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Abstract

Let E be an elliptic curve with positive rank over a number field K and let p be an odd prime number. Let
Kcyc be the cyclotomic Zp-extension of K and Kn its nth layer. The Mordell–Weil rank of E is said to be
constant in the cyclotomic tower of K if for all n, the rank of E(Kn) is equal to the rank of E(K). We apply
techniques in Iwasawa theory to obtain explicit conditions for the rank of an elliptic curve to be constant
in this sense. We then indicate the potential applications to Hilbert’s tenth problem for number rings.
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1. Introduction

Hilbert’s tenth problem for Z states that there is no Turing machine that takes as
input polynomial equations over Z and decides whether they have nontrivial solutions.
Matiyasevich [10] resolved Hilbert’s tenth problem over Z. It is well known that if Z
is Diophantine as a subset of OK , then the analogue of Hilbert’s tenth problem has a
negative solution over OK . The following conjecture is due to Denef and Lipschitz [3].
CONJECTURE 1.1 (Denef–Lipshitz). For every number field K, Z is a Diophantine
subset of OK .

There are various special cases in which the above conjecture has been resolved.
Conjecture 1.1 is known to be true for all number fields K such that:

• K is either totally real or a quadratic extension of a totally real number field (see
[2, 3]);

• K has exactly one complex place (see [14, 18, 21]);
• K/Q is abelian (see [17]).

It is natural to study the validity of Conjecture 1.1 for naturally occurring families
of number fields K. For instance, Garcia-Fritz and Pasten [4] proved the conjecture for
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[2] Hilbert’s tenth problem and elliptic curves 441

number fields of the form Q(p1/3,
√−q), where p and q range through certain explicit

sets of primes of positive Dirichlet density. In this paper, we study Conjecture 1.1 for
certain towers of number field extensions of a fixed number field K. More precisely,
let K be a number field and p be an odd prime number. Let Kcyc denote the cyclotomic
Zp-extension of K. The unique subfield of Kcyc that is of degree pn over K is denoted
by Kn and is called the nth layer.

Iwasawa studied the growth of the p-primary part of the class group of Kn as a
function of n (see [7]). In Section 3, we prove that OK is a Diophantine subset of
OKn for all n, provided there exists an elliptic curve E/K satisfying certain specific
additional conditions (see Theorem 3.6). It follows from this that if Conjecture 1.1 is
satisfied for K, then it is satisfied for Kn for all n.

In Section 4, we fix an elliptic curve E/Q of positive Mordell–Weil rank and also
fix a number field K. We provide circumstantial evidence to show that there is a set
of primes p of positive lower density for which the conditions of Theorem 3.6 are
satisfied. This expectation (Conjecture 4.1) is based on computational evidence for the
behaviour of the p-adic regulator of an elliptic curve.

2. Preliminaries and notation

The contents of this section are preliminary in nature. In Section 2.1, we introduce
the notion of an integrally Diophantine extension of number rings and its applications
to Hilbert’s tenth problem for number fields. In Section 2.2, we recall basic concepts
from the Iwasawa theory of elliptic curves.

2.1. Integrally Diophantine extensions. Let A be a commutative ring and n > 0
be an integer. Let An be a free A-module of rank n consisting of elements of
the form a = (a1, . . . , an), with entries ai ∈ A. For m ≥ 0, a = (a1, . . . , an) ∈ An, b =
(b1, . . . , bm) ∈ Am, the element (a, b) ∈ An+m is given by (a1, . . . , an, b1, . . . , bm). Given
a set of polynomials F1, . . . , Fk ∈ A[x1, . . . , xn, y1, . . . , ym] and a ∈ An, set

F (a; F1, . . . , Fk) := {b ∈ Am | Fi(a, b) = 0 for 1 ≤ i ≤ k}.

Given a number field K, denote by OK its ring of integers.

DEFINITION 2.1. Let S be a subset of An. The set S is Diophantine in An if for some
m ≥ 0, there are polynomials F1, . . . , Fk ∈ A[x1, . . . , xn, y1, . . . , ym] such that

S = {a ∈ An | F (a; F1, . . . , Fk) is not empty}.

