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Abstract

This paper is concerned with the bifurcation of limit cycles from a quadratic reversible system under
polynomial perturbations. It is proved that the cyclicity of the period annulus is two, and also a linear
estimate of the number of zeros of the Abelian integral for the system under polynomial perturbations of
arbitrary degree n is given.
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1. Introduction

The weak version of Hilbert’ 16th problem, asking what is the number of limit cycles
for the polynomial perturbation of planar systems with centers, is still open even for
the quadratic case (see [1]). Zoladek [14] classified planar quadratic systems with at
least one center into four types, QH , QR

3 , QLV
3 and Q4, and conjectured that the cyclicity

of the periodic annulus of quadratic systems is two. The conjecture has been proved
completely for the cases QH and Q4 (see [2, 5, 6]). Because of the rich dynamical
behaviors, mathematicians focus on the case QR

3 . For QR
3 \ QH , since the integrating

factor is no longer a constant, the problem is much more difficult. After an affine
transformation, any system of QR

3 \ QH can be written asẋ = ax2 + by2 − 2(b − 1)y + b − 2,

ẏ = −2xy,
(1.1)

where a, b ∈ R. Excellent results on limit cycles of system (1.1) under quadratic
perturbations have been obtained in recent years. In [3], the authors considered the
case a = −1/2 and {b : −1 < b < 1}, and they presented the upper bound of the limit
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cycles and the corresponding bifurcation diagrams. The case where a = −3/2 has been
investigated in [9, 13]: by using some complex methods, C. Liu (unpublished) proved
that four limit cycles could be found for {b : 0 < b < 2} with (3, 1)-configuration.
Liang [9] and Zhao [13] considered the cases where {b : b < 0, b = 2} and {b : b > 2},
and proved that the least upper bound of the number of limit cycles is two.

In this paper, we will study the case where a = −3/4 and b = 0 in system (1.1),
which after an affine transformation becomesẋ = xy,

ẏ = 3
8 y2 + 9

210 (1 − x).
(1.2)

Our main results are the following theorems.

T 1.1. Under quadratic perturbations, the exact upper bound on the number
of limit cycles bifurcating from the period annulus of integrable system (1.2) is two,
that is, the cyclicity of the periodic annulus of system (1.2) is two.

T 1.2. Under polynomial perturbations of arbitrary degree n, the upper bound
of the number (taking multiplicities into account) of limit cycles arising from the period
annulus of integrable system (1.2) does not exceed 30n − 37.

As a complement to [3, 9, 13], Theorem 1.1 partly verifies the conjecture given
in [14] for system (1.2), while Theorem 1.2 improves the linear estimate 30n + 20 of
the zeros of the associated Abelian integrals in [11].

2. The Abelian integral and Picard–Fuchs equation

As a planar integrable system, there is a C1 function which is constant along any
solution curve of the system, and the integrable system (1.2) has first integral

H(x, y) = x−3/4( 1
2 y2 + 9

28 x + 3
28 ) = h (2.1)

with the integrating factor M(x, y) = x−7/4.
We denote the closed connected component of the real curve H(x, y) = h by Γh,

defined on the maximal open interval S = (3/26, +∞). The phase portrait of system
(1.2) in the Poincaré disk is shown in Figure 1.

L 2.1. Under quadratic perturbations, the Abelian integral I(h) related to
system (1.2) can be expressed as

I(h) = αI0(h) + βI1(h) + γI−1(h),

where α, β and γ are constants, and Ii(h) =
∮

Γh
xi−7/4y dx with i = −1, 0 and 1.

P. The conclusion follows directly from [8, Theorem 2]. �
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F 1. Phase portrait of system (1.2) in the Poincaré disk.

By the standard method in [2], we get the Picard–Fuchs equation in the following
lemma.

L 2.2. For system (1.2), the vector function J(h) = col(I0(h), I1(h), I−1(h),
I1/4(h)) satisfies the Picard–Fuchs equation as follows:

J(h) = M1(h)J′(h), (2.2)

where

M1(h) =



h 0 0 −
3
26

0
1
3

h 0 −
1
26

−
6
7

h 0
3
7

h
9

7 × 26

35

5 × 220h2
−

35

220h2

2 × 34

5 × 220h2

3
2

h


.

