H. Urakawa
Nagoya Math. J.
Vol. 67 (1977), 65-88

ANALYTIC TORSION OF SPACE FORMS OF CERTAIN
COMPACT SYMMETRIC SPACES

HAJIME URAKAWA

Introduction

Let M be a compact, oriented Riemannian manifold of dimension d,
and let I' be the fundamental group of M. For a finite dimensional
representation p of I" on a vector space F, Ray and Singer [10] have
defined the analytic torsion T(M,p) as follows: We denote by E the
vector bundle over M with typical fibre F defined by the representation
o. Let AP(E) be the space of E-valued p forms on M. Let 4? be the
Laplacian (cf. §1) on A?(E), and let H?(E) be the space of harmonic
forms in A?(F). Then

_ 1 © 451 —tar __ 35
£,(8) = WL t-1{tr e~ — dim H?(E))dt

is (cf. [10]) an analytic function of s for large Re (s) and it extends (cf..
[10]) to a meromorphic function in the s-plane which is analytic at s=0..
The analytic torsion T'(M, p) is defined (cf. [10]) as the positive root of

log T(M, p) = 5 35 (~1pL,(0) .

They have showed (cf. [10]) that if H?(F) = (0) (0 < p < d), then the
analytic torsion T'(M, p) does not depend on the Riemannian metrics on
M. Ray [9] has calculated the analytic torsion T'(M, p) for lens spaces,
and also obtained that T'(JM, p) coincides the Reidemeister torsion (cf.
[10]) for lens spaces.

The purpose of this paper is to compute the analytic torsion T'(M, p):
for space forms of certain compact symmetric spaces.

Let G be a compact simply connected Lie group, and let M = G/K
be a simply connected compact globally symmetric space (cf. [5]). Let
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I' be a discrete subgroup of G acting fixed point freely on M. Then
the fundamental group of the orbit space M = I’\M (called a space form
of M [16]) of I' in I is isomorphic to I'. Let or be the representation
restricted to I" of a finite dimensional unitary representation p of G.
Then our main result (cf. Corollary 3.1 in §3) can be stated that

tf rank G —rank K =1, then T(M,p;) =1,

which is proved in §3 using the explicit formula (ef. Theorem 2.2 in
§2) of the fundamental solution of the heat equation. To obtain this
formula we devote in §1 and a part of §2 to review the harmonic
theory in [7] for A?(F) in case of a compact symmetric space M.

The author wishes to thank Professor S. Murakami and Professor
H. Ozeki for their encouragements and helpful advices.

§1. Preliminary
1.1. Analytic torsion

Let M be a compact orientable Riemannian manifold of dimension
d, and I" the fundamental group of M. We denote by M the universal
covering manifold of M, and by @ the projection of M onto M. The
fundamental group I' of M operates on M , and we denote by ¢, the
operation on M of an element yelI'. Let p be a representation of /" in
a vector space F. I' operates on M x F by

1@, u) = (ca,0)w), axeM,ueF, yel.

The quotient manifold £ = = P\(M x F) has a vector bundle structure
over M with typical fibre F. Let A?(E) be the space of all E-valued
p-forms on M. Since the vector bundle E is locally constant i.e. it is
given by a system of locally constant transition functions, a coboundary
operator d of degree 1 on the graded module A(E) = > ¢, A?(F) can be
defined in a natural way. Let E* be the dual vector bundle of E. Then
for e AP(F) and oec AYE*), a differentiable real valued (p + ¢) form
9 N\ w on M is defined as usual (cf. Part I §2, [7]). We assume that
an inner product is given on each fibre of F which depends differenti-
ably on the base manifold M (cf. [7]). The Riemannian metric of M
and the inner product of the fibre bundle E give (cf. [7]) the linear
isomorphism

t: AY(E) —> AP(E) .
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The Riemannian metric of M defines the operator * on real valued forms
on M as usual, and we extend (cf. [7]) this operator * linearly to A?(E).
For 0,we AP(E), we can define

4, w) :f ANES A0
M
‘We define the operator 6 of degree 1 on the graded module A(E) = 3 2, A?(E)
so that #(@0) = d(#6) holds for all 4 e A(E). Put
00 = (—1)4P+e+145%0
for all 6 A?(E). Then o is an operator of degree —1 on A(¥) and
(00, w) = (0, dw)

holds for all 6,we A?(E). We define the Laplacian 47 on A?(E) by
putting
4? = do + od .

Let L2(E) be the completion of AP(E) with respect to the inner
product (,) and let

AXE) = {§ c AP(E): 479 = 16}

for AieR. Put H?(E) = AX(F). Then it is known (cf. [1]) that each
AX(F) is finite dimensional (1¢ R), A?(F) = 0 except for a discrete set of
non-negative 1’s and this countable sequence of subspaces AX(E) gives
an orthogonal direct sum decomposition of L2(E):

Ly(E) = 2 AXE) .

1

Moreover the series

(1.1 Z2(t) = 3 e * dim (A2(E))

converges (cf. [10]) for every ¢t > 0 and

_ 1 a4
£,(8) = T(S—)L t-(Z2(t) — dim H(E))dt
= > A% dim A2(E)
A>0

is (cf. [10]) an analytic function of s for large Re(s) and it can be ex-
tended (cf. [10]) to a meromorphic function of s-plane, which is analytic
at s =0.
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DEFINITION. The analytic torsion T(M,p) of the Riemannian mani-
fold M is defined (cf. [10]) as the positive real root of

(1.2) log T(M, p) = 33 (~1p,(0) .