An extension of number fields L/K is said to be integrally Diophantine if OK is a
Diophantine subset of OL.

It follows from standard arguments that if L/Q is an integrally Diophantine
extension of number fields, then Hilbert’s tenth problem has a negative answer for OL
(see [3, page 385]). Moreover, if L/F and F/K are integrally Diophantine extensions
of number fields, then so is L/K.
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We recall Shlapentokh’s criterion for an extension of number fields to be integrally
Diophantine.

THEOREM 2.2 (Shlapentokh [19]). Let L/K be an extension of number fields. Suppose
there is an elliptic curve E/K such that rank E(L) = rank E(K) > 0. Then, L/K is an
integrally Diophantine extension.

2.2. Iwasawa theory of elliptic curves. Fix an algebraic closure Q̄ of Q. Let p be
an odd prime number and K be a number field. Throughout, Zp is the ring of p-adic
integers. Let E be an elliptic curve defined over K with good ordinary reduction at
the primes above p. Denote by μpn the group of pnth roots of unity in Q̄, and set
μp∞ =

⋃
n μpn . We denote by K( μpn ) (respectively K( μp∞)) the cyclotomic extension

of K in Q̄ generated by μpn (respectively μp∞). The cyclotomic Zp-extension of K is the
unique Zp-extension of K which is contained in K( μp∞) and is denoted by Kcyc. Given
a number field extension F of K, let Selp∞(E/F ) denote the p-primary Selmer group
of E over F (see [1, page 9] for the definition).

We let X(E/K) denote the Tate–Shafarevich group of E over K and X(E/K)[p∞]
its p-primary part. The p-primary Selmer group fits into a short exact sequence:

0→ E(K) ⊗ Qp/Zp → Selp∞(E/K)→X(E/K)[p∞]→ 0. (2.1)

Note that Selp∞(E/F ) is a module over Zp[G], when F is a finite Galois extension of
K with Galois group G = Gal(F /K). For n ≥ 0, let Kn be the unique extension of K in
Kcyc such that Gal(Kn/K) 	 Z/pnZ. The Selmer group of E over Kcyc is taken to be the
natural direct limit with respect to restriction maps

Selp∞(E/Kcyc) := lim−−→
n

Selp∞(E/Kn).

Setting Γ := Gal(Kcyc/K), note that Γpn
= Gal(Kcyc/Kn). The Iwasawa algebra is the

completed group ring

Λ(Γ) := lim←−−
n

Zp[Γ/Γpn
].

Let Zp�T� denote the formal power series ring over Zp in the variable T. Fix a
topological generator γ of Γ and consider the isomorphism Λ(Γ) 	 Zp�T� sending
γ − 1 to the formal variable T. The Selmer group Selp∞(E/Kcyc) is naturally a module
over the Iwasawa algebra Λ(Γ).

Given a module M over Λ(Γ), let M∨ = HomZp (M,Qp/Zp) be its Pontryagin dual.
It is conjectured by Mazur that the dual Selmer group Selp∞(E/Kcyc)∨ is a finitely
generated and torsion module over Λ. This is known to be true in the following special
cases:

(1) the p-primary Selmer group Selp∞(E/K) (over K) is finite (see [1, Theorem 2.8]);
(2) K is an abelian extension of Q. (This is a result of Kato [8] and [6, Theorem 2.2].

Rubin proved the result for CM elliptic curves.)
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We say that a polynomial in Zp�T� is distinguished if it is monic and all its
nonleading coefficients are divisible by p. A map of Zp�T�-modules M1 → M2 is said
to be a pseudo-isomorphism if the kernel and cokernel have finite cardinality. One
associates a characteristic element and Iwasawa invariants to a finitely generated and
torsion module M over Λ(Γ) as follows. By the structure theorem of finitely generated
and torsion Zp�T�-modules (see [22, Ch. 13]), there is a pseudo-isomorphism

M −→
( t⊕

j=1

Zp�T�
( fj)

)
,

where f1, . . . , ft are nonzero elements of Zp�T�. The characteristic element is the
product

∏
j fj and is denoted by fM(T). It is well defined up to multiplication by

a unit in Zp�T�. According to the Weierstrass preparation theorem, we may factor
fM(T) as pμP(T)u(T), where μ ≥ 0, P(T) is a distinguished polynomial and u(T) is a
unit in Zp�T�. The Iwasawa μ invariant μ(M) is the quantity μ that appears in this
factorisation. The λ-invariant λ(M) is the degree of the polynomial P(T).

