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On CR-Epic Embeddings and Absolute
CR-Epic Spaces

Michael Barr, R. Raphael, and R. G. Woods

Abstract. We study Tychonoff spaces X with the property that, for all topological embeddings X → Y ,

the induced map C(Y ) → C(X) is an epimorphism of rings. Such spaces are called absolute CR-epic.

The simplest examples of absolute CR-epic spaces are σ-compact locally compact spaces and Lindelöf

P-spaces. We show that absolute CR-epic first countable spaces must be locally compact.

However, a “bad” class of absolute CR-epic spaces is exhibited whose pathology settles, in the

negative, a number of open questions. Spaces which are not absolute CR-epic abound, and some are

presented.

1 Introduction

If X is a topological space the set C(X) of all continuous functions from X to R can be
considered as an object in a number of categories. It is a group, a commutative ring, a
reduced ring (one with no non-zero nilpotents), an Archimedean f-ring, and others.
In this paper we are considering it exclusively as a commutative ring. We denote by

C∗(X) the subring of C(X) consisting of the bounded functions from X to R.

Barr, Burgess and Raphael [3] considered the following question (and some re-
lated ones): If X is a topological space and Y is a subspace, when is it the case that

the homomorphism C(X) → C(Y ) induced by restriction is an epimorphism? In
this paper, we are concerned mainly with the question of when every embedding of
X into some larger space Y has the property that C(Y ) → C(X) is epic. It is easy to
reduce this question to the case in which Y is compact and X is dense in Y . Such a

space Y is called a compactification of X.

Hager and Martinez [12] used the phrase “C-epic” to describe an embedding
g : X → Y for which the induced map C(Y ) → C(X), given by f 7→ f ◦ g, is

epic in a particular category. However the notion of epimorphism depends on the
category and we wished to find a term in which the name of the category appears as a
parameter. Accordingly we describe an embedding X → Y as an X-epic embedding if
C(Y ) → C(X) is epic in the category X. We say that an object X is an absolute X-epic

if every embedding X → Y is X-epic.

In this paper we will be concerned exclusively with the case that X = CR, the
category of commutative rings.

Definition 1.1 An inclusion X → Y is called a CR-epic embedding if the map
C(Y ) → C(X) induced by restriction is an epimorphism in the category of com-
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mutative rings. The space X is called absolute CR-epic if every embedding of X is
CR-epic.

1.1 Notation

All spaces considered in this paper are assumed to be Tychonoff (completely regular

Hausdorff) and all functions, unless explicitly stated otherwise, are assumed contin-
uous. As usual, βX denotes the Stone-Čech compactification of the space X. It is the
unique compact space in which X is dense and C∗-embedded. See [11, Ch. 6] for
details. We denote by υX the Hewitt realcompactification of a Tychonoff space X; see

[11, Ch. 8] or [22, 5.5(c), 5.10]. A space X is called realcompact if X = υX. A space
is called almost Lindelöf if, of any two disjoint zero-sets, at least one is Lindelöf. It is
shown in [18, 5.4] that a space X is almost Lindelöf if and only if it differs from υX

by at most one point and υX is Lindelöf.

1.2 Examples

Here are some examples of absolute CR-epic spaces, mostly developed below.

1. Locally compact Lindelöf spaces (Theorem 2.14).

2. Lindelöf P-spaces (Theorem 5.2).
3. Almost compact spaces (defined in § 1.3; see [11, 6J(5)]).
4. The sum (that is, disjoint union) of an absolute CR-epic Lindelöf space and an

almost compact space (Theorem 3.1).

5. The sum of countably many absolute CR-epic Lindelöf spaces (Proposition 2.16).

Here are some examples of spaces that are not absolute CR-epic.

6. A non-open dense countable intersection of cozero-sets in a locally connected
space (this includes R \ Q) [10, Theorem 3.10(2)].

7. A non-open dense co-σ boundary of an arbitrary space [19, 2.5].
8. A proper dense subspace of βN \ N (assuming CH), (Corollary 2.5).

9. Any space X for which |υX \ X| > 1 (Theorem 2.9); for example, any pseudo-
compact space that is not almost compact, or the sum of two non-realcompact
spaces.

10. A dense subset of βQ \ Q . This includes certain countable extremally discon-

nected spaces (Corollary 4.4).
11. An uncountable sum of spaces (Corollary 2.10); in particular, any locally com-

pact, paracompact space that is not σ-compact, [8, 5.1.27].

12. A first countable space that is not locally compact (Corollary 2.22), for example
the rational numbers.

1.3 Properties

There are a number of properties of topological spaces we will be using in this article
that we summarize here. Most of them are from [11].

A space X is called almost compact if |βX \X| ≤ 1. A space is called pseudocompact

if every real-valued function is bounded and therefore extends to βX. An almost
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compact space is pseudocompact [11, Problem 6J], but the converse is not true. One
characterization of almost compact spaces is that given two disjoint zero-sets, at least

one is compact (compare the definition of almost Lindelöf).

A space X is realcompact if for every point p ∈ βX \ X, there is a function in C(X)

that does not extend to p.

Any countable union of cozero-sets is a cozero-set [22, 1.4(i)(2)].

The following theorem, which is central to the discussion in the present paper, is

essentially Theorem 2.6 of [3].

Theorem 1.2 Suppose the dense embedding X ⊆ Y is CR-epic. Then every function

in C(X) extends to an open set of Y that contains X.

2 Absolute CR-Epic Spaces

The following two results are found in [12, 1.1 and 1.6, resp.], (although the category
is different, the same easy proofs work).