1.2. The space form of Riemannian symetric space

Let G be a compact simply connected (necessarily semisimple) Lie
group of dimension n. Let 8 be a C~ involutive automorphism of G.
Let K be the subgroup of G consisting of all fixed points of 4. Then
K is connected and the coset space M = G/K is a simple connected,
compact, globally symmetric space (cf. [6] Theorem 7.2 Ch. VII). Let
I be a discrete subgroup of G acting fixed point freely on M. Then M
is the universal covering manifold of the quotient manifold M = F\M
which is called a space form of a symmetric space M (cf. [16]). The
fundamental group of M is isomorphic to /. Let p be a finite dimensional
unitary representation of G on a complex vector space F. Let E =FE,
be the vector bundle over M with typical fibre F' associated to the re-
presentation restricted to /7 of p. The projections of M onto M, of G
onto I'\G are denoted respectively by @ and @, and the projections of
I'\G onto M, of G onto M are denoted respectively by = and z,. Then
I'\G has a principal fibre bundle of a group K with a projection =z.
Let o be the restriction of p to K. Then the vector bundle E is (cf.
[7]1 Prop. 3.1) associated to the principal fibre bundle I"\G by the re-
presentation px of the group K. Let (,)r be the inner product in the
space F' invariant under p(g), g€ G. Since (, )y is invariant under p(K),
it may define canonically a metric in the fibres of E.

Let g be the Lie algebra of G and let ¥ be the subalgebra of g cor-
responding to K. Let p ={Xeg;0X = —X}. In this paper we use the
same letter for a differential mapping and its differential. Let B be the
Killing form of g. Then g=1{f + p (the direct sum) and B(X,Y) =0
(Xef, Yep). We may identify p with the tangent space TOM at the
origin 0 = {K}GM in a natural way. Then the Killing form B which
is negative definite and invariant under the Ad (K) action on p allows
us to define a Riemannian metric § on M such that §, = —B on TOM
X TOM . I' preserves this metric § on M and, so, there is a Riemannian
metric ¢ on M so that @*g = §.

Let {X,, .-+, X4, X4,y -+, X,} be a basis of g such that i) B(X;, X))
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= —§;; i) {X,,---,X,} spans p and iii) {X4,,, ---,X,} spans f. Since
the element X of g can be considered as a left invariant vector field on
G, the vector field X is projectable to a vector field @,(X) on I'\G.
Since this mapping X — @,(X) is an injective homomorphism of g into
the Lie algebra of all vector fields on I'\G, we shall identify X with

@ (X).
Let {0, ---,0"} be the dual basis of the dual space g* of g with
respect to {X,,-..,X,}. Then they can be considered as left invariant

forms on G and so are I' invariant; then there is a form on I'\G which
induces o' through @,. We shall denote also this form by w!. Let h be
a Riemannian metric on I'\G such that @i = g. The volume element
dv associated to this metric & is given by dv =o' A -+ A o®. Since K
is connected, we can define a G invariant orientation on M so that
{X, -+, X} is positively oriented. Since I' preserves this orientation,
we can define an orientation of M such that the projection @ is orienta-
tion preserving. Let dm be the volume element on M defined by g.
Moreover we denote by dk* the invariant volume element w?*! A .- A o™
on K, where w?*!, ..., 0" are considered as left invariant 1 forms on K.
Then for every continuous function f on I'\G, we have (cf. [7] Lemma
5.2)

where R, is the action of ke K on I'\G and f SF(Ry)dE* is regarded as
K

a function on M. In particular, if f’ is a continuous function on M,
then we have (cf. [7] Lemma 5.3)

4 —_ 1 /O
(1.4) IMfdm_mK—)I”G(f Ddv .

1.3. The inner product of A?(E)
Let A?(I", M, o) be the space of all F' valued p forms on M such that
=00y, rel.
We denote also by d the exterior differentiation on A?([, M, ) which

defines a coboundary operator of degree 1 on the graded module A([7, M )
=39 AN, M,p). For pe A*(I",M,p), define 6 in A?(E) by

0,,(,)(07([/1), Tty w(Lp)) = mx(vx(Lv ] Lp))
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for e M and L, ---,L? e T,(M) where @, is the linear isomorphism of
F onto the fibre E,, of E over @(x) defined by w,(u) = w(z,u), ueF.
Here @ is the natural projection of M x F onto E. Then the mapping
57— 0 defines (cf. [7] p. 369) an isomorphism of the complex A([, M, o)
onto the complex A(K).

Let A?(I'\G, K, p) be the space of all F valued p forms on I'\G
such that @) 0(X)p’ = —p(X)y’, Xef () (X)) =0, Xef where 0(X)
is the Lie derivation by X and 4(X) is the interior product by X.

For ye A?(I", M, p), define 7 by

7y = (97D @En, » ge@G.

Then there exists uniquely an element 5°c A?(I"\G, K, p) such that 7
= afy’. The mapping 5 — 7° defines (cf. [7] p. 376) a linear isomorphism
of A?(I", M, p) onto A?(I'\G, K, p). Define a coboundary operator d° on
the graded module A(I'\G, K, p) = > 2., A?(I'\G, K, p) such a way that
dY = (dp)® for pe A?(I", M, p).

