A, then W P Ns (X) 

has an induced subgraph with property A; 
(A2) if W has property B, then WC\ NS{X) has property B; 
(A3) if Wr\b(G) * 0, then W C\ NS(X) P ô(G) * 0; 
(A4) if W is finite, then W C Nt(X). 

Clearly such an 5 exists since there are only finitely many components of 
H - X. 

Now let If be a component of H — X such that (A1)-(A4) hold 
vacuously; that is: 

(Bl) W has no induced subgraph with property A; 
(B2) W does not have property B; 
(B3) Wr\d(G) = 0; 
(B4) W is infinite. 

We will find u < w such that if r ^ u and Y = W P Nr(X), then (5) 
is satisfied. Clearly, this will suffice to prove the lemma. 

Lett ^ 5 + 2 be such that whenever x, y G W C\ (NS(X) - N,-i(X)) 
and x, y are in the same component of W — iV6._i(X), then they are 
already in the same component of WP (Nt-2(X) — Ns~i(X)). 

We claim that if r ^ / and x, y G WD (Nr-i(X) - Nr-2(X)) are 
distinct, then there is a path P from x to y such that 

P C (If P7V r _ 2 pO) U {x,;y}. 

To see this let xi, j f i G ^ H (N8(X) - N8-i(X)) be such that there are 
paths Pi , Qi from Xi, y\ to x / , y / respectively so that 

P i C (Nr.2(X) - N,-!(X)) U {x} and 

0i C (7Vr_2(Z) - 7Vs_x(Z)) U {?}. 

By the condition on 2 there is a component RolW^J (Nt-2(X) — NS(X)) 
which contains xi and yi. But then Pi U Qi U P is connected and 

(Pi U Ci U P) P iVr_i(X) = {x, y}. 
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Then there is a path P from x to y such that 

P Q (W H i V r _ 2 ( Z ) ) U \x,y}. 

Thus, to complete the proof of the lemma it suffices to find u < co such 
that whenever r ^ u, then 

\WC\ (NT(X) - Nr-i(X))\ è m. 

We now claim that iî n ^ t and Z is a component of W Pi (Nn(X) — 
iVw_i(X)), then A^Z) - iVn(Z) ^ </>. For, suppose not. Then 
Ni(Z) Q Nn(X). If |iVi(Z) r\ NH-i(X)\ ^ 2, then by Lemma 6 N2(Z) 
has property A. On the other hand, if \NX(Z) C\ Nn-i(X)\ ^ 3, then by 
the condition on / it follows that W has property B, and this contradicts 
(B2). This proves the claim. 

Thus, if C{n) is the number of components of W — Nn-i(X), the 
above claim shows that t ^ n ^ i implies C(n) ^ C(i). 

Suppose that limw C(n) < co. Choose n è t so large that if i > n then 
C(i) — C(n). If Z is a component of W — Nt-i(X) for some i è n, then 
Z C\ Nf(X) has at most two elements which are connected by an edge to 
some element in W — Nt{X), as otherwise W would have property B. 
So let Z be a component of W — Nn-i(X), and let 

Zo = {x £ ZC\Nn{X):N(x)C\ (W - Nn(X)) * 0}. 

Choosing h as in Lemma 7, let Zi+Ï = Ni(Zt) — iVw+i(X) for i ^ &. 
Then by Lemma 7 Z0 W . . . \J Zh has property A, contradicting (Bl). 

Thus, limw C(n) = oo. Clearly, if u ^ n is such that C(w) = m, then 
C(r) ^ m for r ^ M, so that u has the desired property. 

LEMMA 9. Let G be a graph such that A(G) ^ 3. Let X C G be finite and 
let m = 24|X|. Le/ r &e as in Lemma 8. Suppose s < w and that \f/:Nr(X) 
-+3 is a 3-coloring. Then there is a 3-coloring x*Ns(X) —» 3 extending 
4\X. 

Proof. Let Z0, Zi, . . . , Zt be the components of NS(X) — X. It 
suffices to find for each j' :§ t a 3-coloring Xj'-X C\ Zj —>3 such that 
Xil-XT = IAI-̂ ST- For, then just set x = Xo ^ . . . W x«. 

So suppose Z is a component of NS(X) — X. We will show that there 
is a 3-coloring x*.^ U Z - ^ 3 such that X\X = yp\X. If Z Ç N r (X) , then 
the lemma follows trivially by setting x = ^ | ( X U Z ) . Thus letting 
D = Z — Nr(X), we can assume D 9^ & and, in particular, 5 > r. 

From Lemma 5 we can make the following assumptions: 
(1) Z — X has no induced subgraph with property A; 
(2) Z — X does not have property B ; 
(3) (Z-X)nt(G) = 0; 

We need a fact about the components of Z P\ (NT(X) — Nr-i(X)). 
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(4) If W is a component of Z H (Nr(X) - Nr-i(X)), then 

N^W) - Nr(X) *0. 

To see this suppose N^W) - Nr(X) = 0. Then Ni(W) Q Nr(X). If 
\Ni(W) H Nr-i(X)\ ^ 2, then by Lemma 6 N2(W) has property A, 
contradicting (1). On the other hand, if \Ni(W) C\ Nr-1(X)\ ^ 3, then 
from (5) of Lemma 8 it follows that Z — X has property B, contradicting 
(2). Thus (4) is true. For each z £ D, let 

p(z) = {y £ ZC\ (Nr(X) - NT-i(X)) :there is a path P from 

y to z such that P C (iV,(X) - iVr(Z)) U {y)\. 