Proposition 2.1 For a space X to be absolute CR-epic, it is sufficient that its embedding

in every compactification be CR-epic.

Proposition 2.2 Suppose that we have a commutative diagram

X
q ′

~~~~
~~

~~
~~ q

��?
??

??
??

K ′

p

// K

such that q and q ′ are embeddings. Then if q is CR-epic, so is q ′. In particular, if X

is locally compact, it is absolute CR-epic if and only if the embedding into its one-point

compactification is CR-epic.

Proposition 2.3 If a sum of two spaces is absolute CR-epic, so is each summand.

Proof If X is dense in K, then X +Y is dense in K + βY . Assuming X +Y is absolute

CR-epic, the result can be read from this diagram

C(X) C(K)oo

C(X + Y )

OO
OO

C(K + βY )oooo

OO
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Proposition 2.4 If X is dense in Y and C(Y ) → C(X) is epic, then C(X) has the same

cardinality as C(Y ).

Proof This follows from the computation of the size of C(X) in [15], in conjunction
with the fact shown in [14, 1.5] that an epimorphism between infinite algebras does

not increase cardinality.

Corollary 2.5 (CH) No proper dense subspace of βN \ N is absolute CR-epic.

Proof Using CH, it follows from [26, Theorem 2.2] that a subset X ⊆ βN \ N is
C∗-embedded in βN \ N if and only if |C(X)| = c. Thus if X ⊆ βN \ N is epic, X

must be C∗-embedded in βN \ N. But [9, Theorem 4.6a] shows that in the presence

of CH, proper dense subsets of βN \ N cannot be C∗-embedded.

Epimorphisms in the category of rings are characterized by the following theorem
which is found in [20] and in [25, p. 73].

Proposition 2.6 A homomorphism w : R → S in the category of rings is an epimor-

phism if and only if for each f ∈ S there exist matrices G, A, H of sizes 1 × n, n × n and

n × 1, respectively, such that

(i) f = GAH,

(ii) G and H have entries in S,

(iii) the entries of A, GA, and AH are in the image of w.

Such a decomposition of f is called an n × n zig-zag for f with respect to w.

In most, but not all cases, w will be an injective ring homomorphism (induced by

the inclusion of a dense subspace) and we will treat R as a subring of S. In that case
we will simply say that A, GA, and AH are matrices over R.

The name “zig-zag” is not especially appropriate. It appears to go back to a theo-
rem of Isbell’s that characterizes epics in the category of semigroups, [14].

A useful observation, whose proof we leave to the reader follows.

Proposition 2.7 Suppose

P

��

// // R

��
��

S // T

is a commutative diagram of rings such that P → R is surjective. If an element f ∈ T

has an n×n zig-zag with respect to R, then it also has an n×n zig-zag with respect to S.

Corollary 2.8 Suppose that for every compactification X ⊆ K, every element of C(X)
has a 1 × 1 zig-zag with respect to C(K). Then the same is true with X → K replaced

by any embedding X → Y .
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2.1 Results from Hager and Martinez

Hager and Martinez [12] study epimorphisms between function rings, not in the
category of commutative rings, but rather in the category of Archimedean l-groups;
see their paper for details. The crucial fact appears on p. 116, where it is shown that

if C(Y ) → C(X) is epic in the category of commmutative rings, it is epic in their
category. Thus, any result of theirs that concludes that an embedding induced by an
inclusion of spaces is not epic has, as a corollary, that the embedding is not epic in
the category of rings and ring homomorphisms. The following theorem states three

consequences of their results that are pertinent for us here, with the references cited
to their paper.

Theorem 2.9 An absolute CR-epic space

(i) is almost Lindelöf [12, Theorem 9.1];

(ii) is almost compact if it is pseudocompact [12, Corollary 2.9 a];

(iii) does not have a basically disconnected compactification except possibly its Stone-

Čech compactification [12, Example 3.4].

Corollary 2.10

(i) The categorical sum of uncountably many spaces cannot be absolute CR-epic;

(ii) the categorical sum of an absolute CR-epic space with itself can fail to be absolute

CR-epic;

(iii) the product of an absolute CR-epic space with itself can fail to be absolute CR-epic;

(iv) the preimage of an absolute CR-epic space under a perfect irreducible map can fail

to be absolute CR-epic.

Proof

(i) By splitting the index set into two uncountable subsets, we can write the space
as X = X1 + X2, where neither summand is Lindelöf. Clearly X1 and X2 are zero-sets
so that X is not almost Lindelöf (cf. Definition 1.1).

The next three parts use the space W of all countable ordinals with the order
topology. This space is locally compact and βW = υW = W ∗ can be thought of
as consisting of all ordinals up to and including the first uncountable ordinal ω1 (see
[11, 6J]).

(ii) The space W + W is pseudocompact but not absolute CR-epic because
|υ(W ×W ) \ (W ×W )| = 2 (see [11, 8M(3)]).

(iii) The space X = W ×W is pseudocompact and therefore βX = υX. It follows
that υX \ X = (W × (ω)1) ∪ ((ω)1 × W ), so X is not almost compact. See [11, 8L

and 8M] for all details.
(iv) Let D denote the set of all isolated points (non-limit ordinals) in W ∗. Then

W ∗ is a compactification of the uncountable discrete space D and, by [11, 6.4], there