For an F valued p form 7° on I'\G, we define a system of F' valued
functions {7;...;,;1 <4 <-.-- < < d} on I'\G by

ﬁix-"ip = vo(Xily Tty Xip) .

For e AX(I'\G, K, p), ;,...;, = 0 if there exists some ¢, > d.

There corresponds to each form 6 e A?(F) a form 5e A?([, M, o) and
to each form ye A?(T, M , p) corresponds a form 7’e A?(I'\G, K, p). More-
over the form 7’ is determined by the system {j,...,,}. Then the inner
product (,) in A?(E) is given as follows: For 6,we A?(E), then

1 u N >
O 00 = G B e beet
where {j;,...;,} (resp. {{;,....,}) is the system of F' valued functions on I'\G
corresponding to 4 (resp. w) (ef. [7] Prop. 5.1),

Let the inner product (,) in A?(, M, 0 by (3,0 = (0,0) where
7 (resp. ) e A?([, M, p) corresponds to 6 (resp. w) € A?(E). Let L{(I, M, )]
be the completion of A?(I, M , p) with respect to this inner product.

1.4. The Laplacian on A”(F,]sz ) 0)

We shall use the following convection for the ranges of indices:
1<, <n; 1<4,4,---<dandd+1<a,b,--- <n Let[X,X,]
= >, ¢,X,. Then in case of G compact, we have the following relation:
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{c{?j =Cla=c¢5 =0
ey = —Ch; = ¢ = —¢l, .
LEMMA 1.1. For ye AXI", M, p), we have
)7ty = 2055 (=D Xy, + 06X )ievetereip -
For a proof, see [7] Prop. 4.1.

LEMMA 1.2. There exists an operator & of degree —1 on the com-
plex A(I", M, p) such that

(67;<:):(77’dC)’ fOT W:CGA(F7M’P)-
Moreover for A*(I, M, 0), we hdve

(57));---2',,_, = —> X + ,O(Xk))ﬁkil---i,,_l »>1,

Proof. Since the case p = 0 is trivial, we may assume p = 1. Let

~

e A Y(I',M,p). By (1.5) and Lemma 1.2,

1
do) =~
(p, d) vol (K)p!
d ~
x 3 (ﬁil...ip,zﬁ—l)u-l(xiu+p(XZ-u»cil...fu...i,,) dv
i1,0005ip=1J I'\@ u=1 F
-1
vol (K)p!
d ~
x 3 Z[ Drvtariyy Xy + 6 XDttty p 0
i1,000yip=1 u=1J I'\@

1
vol (K)(p — 1)!

4 d

8 Z Z J. \G (i’)kjl.“jp_l’ (Xk + p(Xk))gjl"'jp—l)de

J1yeeesjp—1=1 k=1
1
vol (K)(p — 1)!

d d ~
% 3 j (—2 X, + p(Xk)v;m...,.p_l,cjl...,.p_,) o
I'\G %=1 F

J1yeesjp-1=1

since the last equality follows from that (o(X)u, v)r = —(, p(X)v)r X € g,
u,v e F and that j X1, fordv = —f g (fi, Xf)pdv for X e g, F valued
I'\G r

C~ functions f,, f, on I'\G (cf. [7] Lem. 5.1).
Put
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~ d
0‘7'1...‘7‘1,,_‘ == —kz—ll (ch + p(Xk))ﬁij'“fp—l

and define an F valued (p — 1) form ¢° on I'\G by

1 d
6" = A oo A @l
&= D1 5 ® @
Then (X, -+, X;, ) =0;,...,,_,and 6 € A»"(T'\G, K, p). Letd e A»~\(I",M, o)
which corresponds to ¢°, and define the operator d by dp = 6. Then we

have (09)7...;,_, = 9“ vip-a and (97, 0) = (3, d). Q.E.D.

We define the Laplacian operator 47 by 47 = ds + éd on A?(I", M, 0)-
Then the isomorphism A?(E) 36§ — pe A2, M, o) transforms the operators
J,4° in AP(E) to the operators ¢, 42 in A?([, M, 0). For 2¢R, let
AT, M, p) = {ne A*(I", M, p): 47y = ay}. ‘Then this isomorphism induces
the isomorphism of AZ(E) onto A2(I", M, 0.

PROPOSITION 1.1. For ne A?(I", M, p), we have
(dPyy...0,)~ = —Z X, + oX )0, -
Proof. Let p = 1. For peAp(F,M, 0), we have

(A 77)11 iy — T (Xk + P(Xk))zﬁil...ip

1.6)

e LM
?M@

+ ( 1)u 1{[Xk9 qu] + p([Xky qu])}”kzl“'lu""lp

=1 1

&

from Lemma 1.2 and Lemma 1.2. Since 7° satisfies 0(X)y’ = —p(X)y’,
Xetand ¢, = —cg,, We have

d

o =~
Z Crtairee (Byye--ip
1%k=1

M’e

.7 (Xa + o XDy, =

3
1

where (k), denotes that the index 7, is replaced by the index k.. Then
by (1.7), the second term of (1.6) coincides with

n éa »p
PDICAEe S0 30 IR A—G.

- —a; Xo + o X)) Tty -

For p = 0, if pe AYI", M, o)y satisfies
(Xa + P(Xa))ﬂo =0.
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Then (4™))° = —> ", (X, + (X)) Q.E.D.