Assume that Mazur’s conjecture is satisfied for the Selmer group of E over Kcyc,
that is, Selp∞(E/Kcyc)∨ is finitely generated and torsion as a Λ(Γ)-module. Then, we
denote by μp(E/K) and λp(E/K) the associated μ and λ-invariants for the dual Selmer
group Selp∞(E/Kcyc)∨.

PROPOSITION 2.3. Let E be an elliptic curve over a number field K and let p be an
odd prime number. Assume that:

(1) E has good ordinary reduction at all primes v | p of K;
(2) the dual Selmer group Selp∞(E/Kcyc)∨ is a finitely generated and torsion module

over Λ(Γ).

Then, rank E(Kn) ≤ λp(E/K) for all n ≥ 0. In particular, rank E(Kn) is bounded as
n→ ∞.

PROOF. From (2.1), we arrive at

rank E(Kn) ≤ rankZp (Selp∞(E/Kn)∨).

According to [5, Theorem 1.9],

rankZp (Selp∞(E/Kn)∨) ≤ λp(E/K),

provided Selp∞(E/Kcyc)∨ is finitely generated and torsion as a module over Λ(Γ). The
result follows. �

3. Hilbert’s tenth problem in the cyclotomic Zp-extension of a number field

3.1. Rank constancy in cyclotomic towers. We shall study the following property
in the context of the cyclotomic Zp-extension of a number field K.

DEFINITION 3.1. Let K be a number field and p be a prime number. Let K∞ be an
infinite pro-p extension of K. We say that K is integrally Diophantine in K∞ if for all
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intermediate number fields L such that K ⊆ L ⊆ K∞, the extension L/K is integrally
Diophantine.

We specialise the above notion to K∞ = Kcyc. Thus, K is integrally Diophantine in
Kcyc precisely when Kn/K is an integrally Diophantine extension for all n ≥ 0. Thus,
if K/Q is integrally Diophantine and Kcyc/K is integrally Diophantine, then it will
follow that Kn/Q is intergrally Diophantine for all n. In particular, this shall imply that
Hilbert’s tenth problem has a negative solution for the ring of integers of all number
fields Kn in the infinite cyclotomic tower.

We shall use methods from the Iwasawa theory of elliptic curves to derive
conditions for a number field K to be integrally Diophantine in Kcyc.

PROPOSITION 3.2. Let E be an elliptic curve over a number field K and let p be an
odd prime number. Assume that:

(1) rank E(K) > 0;
(2) E has good ordinary reduction at all primes v | p of K;
(3) the dual Selmer group Selp∞(E/Kcyc)∨ is a finitely generated and torsion module

over Λ(Γ).

Then, there is a value n0 ≥ 0 such that for all n ≥ n0, Kn/Kn0 is an integral Diophantine
extension. Thus, the extension Kcyc/Kn0 is integrally Diophantine in the sense of
Definition 3.1 and, if Conjecture 1.1 is satisfied for Kn0 , then it is satisfied for Kn for
all n ≥ n0.

PROOF. According to Proposition 2.3, we find that rank E(Kn) is bounded as a function
of n. Therefore, there exists n0 ≥ 0 such that rank E(Kn) = rank E(Kn0 ) for all n ≥ n0.
The result follows from Theorem 2.2. �

THEOREM 3.3. Let p be an odd prime and E an elliptic curve over a number field K
with good ordinary reduction at all primes v | p. Assume that Selp∞(E/Kcyc)∨ is finitely
generated and torsion as a module over Λ(Γ) as conjectured by Mazur. Suppose that

λp(E/K) = rank E(K) > 0.

Then, for all n ≥ 0, Kn/K is a Diophantine extension. Therefore, if Conjecture 1.1 is
satisfied for K, then it is satisfied for Kn for all n ≥ 0.