is a continuous surjection f : βD → W ∗ that fixes D pointwise. Then f −1(W ) =

ℵ0(D), the subspace of βD consisting of D and the limit points of countable subsets of
D. Although W is absolute CR-epic, ℵ0D is pseudocompact, but not almost compact
and therefore not absolute CR-epic. But the map f |ℵ0D : ℵ0D → W is a perfect
irreducible continuous surjection (see [22, Chapter 6]).
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The following theorem appears as [3, Proposition 2.1(ii)], but the proof given here
is slightly easier.

Proposition 2.11 Suppose that X ⊆ Y and f ∈ C(X). If f extends to a cozero-set of

Y , then f has a 1 × 1 zig-zag with respect to C(Y ).

Proof Suppose that f extends to coz(u). We may suppose that u ≥ 0. Define

a : Y → R by a| coz(u) = ( f /(1 + f 2))u and a|Z(u) = 0. Then a is easily verified to
be in C(Y ). Define g : X → R by g =

√

(1 + f 2)/(u|X). Clearly g is in C(X). One
verifies that f = gag, and that g(a|X) extends continuously to Y . Thus gag is a 1 × 1
zig-zag for f .

The following well-known characterization of Lindelöf spaces (among completely
regular spaces) is due to Smirnov [24]. We give an easy proof of the direction we use.

See [8, 3.12.25] for the converse.

Proposition 2.12 A space X is Lindelöf if and only if, whenever X is embedded in a

space Y , every open subset of Y containing X, contains a cozero-set containing X.

Proof Let X ⊆ U ⊆ Y with U open. Any open subset in the completely regular
space Y is a union of cozero-sets. But the space is Lindelöf and hence a countable
union of these cozero-sets covers X. But a countable union of cozero-sets is a cozero-
set.

Corollary 2.13 Let X be a Lindelöf space densely embedded in a space Y . Then the

embedding is CR-epic if and only if every function in C(X) extends to an open subset of

Y that contains X.

Proof Theorem 1.2 gives one direction and the two immediately preceding propo-
sitions give the other.

Theorem 2.14 A locally compact Lindelöf space is absolute CR-epic. (This includes

[3, 2.15(ii)]).

Proof A locally compact space is open in any compactification. Thus if the locally
compact space X is dense in a compact space K, it is open. If it is Lindelöf, it is a
cozero-set in K and the conclusion follows from Proposition 2.11.

Lemma 2.15 Let X be an absolute CR-epic Lindelöf space. Then whenever X is em-

bedded in a space Y any function in C(X) can be extended to a cozero-set in Y and has

a 1 × 1 zig-zag.

Proof By Theorem 1.2, every f ∈ C(X) extends to an open set U ⊇ X. Thus f

extends to a cozero-set and, by Proposition 2.11, has a 1 × 1 zig-zag.
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Proposition 2.16 A sum of countably many absolute CR-epic Lindelöf spaces is abso-

lute CR-epic.

Proof Let L =
∑

Li be densely embedded in the compact space K and suppose that
each Li is absolute CR-epic Lindelöf. Let f ∈ C(L). Since each Li is open in L, choose
an open set Ui of K whose intersection with L is Li . If i 6= j, the set Ui ∩U j ∩ L = ∅.

Since L is dense in K, this means that Ui ∩ U j = ∅. Since Li is absolute CR-epic,
there is, by Proposition 2.12, a function ui ∈ C(K) such that Li ⊆ coz(ui) ⊆ Ui

and such that f |Li extends to gi ∈ C(coz(ui)). Let V =
⋃

coz(ui) and let g =
⋃

gi .
Then V ∈ coz K, g ∈ C(V ), and g|X = f . Thus each function in C(L) extends to a

cozero-set in K, whence C(K) → C(L) is epic.

The following is an immediate consequence of [17, Theorem 3.2]. To apply it, one
has to understand that Y ∩ βX = X “multiply” means that for each y ∈ Y \ X there

is at least one f ∈ C∗(X) that cannot be extended to X ∪ {y} while Y ∩ βX = X

“singly” means that there is a single f ∈ C∗(X) that cannot be extended to any point
of Y \ X.

Lemma 2.17 Let X be a dense subspace of the space Y and let S be a countable subset

of Y \ X. Suppose that for each s ∈ S there is a function in C∗(X) that does not extend

continuously to X ∪ {s}. Then there is a single function in C∗(X) that does not extend

continuously to X ∪ {s} for any s ∈ S.

Theorem 2.18 Suppose that X is dense in Y and that S is a countable subset of Y \ X

for which X ∩ cl S 6= ∅. If for each s ∈ S, X is not C∗-embedded in X ∪ {s}, then the

embedding X ⊆ Y is not CR-epic.

Proof By the preceding lemma there is a single f ∈ C∗(X) that does not extend
continuously to X ∪ {s} for any s ∈ S. If V is open in Y and X ⊆ V ⊆ Y , then
V ∩S 6= ∅ as X∩cl S 6= ∅. Thus f cannot extend continuously to V . By Theorem 1.2
the embedding X ⊆ Y is not CR-epic.

Corollary 2.19 If X is absolute CR-epic then υX is absolute CR-epic. The converse is

false.

Proof Any pseudocompact space that is not almost compact establishes the second
claim. For the first claim, if K is a compactification of υX, then it is also a compact-
ification of X and one has the induced maps C(K) → C(υX) → C(X). Since the
second map is an isomorphism and the composite is epic, so is the first map.

Theorem 2.20 Let E be an equivalence relation on the compact space K. Let K/E

denote the set of equivalence classes of E and f : K → K/E be the natural map sending

each x ∈ K to its equivalence class [x]. Give K/E the quotient topology induced by f .

Then
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(i) Suppose that if A is any closed subset of K, then f −1( f [A]) is closed in K. Then