§2. Fundamental solution of the heat equation
2.1. Space C°(G,F ® AP p*)°

To calculate the series Z?(t) (1.1), we have to estimate the funda-
mental solution (cf. [6]) of the heat equation

3;‘; — A,  (E>0), u,e ANE) .

But we shall transform this equation to the equation on the space
C*(G,F ® N\?p*)® which is isometrically isomorphic to A?(E), and con-
struct (¢f. Theorem 2.1) the fundamental solution of this transformed
equation on C*(G,F ® A?p*)" which will be used to calculate the series
Z*(t).

Let p* be the dual space of p. The adjoint action of K on p induces
the action of K on the exterior tensor product A?p* of p* such that
for 1<y, <... <42 <d,

AdE (B)( A -+« A i) = Ad* ()0 A -+ A Ad* (k)0

where Ad* (k)0 = ‘Ad (k™ Y),0, wep*, ke K. Here ‘Ad (k)? is the trans-
posed action of the adjoint action Ad (k), of K on p. The product group
I’ X K acts on F&® A?p* by

7, B ®1n) = (o() ® Ad} (B)(u ® p) = p(p)u ® Ad¥ (k)y
for (r,k)el’ X K, wueF and 5e \?p*.

DEFINITION 2.1. Let C(G,F ® A?p*) denote the set of all F Q A? p*
valued continuous functions on G and let C*(G,F ® AP p*) be the set of
all F® AP yp* valued C~ function on G. Define

C(G,FR N?p*) = {oeCG,F & N\?p*); olrgk) = (v, k™ De(g)
for all yel', ke K}.
C(G,FR N?p*) = {0 C™(G, F ® N\?p); o(rgk) = (7, k™ Ve(9)
for all yel', keK}.

Now we define an injective mapping
e: AP(I", M, p) —> C*(G, F ® \” p¥)
by
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e(g) = 2. dm,.‘.ip(g) Qo \ -+ No;, (9e@).

1< <ip<

Here 7,,....,(9) = 9(z, Xy, + - +,7,X;,) and the tangent vector ¢, X, of M at
7(9) is the image of X; ¢ TOM = p under the differential of the transla-
tion 7z, at 0.

Then the mapping & defines an isomorphism of A?([, M, o) into
C(G,F® N\?p*). Let 47 be an operator of C~(G,F ® A?p*)° defined
by

2.1) Aie(y) = e(4%p)
for ne A*(I', M, p). For 1eR, let
C:(G,F® N?p*) = {pe C(G, F ® A\ p*); Ao = g} .

Then for every 2 € R, the mapping ¢ induces an isomorphism of A7(I", I, o)
onto C7 (G, F ® A?p*).

Moreover we define the metric (,) in C(G,F & A?p*) by

(o) =C 2. Cc IG (CETI (/) IR (1)) ) 11}

1€i1< < ip<d

where dg is the Haar measure on G with total volume 1, the constant
C = vol (G)/vol (K) and

o(g) = ) Z SDil---ip(g) & (O NN 7
1<91< -+ <ip<d

gD,(g) = ) Z ) 90;1...51,(9) ® wi1/\-~~/\wip .
1< < <ip<d

Let Ly(G,F ® A?p*) be the completion of C(G,F ® A\?p*) with respect

to this inner product and let L,(G,F ® A?p*)° be the completion of

C(G,F ® A\?p*)° be the completion of C(G,F ® A?p*)*in L(G,F & AP p*).
Notice that for ye A?(I", M, p),

2.2) Dieweip(@) = 0(DNiri,)(@(9)) ,  9eG.
For
ﬁir“ip(mﬂ(g)) = ngo(g)(Xiu tt ity Xz‘p)
= (@F")y( Xy, -+, X))
= p(g )@ ( Xy -+, X))
= p(g_l))?xg(q)(TgXil’ ct TgXip)
= p(97s,....,(9)
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where for each X ep, the image of the tangent vector X, of G at ¢
under the projection z, coincides with the image of the tangent vector
X, of M at 0 under the translation <,.

Then from (1.5), (2.2), the definition of the inner product in
AT, M, p) and the invariantness of (,)r under the action p of G, the
mapping ¢ induces the isometry of Lz([, M, ) onto Ly(G,F® A?p*).
Hence we have the decomposition

L(G,F® N\?p*) = ; Cy (G, F® A\?p*) .
Therefore we have

@.3) Z°(t) = Y e~ dim C(G, F ® \? p*)° .

2.2. The Laplacian in C*(G,F ® AP p*)°
Now let 7 be the right regular representation of G on L,(G, FF Q® )\?p*);
i.e.
(r)(@) = o(xg)  (we @)
for any ge G, e L(G, F® A?p*). For any X eg, we define (X) by
rX)p=Xp 0eC(G,FR A\?p*)

where Xo(g9) = [(d/dt)p(g exp tX)];.y 9€G. Then X —»r(X) (Xeg) is a
representation of ¢ on C*(G,F® A?p*). Let U(g’) be the universal
enveloping algebra of g¢. Then this representation extends uniquely to
a representation of U(g®) which is denoted again by r. Let 2 = > X?
€ U(g°). Then the operator 7(2) on C(G,F & A?p*) commutes with
the right and left translations of G on C~(G, ® A?p*). Hence we have

rQC (G, F @ N\?p*) C C°(G,F ® N\?p*).
Moreover we have

PROPOSITION 2.1. For pe A?(I", M, p), we have

AP),on, = —zl b I
that s,
Me(n) = —r(De(y) .
Proof. By (2.2), we have for X eg, e A?(I", M, p),
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(X + oD iyensp o @)(9) = (X + p(X))(07 0 94,...0,)(9)
= (X)) cwo(9) -
Proposition 2.1 follows from Proposition 1.1. Q.E.D.