PROOF. Suppose Kn/K is an integral Diophantine extension and K/Q is an integral
Diophantine extension. Then, Kn/Q is an integral Diophantine extension and thus
Hilbert’s tenth problem is negative for OKn . We show that the above hypotheses imply
that Kn/K is an integral Diophantine extension for all n ≥ 0.

According to Proposition 2.3, rank E(Kn) ≤ λp(E/K). Since it is assumed that
rank E(K) = λp(E/K) > 0, it follows that

rank E(Kn) = rank E(K) > 0.

Therefore, by Theorem 2.2, Kn/K is an integral Diophantine extension for all
n ≥ 0. �
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3.2. An Euler characteristic formula. Let E be an elliptic curve over a number
field K and let p be a prime number. Assume that E has good ordinary reduction at all
primes of K that lie above p. Assume that the dual Selmer group Selp∞(E/Kcyc)∨ is a
finitely generated torsionΛ(Γ)-module and denote by fE,p(T) its characteristic element.
Note that fE,p(T) is well defined up to multiplication by a unit inΛ(Γ). We may express
fE,p(T) as a formal power series in T:

fE,p(T) =
∞∑
i=r

aiTi,

where ar � 0. The quantity r ≥ 0 is the order of vanishing of fE,p(T) at zero, thus we
may denote it by ordT=0 fE,p(T). We call ar the leading coefficient. Perrin-Riou [13]
and Schneider [16] provide an explicit formula for the leading coefficient ar. Note that
ar is well defined up to a unit in Zp. Given two elements a, b ∈ Qp, we write a ∼ b to
mean that a = ub for a unit u ∈ Z×p . The p-adic regulator Rp(E/K) is the determinant
of the p-adic height pairing on the Mordell–Weil group of E (see [11, 15, 16] for
further details). Schneider has conjectured that the p-adic regulator Rp(E/K) is always
nonzero, that is, the p-adic height pairing is always nondegenerate. Let Rp(E/K) be
the normalised p-adic regulator, defined by Rp(E/K) := p− rank E(K)Rp(E/K). At each
prime v of K, let cv(E/K) be the Tamagawa number of E at v (see [1, Ch. 3] for the
definition). If v is a prime at which E has good reduction, then cv(E/K) = 1. At any
prime v of K, let Fv denote the residue field of Ov at v. For each prime v | p, let Ẽ be
the reduction of E to an elliptic curve over Fv.

THEOREM 3.4 (Perrin-Riou, Schneider). Let E be an elliptic curve over a number field
K and p an odd prime. Assume that the following conditions are satisfied:

(1) E has good ordinary reduction at all primes v | p of K;
(2) X(E/K)[p∞] is finite;
(3) Rp(E/K) is nonzero;
(4) Selp∞(E/Kcyc)∨ is finitely generated and torsion as a Λ(Γ)-module.

Then, the following assertions hold:

(1) r := ordT=0 fE,p(T) = rank E(K);
(2) the leading coefficient is given up to a unit by

ar ∼
Rp(E/K) × #X(E/K)[p∞] ×∏ cv(E/K) × (

∏
v|p #Ẽ(Fv)[p∞])2

(#E(K)[p∞])2
.

PROOF. The above result is [16, Theorem 2′, page 342]. �

LEMMA 3.5. Let E be an elliptic curve satisfying the conditions of Theorem 3.4 and
set r := ordT=0 fE,p(T) = rank E(K). The following conditions are equivalent:

(1) ar is a unit in Zp;
(2) μp(E/K) = 0 and λp(E/K) = rank E(K).

https://doi.org/10.1017/S000497272200082X Published online by Cambridge University Press

https://doi.org/10.1017/S000497272200082X


446 A. Ray [7]

PROOF. We write fE,p(T) as Trg(T), where g(0) = ar � 0. Suppose that ar is a unit in
Zp. Then, g(T) is a unit in Λ(Γ) and the Weierstrass factorisation of fE,p(T) is given by
P(T)u(T), where P(T) = Tr is a distinguished polynomial and u(T) = g(T) is a unit in
Λ(Γ). Thus, λp(E/K) = deg P(T) = deg Tr = r and μp(E/K) = 0.