K/E is a Hausdorff space.

(ii) Suppose that K is a compactification of a space X, E is an equivalence relation on

K as in 1, and if x ∈ X then [x] = {x}. Then K/E is a compactification of X.

Proof Part (i) follows directly by combining [8, 2.4.9, 2.4.10 and 3.2.11]. By the

hypotheses in (ii), f |X maps X homeomorphically onto the dense subspace f [X] of
the space K/E, which is compact as f is a continuous surjection and Hausdorff by 1.

This argument also shows that the quotient map q : K → K/E is closed and we
claim that its restriction to X is also closed. In fact, if A ⊆ X is closed in X, let

A = B ∩ X, where B is closed in K. By hypothesis, no point of X is identified by E

to any other point of K, either in or out of X. From this, it is immediate that q(A) =

q(X) ∩ q(K) and hence that q(A) is closed in q(X). Thus q|X is closed and injective,
and thus maps X homeomorphically on q(X).

Theorem 2.21 Suppose X is a dense subspace of the compact space K. Suppose there

is a countable discrete subset S ⊆ K \ X such that clK S = S ∪ {p} where p ∈ X. Then

X is not absolute CR-epic.

Proof Decompose S as a union of two disjoint infinite sets, say S = A ∪ B where
A = {a1, a2, . . . } and B = {b1, b2, . . . }. Let E be the equivalence relation generated
by letting anEbn for all n ∈ N. Suppose A is closed in K. It is straightforward to verify

that if A∩S is finite, then f −1( f [A]) = A∪F, where F is a finite set, and hence is closed
in K. If A∩S is infinite, then as A is closed, it must contain p (as each neighbourhood
of p meets a cofinite subset of S). Thus f −1( f [A]) = A ∪ ({p} ∪ f −1( f [A ∩ S])).
But {p} ∪ f −1( f [A∩ S]) is homeomorphic to the one-point compactification of the

discrete space f −1( f [A∩ S]), so f −1( f [A]) is the union of two closed sets and hence
is closed in K. Hence by Theorem 2.20, K/E is a compact Hausdorff space and X

is dense in it. For each n there is a function on fn ∈ C∗(K) for which fn(an) = 0
and fn(bn) = 1. The restriction of fn to X obviously cannot be extended to the point

represented by an. From Theorem 2.18, it follows that X → K/E is not CR-epic.

Corollary 2.22 If X is an absolute CR-epic space and is first countable at a point p,

then X is locally compact at p. In particular, a first countable absolute CR-epic space

must be locally compact.

Proof It is sufficient to observe that if p is a first countable point of X, then it is also
first countable in any ambient space in which it is dense. For if X ⊆ Y and {Un} is

a countable neighbourhood base at p, then any collection {Vn} of neighbourhoods
of p in Y for which Vn ∩ X = Un is a neighbourhood base for p. If X is not locally
compact at p, then no neighbourhood of p lies entirely inside X and then there is a
sequence of points outside X that converges to p.

Lemma 2.23 Suppose K is a compactification of X and T is a closed discrete subset of

K \ X such that there is some point p ∈ clK T that is a Gδ point of X. Then there is a

sequence s1, s2, . . . of points of T that converges to p.
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Proof Since p is a Gδ point of X, there is a nested sequence {Un} of closed neigh-
bourhoods of p in K such that

⋂

(X ∩ Un) = {p}. Let sn be any point of Un ∩ T

and let S = {s1, s2, . . . }. First we claim that clK\X S does not contain any point of K

other than p. For if q /∈ X, then q has some neighbourhood in K whose intersection
with K \X contains no point of S (except possibly q) and since S ⊆ K \X this neigh-
bourhood contains no point of S. If q ∈ X, but q 6= p, then q /∈

⋂

Un so there is

an n with q /∈ Un. Since Un is closed, K \ Un is a neighbourhood of q that contains
at most finitely many points of S, which may be deleted to find a neighbourhood of q

that does not meet S. Finally, we see that S, an infinite discrete set in a compact space,
cannot be closed, so it has some limit point and the only possibility is p.

Corollary 2.24 If the points of X are Gδ and there is a compactification K of X such

that K \ X contains an infinite closed discrete set, then X is not absolute CR-epic.

Proof It suffices to observe that K \ X cannot be closed in K and hence has limit
points in X. Then the preceding lemma applies to give us the hypotheses of Theo-
rem 2.21.

Corollary 2.25 Let X be a space whose points are all Gδ . If X is absolute CR-epic, then

for every compactification K of X, the space K \ X is countably compact. In particular,

if βX \ X is not countably compact, then X is not absolute CR-epic.

Proof A space is countably compact if and only if it has no countably infinite closed
discrete subset (see [8, 3.10.3]). Now apply the previous corollary.

Corollary 2.26 A first countable Lindelöf space is absolute CR-epic if and only if it is

locally compact. (Note that the space Ψ to be described in §3.3 is first countable, not

Lindelöf, and can be absolute CR-epic).

Lemma 2.27 Let X be absolute CR-epic and dense in the realcompact space K. Then

the following are equivalent:

(i) X is z-embedded in K (this means that every zero-set of X extends to a zero-set

of K);

(ii) every f ∈ C(X) satisfies a 1 × 1 zig-zag over C(K).

Proof (i) ⇒ (ii). Let W be the intersection of the realcompact spaces between X

and K. Then W is realcompact by [11, 8.9]. By [4, 2.4] X is C-embedded in W . Thus