L 2.3. The ratio ϕ(h)/h satisfies the equation(
ϕ(h)

h

)′
=

(
m +

28

3
k −

6kH
h2

)
I′′0 (h) +

(
n −

2kH
3h2

)
I′′−1(h), (2.3)

where ϕ(h) = I(h) − hI′(h)/3, H = 35 × 2−20h−2/5, m, n and k are constants relevant
to α, β and γ.

P. Differentiating (2.2) with respect to h yields

M2(h)J′(h) = M1(h)J′′(h), (2.4)
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where

M2(h) =



0 0 0 0

0
2
3

0 0
6
7

0
4
7

0

35

5 × 219h3
−

35

219h3

2 × 34

5 × 219h3
−

1
2


.

The first and second rows of (2.4) give

I′′1/4(h) = 26

3 hI′′0 (h), (2.5)

I′1(h) = 1
2 hI′′1 (h) − 3

27 I′′1/4(h). (2.6)

Substituting (2.5) and (2.6) into the third row of (2.4),

3
2 hI′′−1(h) − 3

2 hI′′0 (h) = 3I′0(h) + 2I′−1(h). (2.7)

Similarly, the first row of (2.4) combined with (2.5)–(2.7) yields

I′1/4(h) = 6H I′′0 (h) + 2
3H I′′−1(h) − 26h2I′′0 (h). (2.8)

By using the Picard–Fuchs function, we get

I(h) = (α − 6
7γ)hI′0(h) + 1

3βhI′1(h) + 3
7γhI′−1(h)

+ (− 3
26α −

1
26 β + 9

26×7γ)I′1/4(h).
(2.9)

Meanwhile, differentiating both sides of (1.2) with respect to h directly yields

I′(h) = αI′0(h) + βI′1(h) + γI′−1(h). (2.10)

From (2.9) and (2.10), we get

ϕ(h) = ( 2
3α −

6
7γ)hI′0(h) + 2

21γhI′−1(h) + (− 3
26α −

1
26 β + 9

26×7γ)I′1/4(h),

which implies that(
ϕ(h)

h

)′
= mI′′0 (h) + nI′′−1(h) +

k
h

I′′1/4(h) −
k
h2

I′1/4(h), (2.11)

where

m = 2α/3 − 6γ/7, n = 2γ/21, k = −3 × 2−6α − 2−6β + 9 × 2−6γ/7.

Substituting (2.5) and (2.8) into (2.11), we get (2.3). �
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R 2.4. From equation (2.4), we obtain

G (h)J′′(h) = M3(h)J′(h), (2.12)

where G(h) = h(16777216h4 − 81) and

M3(h) =


81
5 0 54

5 −262144h3

81
5 33554432h4 − 16 54

5 −262144h3

33554432h4 − 729
5 0 67108864

3 h4 − 486
5 −262144h3

1728
5 h 0 1152

5 h − 16777216
3 h4.

 .
The first array of (2.12) yields

G(h)I′′0 (h) = 1
5 f (h),

where
f (h) = 81I′0(h) + 54I′−1(h) − 1310720h3I′1/4(h).

By direct calculation, we get

G(h) f ′(h) = − f 2(h) +
G(h)

h
f (h) + g(h).

where
g(h) = 1310720h2(67108864h5/3 − 108h − 3)I′1/4(h)/I′0(h).

Obviously f (3/26) = 0, then f ′(3/26) = (g(h)/G(h))|h=3/26 . If f (h) has another
zero point for h ∈ S , without loss of generality, we suppose that h ∈ S is adjacent
to 3/26 such that f (h0) = 0, then f ′(h0) f ′(3/26) < 0, which contradicts g(h) > 0 for
h ∈ [3/26, +∞).

Hence f (h) has no zero point for h ∈ S , which implies that I′′0 (h) , 0.

L 2.5. The ratio ν(h) = I′′
−1(h)/I′′0 (h) satisfies the Riccati equation as follows:

G̃(h)ν′(h) = −a12ν
2(h) + (a22 − a11)ν(h) + a21, (2.13)

where G̃(h) = 6h(16777216h4 − 81) and

(ai j)2×2 =

(
−729 − 234881024h4 −81
−2187 + 67108864h4 −243 + 33554432h4

)
.