However, suppose that μp(E/K) = 0 and λp(E/K) = r. Then, we may write
fE,p(T) = P(T)u(T), where P(T) is a distinguished polynomial of degree r and u(T) is
a unit in Λ(Γ). Since P(T) is divisible by Tr, this forces P(T) = Tr and u(T) = g(T).
Therefore, g(T) is a unit in Λ(Γ), and hence ar = g(0) is unit in Zp. �

THEOREM 3.6. Let E be an elliptic curve over a number field K and p an odd prime.
Assume that the following conditions are satisfied:

(1) E has good ordinary reduction at all primes v | p of K;
(2) rank E(K) > 0;
(3) Selp∞(E/Kcyc)∨ is finitely generated and torsion as a Λ(Γ)-module;
(4) Rp(E/K) is a p-adic unit (in particular, nonzero);
(5) X(E/K)[p∞] = 0;
(6) p � cv(E/K) for all primes v at which E has bad reduction;
(7) p � #Ẽ(Fv) for all primes v | p of K.

Then, for all n ≥ 0, Kn/K is an integrally Diophantine extension. Therefore, if
Conjecture 1.1 is satisfied for K, then it is satisfied for Kn for all n ≥ 0.

PROOF. Since it is assumed that X(E/K)[p∞] = 0, in particular, X(E/K)[p∞] is
finite, the conditions of Theorem 3.4 are satisfied. It follows from Theorem 3.4 that
ar is a unit, where r = rank E(K). Lemma 3.5 then asserts that λp(E/K) = rank E(K).
Since rank E(K) > 0, the result follows from Theorem 3.3. �

The above result shows that given a number field K, if there exists an elliptic curve
E/K satisfying the conditions of Theorem 3.6, then, Kn/K is integrally Diophantine for
all n. In the next section, we shall explain the conditions of Theorem 3.6.

4. Conditions for rank constancy in cyclotomic Zp-towers

Let E be an elliptic curve defined over Q such that rank E(Q) > 0, and let K/Q
be a number field extension. We consider the base change of E to K. Note that
rank E(K) > 0. The data (E, K) is fixed throughout and the results are of most
interest in the case when K is neither totally real nor abelian. Assume that E does
not have complex multiplication. Given any set of prime numbers P, the upper
(respectively lower) density of P refers to its upper (respectively lower) Dirichlet
density. When we say that P has density δ ∈ [0, 1], we mean that the Dirichlet density
of P exists and equals δ. Note that the upper and lower densities always exist. Let
Ω be the set of odd prime numbers p such that E has good ordinary reduction
at p, and the conditions of Theorem 3.6 are satisfied for E/K and the cyclotomic
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[8] Hilbert’s tenth problem and elliptic curves 447

Zp-extension of K. In this section, we provide circumstantial evidence for the following
conjecture.

CONJECTURE 4.1. The set of primes Ω has positive lower density.

In this section, the prime p is allowed to vary over the prime numbers at which E has
good ordinary reduction. A classical result of Serre shows that for a non-CM elliptic
curve, the set of primes of good ordinary (respectively supersingular) reduction has
density 1 (respectively 0). Since the prime p is not fixed in this section, it is pertinent
that we do not suppress the role of p in the notation for cyclotomic extensions. Thus,
K(p)

cyc denotes the cyclotomic Zp-extension of K and K(p)
n denotes the subfield of K(p)

cyc
with [Kn : K] = pn.

THEOREM 4.2. Let K be a number field and E a non-CM elliptic curve over Q such
that:

(1) rank E(Q) > 0;
(2) X(E/K) is finite.

Then there exists a set of odd prime numbers Σ of positive density satisfying the
following conditions:

(1) E has good ordinary reduction at all prime numbers p ∈ Σ;
(2) if for a prime p ∈ Σ,

(a) Rp(E/K) is a p-adic unit,
(b) Selp∞(E/Kcyc)∨ is a finitely generated and torsion module over Λ(Γ),

then, rank E(K(p)
n ) = rank E(K) for all n and the conclusion of Theorem 3.6 holds.