W is a copy of υX and W is absolute CR-epic by Corollary 2.19. Therefore W is
Lindelöf by Theorem iii.1. Now obtain the 1 × 1 zig-zag as follows. Take f on X. It
extends to F on W and since W is Lindelöf and absolute CR-epic, by Corollary 2.13,

F extends to G on a cozero-set of K between W and K and Proposition 2.11 applies.

(ii) ⇒ (i). Let f ∈ C(X) with zero-set Z, and take a 1 × 1 zig-zag f = gah, with
a, ga, and ah in C(K). Then f a = gaha ∈ C(K). We claim that Z( f a) ∩ X = Z( f ).
In fact, if x ∈ X and f (x)a(x) = 0, then either f (x) = 0, in which case x ∈ Z( f ),
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or a(x) = 0, in which case f (x) = g(x)a(x)h(x) = 0 as well, so that x ∈ Z( f ). The
opposite inclusion is obvious. Thus X is z-embedded in K.

Theorem 2.28 (Taxonomy) An absolute CR-epic space X differs from its Hewitt real-

compactification by at most one point, and fits into one of the following three classes:

Almost compact

In this case C(X) = C(βX) and for any embedding X → Y , the induced C(Y ) →
C(X) is surjective, thus no zig-zags are needed;

Realcompact

In this case the space is Lindelöf and all zig-zags can be taken to be 1 × 1;

All others

Any such space has a compactification K and a function f ∈ C(X) that does not have

a 1 × 1 zig-zag; equivalently X is not z-embedded in K.

Proof As noted in Theorem 2.9, an absolute CR-epic space is almost Lindelöf. Sup-
pose that |βX \ X| = 1 (that is, X is almost compact but not compact). By [11, 8A.4,

and 9D.3], it follows that υX = βX. But C(X) = C(υX) so that C(X) = C(βX). If X

is embedded in Y , then the conclusion follows from the fact that βX is closed in the
normal space βY . Next suppose X is absolute CR-epic and realcompact. Then it is
also Lindelöf and the result follows from Lemma 2.15.

Finally, suppose that X is absolute CR-epic, but neither realcompact nor almost

compact. Since Lindelöf spaces are realcompact, it is not Lindelöf. According to [4,
Theorem 4.1], it is not z-embedded in some compactification K. The rest follows by
Lemma 2.27.

Theorem 2.29 Let X be absolute CR-epic. Then the following are equivalent:

(i) X is Lindelöf or almost compact;

(ii) in every compactification K of X every function extends to a cozero-set of K;

(iii) in every compactification K of X every function extends to a realcompact subset of

K;

(iv) X is z-embedded in each compactification.

Proof That (i) ⇒ (ii) is clear in the almost compact case from [11, 6J5] and in the
Lindelöf case from Proposition 2.12 and Corollary 2.13. That (ii) ⇒ (iii) follows
from [11, 8.14]. The proof that (iii) ⇒ (iv) can be done by an argument similar to

that of Lemma 2.27. Finally it is shown in [4, 4.1] that (iv) ⇒ (i) (actually that they
are equivalent).

3 An Absolute CR-Epic Space With Bad Properties

In this section, we will show that the third possibility of the Taxonomy Theorem

(2.28) actually arises. This will allow us to produce a class of absolute CR-epic spaces
which have a compactification K such that not every function in C(X) can be ex-
tended to a cozero-set of K; thus 1 × 1 zig-zags are not sufficient for the embedding
C(K) → C(X), and hence X is not z-embedded in K.
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3.1 Some (Previously) Open Questions

The existence of this class of spaces answers several questions that have been raised

in the literature and elsewhere:

(i) Schwartz [23, following Proposition 4.2] asked whether CR-epic embeddings
have to be z-embeddings (see Lemma 5.1 below for a case in which the answer

is positive). This gives an example to the contrary.
(ii) [3, Section 3.10] asked whether a G-embedded space need be z-embedded. This

gives a negative answer.
(iii) S. Watson [private communication] has asked whether an epimorphism of rings

of continuous functions is necessarily an epimorphism of the underlying semi-
groups. Again the examples here provide a negative answer.

3.2 A Construction

Let L be any non-compact Lindelöf absolute CR-epic space and A be any almost com-
pact space that is not compact. Let K be a compactification of X = L + A (topological
sum). If clK(L) ∩ clK(A) = ∅, any function on X has the property that both its re-

striction to L and to A have 1 × 1 zig-zags with respect to clK(L) and clK (A), resp.
Since K = clK (L) + clK(A), these can be extended to a 1 × 1 zig-zag for f .

However, we can always find a compactification K of X in which clK (L)∩clK(A) 6=
∅. Let βA\A = {s} and let p be an arbitrary point of βL\L. The equivalence relation
on β(A + L) = βA + βL that identifies s with p is obviously compact and identifies
no point of X with any other point of βX so Theorem 2.20 applies.

So suppose X is densely embedded in K and clK(L) ∩ clK(A) 6= ∅. Since A is
almost compact and not compact, clK (A) \ A consists of exactly one point, which we

call p and then clK(L) ∩ clK (A) = {p}. We claim that υX = L + A∗. To see this, first
recall that βX = βL + βA = βL + A∗. Then since L is Lindelöf, it is realcompact and
so is L + A∗. If f ∈ C(X), then f |A extends continuously to A∗. Clearly X is dense
and C-embedded in L + A∗ and it follows that υX = L + A∗.

Theorem 3.1 A sum of a Lindelöf absolute CR-epic space and an almost compact

space is absolute CR-epic