Notice that £(z) ^ 0 for each z £ D. 
Let Fo, Fi, . . . , Fc be a list of the components of Z H (NT(X) - X). 

A consequence of (4) is that for each i fk c there is z Ç D such that 
£(z) C\ Yt 9^ 0. We now improve upon (4). 

(5) Supposed ^ c and IF is a component of F* P\ (Nr(X) — Nr-i(X)). 
Then there is j 9* i and z £ D such that 

£(z) n W 9*0 9* p(z) C\ F,, 

For, suppose not. Let D0 = {2 Ç D :p(z) H IF ^ 0}. Let 

r = {t:r < t S s and p(z) C\W 9* 0 for some 
z e Nt(X) - Nt^(X)}. 

By (4), T 9*0 so let / = max T, and let z 6 iV,(X) - Nt-i(X) be such 
that p(z) r\W 9± 0. Let IFo be the component of A^(X) - Nt-i(X) to 
which z belongs. By an argument like the one verifying (4) we see that 
there are j 9* i and x G Ni(W0) such that p(x) H Y5 9* 0. Thus (5) 
holds. 

Notice that the number of components of Nr(X) — X is at most 
3|X|. Thus, 

(6) c < 3\X\. 

Also, notice that 

(7) for each component W of Z H (Nr(X) - Nr-i(X)), \W\ ^ 4. 

For, if \W\ > 4, then there necessarily would be Xi, x2, x3 Ç W and 
distinct 3/1, ;y2, 3>3 € Nr-i(X) - Nr-2(X) such that y, G iV(x,). Then by 
(5) of Lemma 8, Z — X would have property B, contradicting (2). 

Now consider Yc, noting that 

\Ycr\ (Nr(X) - Nr^(X))\ è m = 24|Z|. 

Thus, from (6), 

| F c n (Nr(X) - Nr^(X))\ >8c. 
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Then from (7), it follows tha t the number of components of 
Ycr\ (NT(X) - Nr-tiX)) is >2c. Therefore, from (5), it follows tha t 
there is i < c and there are distinct Xi, x2, x3 *£ Yc and there are 
yu 3̂ 2, 3>3 £ Yi and zu z2, zz G D such tha t 

{*i, yi] Q P(zi), {x2, ^2} Q p(z2) and {x3, yz) Q p(zz). 

Then there are paths Pi} P 2 , P 3 from Xi, x2, x3 to yu y2, 3>3 respectively 
such tha t 

P,Q (N,(X) - Nr(X))U{Xj,yj} 

for j = 1, 2, 3. But then there are paths <2i, Q2, Ç3 from xi, x2, x3 to 3/1 
such tha t 

QjQ (N>(X) - Nr(X))U{Xj}U Yt 

f o r i = 1, 2, 3. I t easily follows tha t Z has property B, contradicting (2). 

The proof of Lemma 2, and hence also of the theorem, is now quite 
clear. For, given a recursive 3-regular graph G and a finite subset I Ç G , 
let m = 24c\X\, and then obtain r as in Lemma 8. Clearly, since such an 
r exists, there is an effective way to obtain it. By Lemma 9, this is the 
required r, so the theorem is proved. 

Brooks' Theorem is usually stated so as to refer to graphs G with 
maximal degree A(G) ^ k rather than to ^-regular G. These two ways of 
stat ing Brooks' Theorem are equivalent; however, a little extra care 
must be exercised in gett ing the effective version of the other form of 
Brooks' Theorem. I t is very easy to see t ha t every recursive graph G for 
which A(G) S k is recursively (k + 1)-colorable. However, for each 
k ^ 2, there even are examples of recursive trees G such tha t A(G) = k 
yet G is not recursively ^-colorable. A graph G is highly recursive if it is 
recursive, locally finite, and the function deg is recursive. Notice t ha t a 
recursive graph G with A(G) ^ k is highly recursive if and only if it is an 
induced subgraph of a recursive ^-regular graph. T h u s we get the follow­
ing corollary to the theorem. 

COROLLARY 10. Suppose that k ^ 3 and that G is a highly recursive 
graph with A(G) ^ k and G does not induce a (k + I)-clique. Then G is 
recursively k-color able. 

We conclude with another corollary, which is a strengthening of the 
theorem, bu t which also indicates tha t the theorem has little to do with 
recursion theory. I t asserts the existence of a function, which also happens 
to be recursive, but whose existence is much more interesting than the 
unsurprising fact of its recursiveness. 

From the s ta tement of Lemma 8, we easily see tha t the r whose 
existence is claimed there can be made to depend only on \X\ and m, 
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and not on X or G. Thus, the r of Lemma 2 need depend only on \X\. 
Also, by an inspection of the proof of Lemma 1, we see that such an r can 
be chosen to work even in the case of ^-regular graphs for arbitrary k. 
This results in the following corollary which is new even without the 
requirement of recursiveness. 

COROLLARY 11. There is a recursive function f:œ —* co such that whenever 
3 S k < a>, G is a graph such that A(G) ^ k and G does not induce a 
(k + l)-clique, X C G is such that \X\ = n < co, and x*Nf(n)(X) —> k 
is a k-coloring, then x\X can be extended to a k-coloring of G. 

For other results on recursive colorings of graphs we refer the reader 
to [7]. 
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