Let HY(G,F ® \?p*) = C3(G, F O \?p*) = {p e C(G, F @ \? p*)"; Ao
=0}. From Proposition 2.1, for ¢ = 3 i c..cipcaPiroiy ® Osip.cn®s,
e C*(G,F® A\?p*)', we have

A&D = 'l”(.Q)SD = lei<“-<ipsd -Q%,--.ip ® wi;/\‘--/\wip .
Then

Mo =0 & 245, = 0 1<y < <i,<d
& every ¢,...;, is a constant mapping of G into F'.

Hence HXG, FQ N\?p*) = {ne FO N?p*: (y,k)p =n forall (r,k) el X K}.
Therefore we have the following theorem.
THEOREM 2.1. Under the assumption in §1, for 0 < p < d, we have
dim H*(E) = [p,: I;][Ad¥: Ix] .

Here p; ts the representation of p restricted to I', [py 1 1] (resp. [Ad}: Ix])
is the multiplicity with which the trivial representation I. (resp. lx) of
I (resp. K) occurs in p, (resp. Ad¥).

COROLLARY 2.1. We preserve the notation and the assumption in
81. Then

@4 Z (—1)%p dim H*(E) = [y I,] IK 1) ke

where (k) = >3 (—D*pyFk), xx(k) is the trace of Ad} (k) on A\?p* and
dk is the Haar measure on K with total volume 1.

2.3. The fundamental solution of the heat equation on C~(G,F ® /\? p*)°

Now let T be a maximal torus of G and let t be the subalgebra of
g corresponding to T. Let I'y={H et:exp H = 1} be the kernel of the
homomorphism exp:t— T. Let I be the set of all G-integral forms on
i:

I ={2¢et:2H)e2zZ for all He 'y} .

Let (,) be an Ad(G) invariant positive definite inner product on g
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defined by (X,Y) = —~B(X,Y), X,Yeg. Let @ be the set of all non-
zero roots of the complexification g¢ of g with respect to the complexi-
fication i¢ of t. We choose an arbitrary lexicographic order in t. Let
@+ be the positive root of @ with respect to this order. Let D be the
set of all dominant G-integral forms on t:

D={el:A{a)=0 for all we @*}.

Since an irreducible representation of G is uniquely determined, up to
equivalence, by its highest weight, there exists a bijection of D onto
the set of equivalence classes of irreducible representations of G. For
2eD, let y, (resp. d)) be the trace (resp. degree) of the irreducible re-
presentation with the highest weight 2.

Define (cf. [14]) an absolutely convergent series Z,(g9) by

(2.5) Z(9) = 2, d;e” @By (g), t>0
AED
Where 5 — % Zaeﬂ“' K.
PROPOSITION 2.2. For e C(G,F ® A? p*), the unique solution of the

equation

D@, g e CUGF® N7

limg, = ¢ (potntwise convergence)
t10

(2.6)

18 given by

@ 0ig) = f Z (" g)p(@)dzx

where Z,(g) is the function (2.5) and dx is the Haar measure on G with
total volume 1. Moreover we denote by K, the mapping (2.7) ¢ — ¢,.
Then we have

(2.8) K.C(G, FQ N?p*)' C C(G, F & N\?p*)° .

Proof. Since 2y, = —(@ + 25, Dy, 2€D (cf. [13]), we have (/dt)Z,
= 0Z,. Then for pc C(G,F &® )\?p*), we have ¢, c C*(G,F ® A\?p*) and

" Dpig) = f (RZ) @ g)e(@)dz

I _ 0
- f 9 26 p@ds = 2 o(9)
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By Peter-Weyl’s theorem, for every complex continuous function f on
G, we have

lim [ 2,9}/ @dz = 7(0) .

Then for every FF® A?p* valued function ¢, we have also
limI Z, ("' Po@)dz = o) .
t10 G

The last statement follows from that for ¢ e C(G,F® A?p*), and
9,9, 9€G,

0999, = L Z(x7'9e(gxg)dx .

Q.E.D.
Define the operator P on C(G,F ® A?p*) by

Polg) = 3 j o) ® AQE (BNl

for 9 C(G,F® A\?p*). Then the operator P satisfies the following

conditions:
(i) P maps C(G,F & A?p*) onto C(G,F & A\?p*).
(ii) P*=P.

Moreover for ¢ € C(G, F ® A?p*), by means of Propositions 2.1 and 2.2,
K,Py (t > 0) has the following properties:
(i) K,PoeC~(G,F® N\?p*),

(i) 2 (K.Pg) = r(@EPy) = ~HEPy) and
(i) lim K,Pp = Po.
ti0
On the other hand, for ¢ e C(G,F ® A\? p¥),
KPo@) = | Z. 0)Peu)dy

2.9 = r§ o 220 2)0() ® Ady (e~ yk)dkdy

= L (); . Z(ky 'y w)p(y) @ Ad¥ (k)dk)go(y)dy i

Put
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2.10) Zia,y) = 3, [ Zky 1000 © Adg 00k .