Proof Let X = L + A with L Lindelöf absolute CR-epic and A almost compact and
suppose K is a compactification of X. If f ∈ C(X), the function f |A extends to a

function on A∗ and from there to a function g defined on all of K. The function
h = f − g|X vanishes on A and, if we can exhibit a zig-zag for h, we can add it to g

to get one for f . The fact that L is absolute CR-epic implies that there is a function
u defined on clK (L) such that h extends to coz(u). We can extend u to all of K by

normality. Let v be the function defined as (1 + h2)/u when u 6= 0 and 0 otherwise.
We claim that

h = v
hu2

(1 + h2)2
v

is a zig-zag for h. In fact, on L ∩ coz(u), this reduces directly to h, while it is 0 on A.
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Finally, the product

v
hu2

(1 + h2)2
=

1 + h2

u

hu2

(1 + h2)2
=

hu

1 + h2

is defined and continuous on coz(u). Moreover, it is the product of a function that is
bounded everywhere and one that vanishes wherever the the first factor is not con-

tinuous, and such a function has a continuous extension everywhere.

3.3 Example

Aside from the more obvious examples of this result, here is a naturally occurring one
using the space Ψ, which was created by J. Isbell and independently by S. Mrowka;
see [11, 5I] for the details and all undefined notation. The construction of Ψ depends
on the choice of a maximal family of infinite subsets of N with the property that the

intersection of any two is finite (such a family is called a maximal almost disjoint or
mad family). It turns out that for some such maximal families, Ψ is absolute CR-epic
and for others it is not, according to whether Ψ is or is not almost compact.

Now choose a mad family for the construction of Ψ that yields an almost compact

space. Let M be a member of the mad family whose complement is infinite. Take
d ∈ D the point at infinity in the one point compactification of M. Let Y = Ψ \ {d}.
Then M is clopen in Y and Y \ M is the result of the Ψ construction on the set
N \ M using the mad family {A \ M |A ∈ E}. Furthermore Y \ M is almost compact

by the following argument: Ψ \ (M ∪ {d}) is C∗-embedded in Ψ since it is clopen
in Ψ; therefore Ψ \ (M ∪ {d}) is C∗-embedded in βΨ and hence is C∗-embedded
in βΨ \ (M ∪ {d}) and is dense as well. Thus the passage to the compact space
βΨ \ (M ∪ {d}) adds only one point and that makes Y \ M almost compact. So Y

is the topological union of the countable discrete space M and the almost compact
non-compact space Y \ M and the preceding theorem applies.

Incidentally, the spaces Ψ, for different choices of a mad family, show that open
subsets, zero-sets, and C-embedded subspaces of absolute CR-epic spaces need not

be absolute CR-epic. For an open example, take Ψ not almost compact, embedded in
its one-point compactification. For C-embedded subsets, take Ψ not almost compact
in βΨ. For zero-sets, take Ψ almost compact (hence absolute CR-epic) and take as a
subspace the space called D in [11, 5I].

By the way, we have not been able to determine whether closed C-embedded sub-
spaces of absolute CR-epic spaces must be absolute CR-epic, nor whether cozero-
sets in absolute CR-epic spaces must be absolute CR-epic. But the following resulted
from an attempt to resolve the latter question in the almost compact case.

Proposition 3.2 The following are equivalent for a space X,

(i) |υX \ X| ≤ 1 and υX is locally compact and σ-compact;

(ii) X is a cozero-set of an almost compact space A.

Proof (ii) ⇒ (i). If X is a cozero-set in a compact space A, then X is realcompact,
locally compact and σ-compact, so υX = X and has the requisite properties.
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Suppose that A is not compact. Let βA = A ∪ {p} and X = coz( f ) for some
f ∈ C(A). Since βA = υA there is a u ∈ C(βA) so that u|A = f , and coz(u) ∩ A =

coz( f ) = X. By [11, 8G1], X is C-embedded and dense in coz(u), and coz(u) is
realcompact since it is a cozero-set of βA. Therefore coz(u) = υX and |υX \ X| ≤ 1
(0 if p /∈ coz(u), 1 otherwise), and υX, as a cozero-set of a compact set, has the
required properties.

(i) ⇒ (ii). If υX = X then X is locally compact and σ-compact, so it is open in βX

and therefore a cozero-set in the compact space βX, and hence of A.

In the other case, υX \ X = {p} and we let A = βX \ {p}. Since X ⊆ A $ βX,

A is almost compact. Now υX is locally compact and σ-compact by hypothesis, so
υX ∈ coz(βX). Thus X = υX ∩ A ∈ coz(A).

This raises the related question : if |υX \ X| = 1, and υX is locally compact and
σ-compact, is X absolute CR-epic?

4 Spaces That Are Not Absolute CR-Epic

Theorem 4.1 Let K be a compactification of a space X and suppose that there is a

sequence {an | n ∈ N} ⊆ K \ X so that:

(i) for all n ∈ N, K \ {an} is not almost compact,

(ii) X ∩ clK{an | n ∈ N} 6= ∅.

Then there is an f ∈ C(X) that does not extend continuously to any open set of K that

contains X. Thus the embedding of X into K is not CR-epic and hence X is not absolute

CR-epic.

Proof By (i) there exists, for each n, a function gn : K \ {an} → [0, 1] that does

not extend continuously to K. Thus for each n ∈ N, fn = gn|X does not extend to
X∪{an} (see [11, 6H]). Define f =

∑∞
n=1

2−n fn. Let p ∈ X∩clK{an}. If f extended
continuously to an open V such that X ⊆ V ⊆ K, then p ∈ V and an ∈ V for