PROOF. By the aforementioned result of Serre, the set of primes p at which E has
good ordinary reduction has density 1. Let K̃ ⊂ Q̄ be the Galois closure of K. By a
standard application of the Chebotarev density theorem, the set of prime numbers p
that split completely in K̃ has density [K̃ : Q]−1. Let Σ0 be the set of primes p at which
E has good ordinary reduction and that split completely in K. Then Σ0 has density
[K̃ : Q]−1.

Let the set of primes p ∈ Σ0 such that p divides #Ẽ(Fp) be denoted by Σ1. Primes
p at which E has good reduction such that p divides #Ẽ(Fp) are known as anomalous
primes. If p is large enough, then a prime p is anomalous precisely when ap(E) :=
p + 1 − #Ẽ(Fp) is equal to 1. As is well known, the set of anomalous primes has density
0 (see [12]). It follows that Σ1 has density 0. Note that since any prime p ∈ Σ0\Σ1 is
completely split in K̃, for each prime v of K that lies above p, we find that Fv = Fp.
Therefore, since p is not anomalous, p does not divide the product

∏
v|p #Ẽ(Fv) for all

primes p ∈ Σ0\Σ1. The set of primes that divide any given natural number is clearly
finite. Therefore, the set of primes p ∈ Σ0 such that p |∏v cv(E/K) is finite. Denote
this set by Σ2. Finally, note that since it is assumed that X(E/K) is finite, the set of
primes p such that X(E/K)[p∞] � 0 is finite as well. Let Σ3 denote this set. Set Σ
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TABLE 1. Elliptic curves of rank 2.

Cremona Label Π≤1000 Cremona Label Π≤1000

1. 389a ∅ 6. 643a ∅
2. 433a {13} 7. 655a {7, 31}
3. 446d {7} 8. 664a {59}
4. 563a ∅ 9. 681c ∅
5. 571b ∅ 10. 707a {29}

to be the set of primes Σ0\(
⋃3

i=1 Σi). For p ∈ Σ, if Rp(E/K) is a unit in Zp, then the
conditions of Theorem 3.6 are satisfied and the result follows. �

REMARK 4.3. One would like to understand how often Rp(E/K) is not a p-adic unit.
Unfortunately, the p-adic regulator is a fairly complex invariant and computations
involving the p-adic regulator over a number field K are challenging. There are built-in
packages on the Sage computational system [20] to compute p-adic regulators over Q;
however, the author is not aware of any such packages written for number fields K � Q
that are readily usable.

Computations over Q suggest the following conjecture over other number fields.

CONJECTURE 4.4. Let E be an elliptic curve over Q and K be a number field. The set
of primes p such that Rp(E/K) is divisible by p has density 0.

Given an elliptic curve E/Q and N > 0, let Π≤N be the set of primes p ≤ N of good
ordinary reduction such that p | Rp(E/Q). We compute Π≤1000 for the first ten elliptic
curves of rank 2 ordered by conductor. The calculations in Table 1 are from [9, page
7955] and were done on Sage. The data indicate that the p | Rp(E/K) should be a rare
occurrence.

We give one concrete example of an elliptic curve E over Q for which Theorem 3.6
can be expected to apply. We do not obtain any new result by working over Q, and the
calculation below is only included to illustrate our technique.

Consider the elliptic curve E with Weierstrass equation y2 + y = x3 − x, Cremona
label 37a1, and set p = 5. Referring to the conditions of Theorem 3.6:

(1) E has good ordinary reduction at 5;
(2) rank E(Q) = 1, in particular, rank E(Q) > 0;
(3) we assume that the dual Selmer group Sel5∞(E/Qcyc)∨ is torsion over the Iwasawa

algebra (recall that Mazur’s conjecture predicts this condition to hold for all
elliptic curves with good ordinary reduction at p);

(4) the normalised 5-adic regulator is a 5-adic unit;
(5) the analytic order of X(E/Q) is exactly 1;
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[10] Hilbert’s tenth problem and elliptic curves 449

(6) all Tamagawa numbers cv(E/Q) are equal to 1;
(7) Ẽ(F5) = 8, and hence Ẽ(F5) is not divisible by 5.

The calculations above were performed via Sage (see [20]).
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