Therefore we obtain the following theorem.

THEOREM 2.2, For t >0, let Z?: G X G— End (F" ® A\?p*) be the
smooth map defined by (2.10). Then Z? is the fundamental solution of
the heat equation 8¢,/ot = — A2, (t > 0), ¢, € C*(G,F &® A?p*)’, that ts,
for oe C(G,F ® A\?p*), put

p(®) = IG Z¥(x, We(ydy , zeG.

Then ¢, satisfies the following properties:
(i) ¢, eC(G,F& N\?p*),
ii 9: _ — Ao, and
(ii) P o

(i) lim ¢,(@) = o(x) for every xeQG.
ti0
COROLLARY 2.2. Let Z?(t) be the series (1.1). Then we hove

@.11) z°0) = 3 1,0) f 2 'gkg ) ()diedy

where y,(y) is the trace of p(y).
Proof. By (2.3) and Theorem 2.2, we have
Z?(t) = > e " dim CY(G, F & N\? p*)°

= trace of the operator e *4: C*(G,F ® AP p*)°

—> C~(G,F ® A\?p*)°
= trace of the operator e 4o P:C(G,F & A?p*)

—> C~(G,F ® A\?p*)
= trace of K,oP

= [ trz10, 9)dg

where tr Z?(g, g) is the trace of the endomorphism Z?(g, g) of F ® AP p*.
The last equality follows from (2.10). Q.E.D.

Remark. In case of [ = {1}, we have due to Corollary 2.2,

2.12) Z0(t) = I Z (k) (Rdk .
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If p = 0, this formula has been obtained in [2].
The following Corollary is obtained immediately from Corollary 2.2.

COROLLARY 2.3. We preserve the above notations. Then we have
d
(2.13) ST (—1)PpZP(t) = 3 1) f Z, (¢~ gkg-Yy(k)dkdg .
p=0 rer GXK
where y(k) = 208 o (—DPpyik), yk(k) is the trace of Ad} (k) on AP p*.

§3. Computation of Analytic Torsion

3.1. To calculate analytic torsion, we have to compute y(k)
= >3 o (—=DPpyi(k), ke K. For this purpose, we prepare a lemma as
follows.

Let V be a d dimensional real vector space and let A be an endo-
morphism of V. For 1 <p < d, A\?A is a linear operator of A?V into
itself,

(NPA) W, A oo ANwy) =Av, A\ -+ N Av,, v,eV.

We define A\"A to be the identity endomorphism of the field of scalars.
Let tr (A? A) be the trace of the endomorphism A?A. Then it is known
that

det (I — A) = i“ (—1)?tr (\? A)x?-?

where I is the identity endomorphism of V and z is an indeterminate.
So we have

3.1 [dd {xd det (%1 — A)}] = éi (—Dptr (A2 A) .

dz
Hence we obtain
LEMMA 3.1. We preserve the notation in §1. For ke K, we have

(k) = pi::l (—DPpy(k) = [%{xd det <%Ip — Ad (k_l)">}]z=1

where 1, is the identity operator on p, Ad(k), is the adjoint action of
K on p and d = dim G/K = dim g.

Proof. By the definition and (3.1), Lemma 3.1 is obtained imme-
diately.
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Let t; be a Cartan subalgebra of f. Let { be the centralizer of {,
in g. Then t is (cf. [3] Lemma 32) a ¢-stable Cartan subalgebra of g
and

(3.2) t=t,+4f, t=tNp.

So, dimt, = rank G — rank K. Let T be the analytic subgroup of K
corresponding to t,. Then T is a maximal torus of K since K is con-
nected. We choose once for all a lexicographic order in t,. Let @, be
the root system of (¢, 1), i.e. the set of non-zero elements p of the dual
space t¥ of t, such that {Ect°:[H,E] = v—=13H)E for any Het,} is
not zerc. Let @;F be the set of all positive roots of @, with respect to
this order. For every continuous function f on K such that f(k,kk™)
= f(k) for every k., ke K, it follows (cf. [5] Ch X) that (Weyl’s integral
formula for K)

f FRydk = 1 j D F()dh
K ’M)K Tg

where wj is the order of the Weyl group of the compact group K,dh
is the Haar measure on T, with total volume 1 and

1 (o0 (5 ) w45 )

Dx(h) =
) =| 11 . =

for h =expHeTxg.
By means of this formula, Corollaries 2.1 and 2.3, we have

B3 3 (~1r27t) = —— S 0() [ DxZ Gy W dndy

3.4) ST (—1)?p dim H?(E) = _[QL:_IF]_J Dr()y(Wdh .
Wyx Tx

p=0

So, using Lemma 3.1, to calculate y(k) for h e Ty, we have to investigate
the action of ad H on p for Het,.