some n. But then f extends to X ∪ {an} which is false.

In what follows we will utilize several different “cardinal functions” defined on a

topological space. The best reference for them is the survey article by Hodel. Recall
from [13, Chapter 3] that a space X has countable π-weight at a point p if there is
a countable family (a “π-base”) {Vn | n ∈ N} of non-empty open subsets of X such
that if U is open in X and p ∈ U , then there is an nu such that Vnu

⊆ U . We write

“πw(X, p) = ℵ0”. We will use the following well-known result that is a special case
of a local version of [13, 7.1].

Theorem 4.2 Let K be compact and let p ∈ K. If {p} is a Gδ in K, then K is first

countable at p.

For a space X, define L(X) to be the set of points of X that have a locally compact
neighbourhood. Thus L(X) is the set of points at which X is locally compact.
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Theorem 4.3 Let X be a space and suppose that either

(i) There exists a point p ∈ X \ clX L(X) such that πw(X, p) = ℵ0, or

(ii) there exists a point p ∈ X \ L(X) at which X is first countable.

Suppose further that X has a compactification K that is first countable at a dense set of

points of K \ X. Then the embedding of X into K is not CR-epic.

Proof If (i) holds, let {V (n)}, n ∈ N, be a countable π-base at p ∈ X. By replacing
each V (n) by V (n) \ clX L(X) and discarding empty sets if necessary, we may assume

without loss of generality that V (n) ∩ L(X) is empty for each n. Let W (n) = K \
clK(X \ V (n)). Clearly V (n) = W (n) ∩ X. As X is not locally compact at any point
of V (n), it follows that W (n) \ X is nonempty.

If (ii) holds, let {V (n)}, n ∈ N, be a countable neighbourhood base at p ∈ X,
and again choose W (n) open in K as above. If W (n) ⊆ X, then X would be locally
compact at p, in contradiction to our choice of p, so again we must have W (n) \ X

nonempty.

In either case, by hypothesis we can find, for each n ∈ N, a point an ∈ W (n) \ X

such that K is first countable at an. We claim that p ∈ clK ({an | n ∈ N}). To see
this, let S be open in K and contain p, and by the regularity of K choose T open
in K such that p ∈ T and clK(T) ⊆ S. As T ∩ X is an X-neighbourhood of p,

by hypothesis there is an integer k such that V (k) ⊆ T ∩ X. We will show that S

contains W (k) and hence ak. Assume not, and suppose that W (k) \ S 6= ∅. Then
W (k) \ clK (T) is nonempty and open in K, so it has nonempty intersection with X.
Thus (K \ clK(X \V (k))∩ (K \ clK (T))∩X 6= ∅. Now X ∩ clK(X \V (k)) = X \V (k)

and X∩clK (T) = clX(T∩X). So we deduce that V (k)∩ (X \clX(T ∩X) is nonempty.
But V (k) was chosen to be a subset of T ∩ X, so we have a contradiction. Since an is
a point of first countability of K, it follows that for every n, K \ {an} is not almost
compact. The result now follows from Theorem 4.1.

Corollary 4.4 No dense subset of βQ \ Q is absolute CR-epic. In particular, there

is a countable extremally disconnected space that is not absolute CR-epic (there is a

countable dense set of remote points in βQ ; see [5, Section 12]).

Proof Observe that βQ has countable π-weight and has a dense extremally discon-
nected subspace E. A countable dense subset T of E will be extremally disconnected
nowhere locally compact. Now apply Theorem 4.3(i) to the space T and its compact-

ification βQ . The corollary follows.

Corollary 4.5 Assume that either

(i) There exists a point of X \ clX L(X) of countable π-weight in X, or

(ii) there exists a point of X \ L(X) at which X is first countable.

Assume further that X is σ-compact and has a compactification K such that K \X has a

dense set of Gδ-points. Then the embedding of X into K is not CR-epic.

Proof As X is σ-compact, K \ X is a Gδ set of K. Thus a Gδ-point of K \ X will be
a Gδ-point of K, and hence a point of first countability of K by Theorem 4.2. The
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hypotheses of Theorem 4.3 are thus satisfied, and the result in our two cases follows
from the corresponding cases of Theorem 4.3.

A space is called Čech-complete (or an absolute Gδ) if it is a Gδ set in a compact
space. It is an immediate consequence of Theorem 4.2 that if p is a Gδ point of a

Čech-complete space Y , then Y is first countable at p.

The special case of the following theorem in which Y is compact appears in [8,

Problem 3.12.11(a)] and [13, 7.19]. The more general case is also mentioned in [8,
Problem 3.12.11(b)].

Theorem 4.6 If Y is a Čech-complete space with no points of first countability then

|Y | ≥ 2ℵ1 .

If 2ℵ1 = 2ℵ0 (as happens in some models of set theory), this tells us nothing
helpful. So we will assume Lusin’s hypothesis (2ℵ1 > 2ℵ0 ), which is a weakening of

the continuum hypothesis, in some of what follows.

Theorem 4.7 Assume Lusin’s hypothesis. Let Y be Čech-complete and assume that

|Y | ≤ 2ℵ0 . Then Y is first countable at a dense set of points.

Proof Let S = {y ∈ Y |Y is first countable at y} and let ∅ 6= T = Y \ cl S. Then
T is Čech-complete because it is an open set in Y that is Čech-complete. If q were a
point of first countability of T, then {q} would be a Gδ of T and hence one of Y . By
Theorem 4.2, q is a point of first countability of Y contradicting the definition of S.