P. Differentiating (2.7) and (2.8) with respect to h, we get

−I′′′0 (h) + I′′′−1(h) = 3h−1I′′0 (h) + 1
3 h−1I′′−1(h), (2.14a)

(6H − 26h2)I′′′0 (h) + 2
3H I′′′−1(h) = ( 7

3 × 26h − 6H ′(h))I′′0 (h) + 2
3H

′(h)I′′−1(h). (2.14b)

The definition of ν(h) implies that

ν′(h) =
I′′′
−1(h)

I′′0 (h)
− ν(h)

I′′′0 (h)

I′′0 (h)
. (2.15)

Substituting (2.14a) and (2.14b) into (2.15), we get Lemma 2.5. �
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F 2. Behaviors of system (3.1).

3. Global behaviors of the auxiliary curve and centroid curve

Let s = h4, ω(s) = ν(h), the Riccati function (2.13) is equivalent to the two-
dimensional systemṡ = 24s(16777216s − 81),

ω̇ = 81ω2 + (486 + 268435456s)ω + 67108864s − 2187,
(3.1)

which has four singularities: two saddles A(0, 3) and C(81/16777216, −23), a stable
node B(0, −9) and an unstable node D(81/16777216, 1); see Figure 2. We denote the
auxiliary curve on the (s, ω)-plane by Cω:

Cω = {(s, ω(s)) : ω(s) = ν(h), s ∈ (81/16777216, +∞)}.

L 3.1. Cω is located on the unstable manifold of the saddle C.

P. Let P(h) = I1(h)/I0(h), Q(h) = I−1(h)/I0(h), R(h) = I1/4(h)/I0(h). Since the
level curve Γh shrinks to the center (1, 0) as h tends to 3/26, by the mean value theorem,
P(h), Q(h) and R(h) converge to 1 as h tends to 3/26.

Differentiating (2.2) with respect to h, we obtain

G̃(h)J′′(h) = M4(h)J(h), (3.2)

where

M4(h) =



1701
5h

−
729
h

1134
5h

−1048576h2

−
1701
5h

9(81 + 67108864h4)
h

−
1134
5h

5242880h2

7(−2187 + 335544320h4)
5h

6561
h

6561
h

9437184h2

36288
5

−15552
24192

5
−

67108864
3

h3


.
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We denote M4(h) by the form (bi j)4×4. From the first and third arrays of equation (3.2),
we get

ν(h) =
b31 + b32P(h) + b33Q(h) + b34R(h)
b11 + b12P(h) + b13Q(h) + b14R(h)

. (3.3)

Substituting (2.1) into (3.3), we obtain ω(81/16777216) = −23.
Therefore, we get the stable and unstable manifolds of the saddle C:

W s
C = {(s, ω(s)) : s = 81

16777216 },

Wu
C = {(s, ω(s)) : ω(s) = ν(h), s ∈ ( 81

16777216 , +∞)}.

This concludes the proof. �

Moreover, we notice that there exists an isoclinic line ω = ω̃(s) defined by ω̇ = 0
between B and C. Comparing the slope of Cω with ω = ω̃(s), we can extend Cω from
C to B and determine its position (see Figure 2).

L 3.2. Cω is globally convex and strictly decreasing.

P. Since the curve Cω is located on the unstable manifold of the saddle C, we can
suppose that ω(s) has the following expansion near C(81/16777216, −23):

ω(s) = −23 + ω1(s − 81
16777216 ) +

ω2

2!
(s − 81

16777216 )2 + · · · . (3.4)

According to system (3.1), we substitute (3.4) into the equation

ω̇ − G̃(h)
dω
ds

= 0. (3.5)

From (3.5), we obtain

ω1 = − 381681664
234 , ω2 = 74841557479456768

531441 .

Hence, the curve Cω is convex near the left endpoint.
Next, we claim that Cω is globally convex. Otherwise, without loss of generality,

we suppose that Cω has an inflection points right to s = 81/16777216, then we find
a straight line L on the (s, ω)-plane such that it cuts Cω at at least three points and
intersects s = 81/16777216 below the saddle point (81/16777216, −23), leading to at
least three points on L, at which the vector field (3.1) is tangent to L. This contradicts
the fact that (ω̇ − aṡ)|ω=as+b is quadratic in s, where a, b are arbitrary constants.
Therefore the curve Cω is globally convex for s ∈ (81/16777216, +∞).

Using a horizontal line ω = ω0 instead of the straight line L, a similar argument
verifies the monotonicity of Cω. �

We denote the centeriod curve on the (P, Q)-plane by Σ = {(P, Q)(h) : h ∈ S }.