3.2. For 21et*, let 4, (resp. 2,) be the restriction of 2 to i, (resp. 1,).
We choose once for all a lexicographic order on tf. We define an order
on t* in such a way that
1et*,2>0& (i) 2,>0 or
(ii) 2,=0 and 2, >0.
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Let @ be the root system of (a° 1), i.e. the set of non-zero elements «
of the dual space t* of t such that g, = {E €¢°: [H,E] = v —1a(H)E for
any H et} is not zero. Let @* be the set of positive roots of & with
respect to this order. For a«c @, define o’ ¢ @ by o«’(H) = «(fH), H 1.
Let g, be a root subspace of g, for « € ®. Then we have that

(3.5) ace® < a’ed and 6(a) = g -

The root « vanishes identically on t, (resp. t) if and only if o =«’
(resp. a = —a’). Let O, ={wc®:a’ =a} and let Oy ={aecd:a’' #«
and « # —a’}. Then @ = @; U @, (a disjoint union) since there is no
ac® which vanishes identically on i, (cf. Lemma 33 [3]). Let &,,
={ae®;:g, C %} and let &;, = {ac ®;:g. C p°}. We denote the inter-
section of @; (resp. &;,, O;,, Do) with @*, by @f (resp. D7 @1, D). Let
z be the conjugation of g¢ with respect to g. For every « e @, we choose
a root vector F, such that tF, = —F_,. By (3.5), we can take a non-
zero complex number c(ac @;) such that 6FE, = ¢ ,E,. Then each ¢,
(o e @) satisfies

(3.6) €.t =1, C_p = Cnp .
For ae @}, we have

E_,=30E_, +00E_)) — 3(0E_, — 00E_,)
= He_E_.0 + c_pol _0) — e _E_o — c_E_0)
¢

3 (E_.6 + 0E__40) — _Cé_«(E_,,g —0E_.,) .

By the choice of the order of t*,
3.7 acdt> —a’ecdf .
Hence we have

g =1+ > CE, + X CE,+06E)+ >, CE,—6E),

a€Q; «coF €O}
that is
fC=tf+ > CE.+ > CE,+6E),
(3.8) €L S
pe=1t6+ >, CE,+ X CE,—0F).
a€dr .y acdt

Since « # o’ (we P;), we can define non-zero vectors X,,Y, (ee@,) by
X,=FE +0E,Y,=E, —6E, for ¢ c ®;. By means of 6r = 76 and <E,
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= —F_,, we have X, = —X_, and Y, = —Y_,. Then we have

{Wa:—Xa—X_a, Z,=v-1X, + X_)et

3.9 ~ ~
( ) Wazya'_Y—a, Za= V—‘l(Ya-'-Y—a)ep

for ¢ e @;. Since o’ #+ «, —alac®}), all W, ,Z,,W, and Z, are non-zero
for € @®;. Moreover we have, for « e @},

W—ao = _l 1 + )W + 1 ( - 1 )Z(x 1)
2\e¢, e C_.

SR TR
2 C, c_

3.100 < _ o

W= 2(L 4 1 )W,, ( )Z and
2\ ¢, c_,

e G e
2 C, C_y 2\ ¢, C_,

where all coefficients +i(1/¢, + 1/c_), ++/—1/2(1/¢c, — 1/c_,) are real
numbers due to (3.6).

Now we choose any root a, of @;. If &j\{a;, —a{} is non-empty,
we choose any root a, belonging to @;\{a;,, —af}. Then —af belongs to
O*\{a;, —a, a,}. Inductively we may choose a subset {a, ---,a,} of @}
such that {ay, -+, @,, —af, -+, —al} = @}. Then by (3.9), (3.10) and the
choice of {ay, -, a,}, D) (RW., + RZ.) (resp. X7, (RW., + RZ.)) is a
real form of > .co3 C(E, + 6E,) (resp. 2 .co; C(E. — 0E))).

On the other hand, for «c®;, weput U, =E, —E_,,V, = +—1(F,
+ E_). Then Zaewiz (RU, + RV,) (resp. Zaew;’p (RU, + RV ) is a real
form of Z"G"i: CE. (resp. Zae@m CE).

Therefore together with (3.8) we obtain the following lemma:

LEMMA 3.2. We preserve the above mnotation. Then we have the
following direct sum decomposition:

t=t+ 3 (RU, +RV) + 3 (RW., + RZ.)

a€¢}',!

_ (RU, + RV.) + 3, RW., + RZ.) .

aewlm
LEMMA 3.8. For each Het,, we have

det (I, — Ad (h),) = (x — 1)% 1 {(x — cos a(H))* + sin® a(H)}

aew;"p U {a1,°+,ar}
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where ¢, = dim1, = rank G — rank K.
Proof. For ae®;, we have by the definition of U,,V,,
[H,U)] =aH)V,, [HV,)]=—aH)U, (Het).
On the other hand we have for a < @,
[H,X,]+[H,Y,] =+v—-1a(H)X, + V—1aH)Y,

by E, =X, + Y)/2. For Het, we compare the I¢ (resp. p¢) component
of this equality to obtain [H, X.]=+ —1a(H)X, (resp. [H, Y ]=+ —1a(H)Y ).
Then we have
[H> Wa] = C{(H)Za ’ [H) Za] = _Of(H)Wa ’
[H,W]=oH)Z, and [HZ]=—aEHW,

by the definition of W‘,,Za,Wa and Zl. Hence from Lemma 3.2, we have
Lemma 3.3. Q.E.D.