Thus T is Čech-complete with no points of first countability, so by Theorem 4.6,
|T| ≥ 2ℵ1 > 2ℵ0 . This contradicts the assumption made on the cardinality of Y .

Theorem 4.8 Assume Lusin’s hypothesis. Let X be a σ-compact space such that either

(i) There exists a point of X \ clX L(X) of countable π-weight in X, or

(ii) there exists a point of X \ L(X) at which X is first countable.

If K is a compactification of X of cardinality ≤ 2ℵ0 then the embedding of X into K

is not CR-epic.

Proof As X is σ-compact, K \ X is Čech-complete. Hence by Theorem 4.7, K \ X is
first countable at a dense set of points. The result now follows from Corollary 4.5.

Corollary 4.9 Let X be a countable absolute CR-epic space without isolated points.

Assume Lusin’s hypothesis. Then either X has uncountable π-weight at each of its points,

or each compactification of X has cardinality greater than 2ℵ0 .

Proof Countable spaces without isolated points are σ-compact nowhere locally
compact, so the result follows from the contrapositive of Theorem 4.7.
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5 P-Spaces and Almost-P-Spaces

Recall that X is called a P-space if each zero-set is open; it is called an almost-P-space
if each zero-set has a non-empty interior; and it is called an F-space if every cozero-
set is C∗-embedded.

Lemma 5.1 Let X be a P-space and assume that X is CR-epic in K. Then X is

z-embedded in K.

Proof By working with βK one sees easily that it suffices to consider the case when
K is compact. By [12, 8.2], X is z-embedded in K if and only if C(K) is relatively
uniformly dense (rud) in C(X); see [12, p. 129] for the definition of rud.

Since X is absolute CR-epic in K, C(K) → C(X) is W-epic, for W the category
of Archimedean ℓ-groups with unit, [12, p. 114]. Since X is a P-space, C(X) is epi-
complete (cf. [1, Theorem 2.1 and section 5]) so that C(K) → C(X) is an epicomple-
tion of C(K) in W . Now by [2, Theorem 16], C(K) is relatively uniformly dense in

C(X).

Thus the answer to Schwartz’s question (see the start of §3) is “yes” for P-spaces.
Note that results Theorem 2.29 and Theorem 3.1 show that the answer to the general

question is “no”.

Theorem 5.2 A P-space is absolute CR-epic if and only if it is Lindelöf.

Proof A theorem due originally to Jerison shows that a Lindelöf space is z-embed-
ded in any compactification; see [4, 4.1(c)]. If it is also a P-space, then the range
of every real-valued function is countable and, as noted in the proof of [3, 4.1(ii)],

each real-valued function on X extends to a cozero-set of K containing X. Thus X is
absolute CR-epic by Proposition 2.11.

Conversely, suppose that X is absolute CR-epic. By the preceding lemma, X is
z-embedded in each compactification K, and by [4, 4.1] X is either almost compact

or Lindelöf. But almost compact P-spaces are realcompact (pseudocompact P-spaces
are finite [11, 4K(2)]). Thus X is Lindelöf.

Note that the countable space of Corollary 4.4 shows that a Lindelöf F space need

not be absolute CR-epic.
It has been shown by [7] that there is a model of set theory in which βN \ N has

a proper dense C∗-embedded subset, say X. In this model, there exists an almost
compact (therefore absolute CR-epic), almost-P, non-compact space Y as follows:

let p ∈ (βN \ N) \ X and let Y = (βN \ N) − {p}). Since X is C∗-embedded in the
compact space βN \ N, Y is as well, so Y is almost compact. Since Y is dense in the
almost-P-space βN \ N, it is also an almost-P-space [16]. Clearly, Y is not compact.
Thus a non-compact, almost-P-space can be absolute CR-epic.

This leaves open the question of whether one can show in ZFC that there exists an
almost-P, almost compact, non-compact space. In any case, in the model used above,
this absolute CR-epic space exists, and it is therefore possible to do the construction
of Section 3 using exclusively almost-P-spaces.
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6 Some Open Questions

1. If an absolute CR-epic space X is embedded in some space Y , can every function in
C(X) be written as a symmetric diagonal zig-zag, meaning one of the form GDGT ,
where D is a diagonal matrix whose entries, along with those of GD (and hence

DGT) lie in C(Y )?
2. Can there be uniform bound on the size of zig-zags of CR-epic embeddings?
3. Is the sum of an absolute CR-epic Lindelöf space and an arbitrary absolute CR-

epic space, absolute CR-epic? It is easy to give an example of a countable metric

space that is not locally compact, but is the union of a countable set of isolated
points and a single point, (e.g., A0 ∪ A2 from [3, 3.12]). This space is not absolute
CR-epic by Corollary 2.22, so being the union of a (dense) open absolute CR-

epic Lindelöf subspace and a compact subspace does not suffice to make a space
absolute CR-epic. As well, being scattered does not suffice to make a countable
space absolute CR-epic.

4. If X is countable and nowhere locally compact, can it be absolute CR-epic? For

example, the space [0, 1]c has a countable dense subspace that is of uncountable
π-weight; is that subspace absolute CR-epic? If so, then countable absolute CR-
epic spaces need not have isolated points. Is the space of van Douwen and Pryz-
musinski, found in [6], absolute CR-epic?
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