L 3.3. The curve Σ is increasing.
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P. Using arguments as in [10, Theorem 2], we obtain P′(h) > 0, Q′(h) > 0 for
h ∈ S , which implies Lemma 3.3. �

L 3.4. The curve Σ is concave for 0 < h − 3/26� 1.

P. From (2.2), we obtain

G̃(h)J′(h) = M5(h)J(h), (3.6)

where

M5(h) =


− 4131

5 + 100663296h4 2187 − 1134
5 3145728h3

− 1701
5 9(81 + 33554432h2) − 1134

5 3145728h3

− 6561
5 + 201326592h4 2187 − 6804

5 + 234881024h4 3145728h3

− 36288
5 h 46656h − 24192

5 h 67108864h4

 .

For convenience, we denote M5(h) as (ci j)4×4. From (3.6), we get the four-
dimensional system

ḣ = G̃(h),

Ṗ = c21 + c22P + c23Q + c24R − P(c11 + c12P + c13Q + c14R),

Q̇ = c31 + c32P + c33Q + c34R − Q(c11 + c12P + c13Q + c14R),

Ṙ = c41 + c42P + c43Q + c44R − R(c11 + c12P + c13Q + c14R).

(3.7)

The asymptotic expansions of P(h) and Q(h) can be expressed near the hyperbolic
singular point (3/26, 1, 1, 1) as

P(h) = 1 + p1(h − 3
26 ) + p2(h − 3

26 )2 + · · · ,

Q(h) = 1 + q1(h − 3
26 ) + q2(h − 3

26 )2 + · · · .
(3.8)

For simplicity, we take the calculation of the coefficient of P(h) as an example.
Notice that P′(h)ḣ − Ṗ = 0. Substituting (3.7) and (3.8) into it, we get

p1 = 64
3 , p2 = 78848

243 .

Similarly,
q1 = 320

9 , q2 = 148480
729 .

Hence
d2Q̃
dP2

∣∣∣∣∣
h=3/26

= −
20
27
.

Therefore, Lemma 3.4 holds. �

L 3.5. The curve Σ is concave for 0 < 1/h� 1.
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P. Since Γh is symmetric with respect to the x-axis, we need only consider the
part above the x-axis. Denoting the intersection points of Γh with the x-axis by (ξh, 0)
and (ηh, 0), where 0 < ξh < 1 < ηh, we can estimate ξh and ηh as h tends to positive
infinity,

ξh ∼ (3−1 × 28 × h)−4/3, ηh ∼ (3−2 × 28 × h)4.

From the definition of I0(h),

I0(h) = 2
∫ ηh

ξh

x−7/4

√
2hx3/4 −

9
27

x −
3
27

dx

= 23/2h1/2
∫ ηh

ξh

x−11/8 dx

+
1
2

∫ ηh

ξh

x−11/8
+∞∑
n=1

1
2

(
1
2 − 1

)
· · ·

(
1
2 − n + 1

)
n!

(
−

9
28

x1/4 −
3
28

x−3/4
)n

h−n dx

= a0h + a1h−1/3 + o(h−1)

where a0 = 215/23−3/2B (1/2, 3/2) > 0, a1 = −225/635/6B (1/6, 1/2) < 0 and B(α, β) is
the beta function.

By a similar calculation,

I1(h) = b0h3 + b1h−1/3 + o(h−3),

I−1(h) = c0h7/3 + c1h−1/3 + o(h−5/3),

where b0 = 247/23−5B(5/2, 3/2) and c0 = 2109/63−17/6B(11/6, 3/2).
The expansion series of Ii(h) in h with i = 0, 1 and −1 show that, as h tends to

positive infinity,

P(h) ∼
b0

a0
h2, Q(h) ∼

c0

a0
h4/3,

which implies that
d2Q
dp2
∼ −

2a0c0

9b2
0

h−8/3.

Thus the statements of Lemma 3.5 holds. �

4. Proof of Theorem 1.1

We denote the maximum number (taking multiplicities into account) of zeros of
function I(h) for h ∈ S by #{I(h), S } . Since h , 0 and I(3/26) = 0 ,

#{I(h), S } = #{h−3I(h), S }

≤ #
{
−

3
h4
ϕ(h), S

}
≤ #

{(
ϕ(h)

h

)′
, S

}
+ 1.

(4.1)
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F 3. Behaviors of Cω and Cχ.

L 4.1. #{I(h), S } ≤ 3.