PrOPOSITION 3.1. We opreserve the above notation. Then for h
=exp H,H e¢t,, we have

(i) s =0 (4,>1

(il) () = — 11 2—2cosalH) (¢,=1) and

ae¢;"p U {a1,++,ar}

(i) y() = ] @ —2cosaH) X $@;,) (4,=0).

aed)l’p

Proof. From Lemma 3.1 and 3.2, we have, for h = exp H (Het,),

0= [t (21, )]

X

j=1

- [’Esz {(1 —os ] (1 — 22 cos a(H) + x))}]

a€0f U {as,-eesar}

by means of d=dimp = ¢, + 24(P;,) + 2r where (97, + 2r where
#(®@7,) is the order of &;,. In case of ¢,=0, then ® = @,. Hence
Proposition 3.1 is obtained. Q.E.D.

On the other hand, the root system @, of ¢ with respect to i, is
given due to (38.8) by

@K - {0([: ae@() U ¢I,!}

where «, is the restriction of « to t. For ey, let E, be E. if
B=a, (@ac®,;y or X, if B=a, (¢cP;). Then E, is a root vector of
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f¢ with respect to t, for 8. Let U, be U, if f=a, ac®;, or W, if
B=a, ac@;. Put m= > ,., CE, Nt Then we have

> (RU, + RV) =m

sEOF

i

(z CE, + 3 CX,)nf

aewa‘ aEd¢

=3 (RU.+RV) + 3 (RW., + RZ,) .

aeﬂil’t

Hence for h = exp He Ty,

Il

det (I, — Ad (B),) (2 — 2cos a(H))

aefb}"! U {at,eee, ar}

=11 (@—2cospH)).

.
pe 0]

3.11)

Then we have

PROPOSITION 3.2. For h = expHe Ty,

I, (exp ( “/? ,B(H)) — exp (

)|

gl (59 (50 = eXp( Zr))]

Proof. For h = exp He Tg, by means of (3.11),
eS| V1
2 2

Dy(h) =

Dy(h) = 1. (exp( ﬁ(H)) — exp (‘ ))2‘

—IT @—2cos ,B(H))l

BE Dy

= il @ — 2 cos a(H))1

«€0F , U laayeeesart
/ [ 2
= M1 (exp ( ~1 oz(H)) — exp (— 1 oz(H))) l .
a€0F  Ulas,esar} 2 2
Q.E.D.

3.3. Main theorem

THEOREM 3.1. We preserve the assumption in §1. Then we have
that
Case (i) rank G — rank K + 1,
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d d

> (—=DPpZe(t) = 3 (—1)Pp dim H*(E)

p=1 =0
0 (rank G — rank K > 1)
{2" dimM (rankG —rank K = 0) .

Case (ii) rank G — rank K =1,

d

(3.12) > (=D?pz7() = -1 2 Xp(T)f Z(rohg~HD(h)dhdyg ,
Wg rer GXTx

(3.13) S (—1)*p dim HY(E) = ﬂ@;_‘lfi I D(Wdh
=0 % TE
where D(h) = ae];[Jr (exp ( f;—i oz(H)) — exp (—- ‘/? a(H)))z‘ for h =

expHeT.

Proof. If rank G — rank K > 1, then by means of (3.3), (3.4) and
Proposition 3.1 (i), we obtain the results. If rank G — rank K =1, by
means of (3.3), (3.4), Proposition 3.1 (ii) and Proposition 3.2, we obtain
(3.12) and (3.18). Let rank G — rank K == 0. Then f has a Cartan sub-
algebra t of g. Let T be a Cartan subgroup of G corresponding to t.
Then I' consists only of the identity of G since every translation z,
(g e @ has a fixed point and I" is assumed to act on M fixed point freely.
In fact, G = U,cq 9Kg™' since G and K are connected and K has a
maximal torus T of G. Then we have

(3.14) z (~1rp27(t) = | ZWDxWrdk
and
(3.15) 3 (~1)7p dim HA(E) = L Dx(Wyy(h)dh .

From Proposition 3.1 (iii) and Proposition 3.2, we have D z(h)y(h) = D(h)
X #(@f,) = D(h)27* dim (G/K). Therefore applying Weyl’s integral formula
for G to (3.14), (3.15), we have
(3.14) = f Z(g)dg =1 and
(2]
(3.15) :J dg =1. Q.E.D.
[¢]

Due to Theorem 3.1., we have
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COROLLARY 3.1. Under the assumption in §1, we have
TM,pr) =1 if rank G — rank K = 1

where p, is the representation restricted to I' of an arbitrary finite
dimensional unitary representation p of G.

Remark. Ray and Singer [10] showed in general that T'(M,p) =1
for every even dimensional Riemannnian manifold. The new fact ob-
tained in this paper is that T(M,p,) =1 in case of M = I'\M where M
is an odd dimensional simply connected symmetric space G/K such that
G is compact, semisimple and rank G — rank K > 1. Such irreducible
symmetric spaces M are as follows: all odd dimensional compact simple
Lie group except SU@2); SUn)/SOn), n=4m or 4m +3 (m=1);
SU@2n)/Sp(n), n =2m (m = 1) (cf. [6] Ch. IX.). In the case M = SO@2n)
/SO@n — 1)((2rn — 1) dimensional sphere), T(M,p) has been calculated
in Ray [9]. The cases M = SU2); SU4)/S04); SUB)/SOB); SO® + q)
/SO(p) x SO(Q) (p,q =odd, p >1, ¢ > 1) are remained for a further
study.
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