P. From (4.1), we only need to prove that #{(ϕ(h)/h)′, S } ≤ 2.
Equation (2.9) can be rewritten as follows:(
ϕ(h)

h

)′
=

I′′0 (h)

5 × 220h4

((
5 × 220

(
m +

28

3
k
)
h4 − 6k

)
+

(
5 × 220nh4 −

2
3

k
) I′′
−1(h)

I′′0 (h)

)
.

Let
Φ(s) = (a1s − b1) + (a2s − b2)ω(s), (4.2)

where a1 = 5 × 220(m + 28k/3), b1 = 6k, a2 = 5 × 220n, and b2 = 2k/3. Obviously, the
following equality holds:

#
{
(Φ(s),

( 81
16777216

, +∞
)}

= #
{(
ϕ(h)

h

)′
, S

}
.

If a2s − b2 = 0, then Φ(s) has at most one zero point.
When a2s − b2 , 0, from (4.2) we can obtain

Φ(s) = (a2s − b2)(−χ(s) + ω(s))

where χ(s) = −(a1s − b1)/(a2s − b2). Hence, #{(Φ(s), (81/16777216, +∞)} is equal to
the number of intersection points of Cχ and Cω, where Cχ is the graphic of χ = χ(s)
for s ∈ (81/16777216, +∞).

For a1b2 − a2b1 = 0, it is easy to see thatCχ is a straight line and cutsCω at at most at
one point. For a1b2 − a2b1 , 0, without loss of generality, suppose that a2 , 0; then Cχ
is a hyperbola with two asymptotes s = b2/a2 and χ(s) = −a1/a2. If Cχ is increasing,
by the monotonicity of Cω, we conclude they have at most two intersection points (see
Figure 3(a)). If Cχ is decreasing, shown in Figure 3(b), by the monotonicity of Cω,
it only intersects with one branch of the hyperbola. If it happens to the left branch,
because the convexities of the two curves Cω and Cχ are different, they have at most
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F 4. Behaviors of Σ.

two intersection points. If it happens to the right branch, since ω(s) satisfies the two-
dimensional system (3.1), between any two intersection points of Cχ with Cω, there is
at least one point on Cχ at which the tangent direction of this curve coincides with the
vector field (3.1). This corresponds to a zero of the function(

ω̇

ṡ
− χ′(s)

)∣∣∣∣∣
ω=χ(s)

=
α1s2 + β1s + γ1

24(16777216s − 81)(a2s − b2)2
, (4.3)

where α1, β1, γ1 are constants relevant to a1, a2, b1, b2. Equation (4.3) shows that
there are at most two such points on Cχ, which implies that Cχ cuts Cω at most three
times. Noticing that ω(0) = χ(0) = −9, we can conclude that they have at most two
intersection points for s ∈ (81/16777216, +∞).

In summary, Cχ has at most two intersection points with Cω. This completes the
proof of Lemma 4.1. �

L 4.2. The centeriod curve Σ is globally concave without zero curvature.

P. Because of the monotonicity of Σ, we assert that the curve Σ is globally located
on the right of the tangent line of Σ at the left endpoint. Otherwise, there must exist
another point on Σ near the left endpoint, such that the tangent line of Σ at this point
cuts two more points of Σ, that is, I(h) has at least four zeros for h > 3/26, which
contradicts Lemma 4.1. On the other hand, since Σ is increasing and has the same
concavity at two endpoints, if it has inflection points, they must happen in pairs.
Without loss of generality, we assume that there are two inflection points in h ∈ S ;
then we can find an increasing straight line Lα0,β0,γ0 such that it cuts Σ at at least three
points. Suppose that their abscissas are P1, P2 and P3 (see Figure 4). Then Lα0,β0,γ0 is
below Σ when 0 < P(h) − P3� 1. Because the slope of Σ converges to zero as h tends
to positive infinity, there will be another intersection point of Σ with the increasing
straight line Lα0,β0,γ0 , that is, I(h) has at least four zeros, which also leads to the same
contradiction to Lemma 4.1. Hence Σ has no inflection points. Moreover, we can assert
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that Σ has no quadruple tangency points, otherwise, we obtain the same contradiction
as above. In this way, we complete the proof of Lemma 4.2. �

P  T 1.1. Because of convexity and monotonicity of the centroid curve
Σ, any straight line Lα,β,γ = {(P, Q) : α + βP + γQ = 0} has at most two intersection
points with Σ, that is, I(h) has at most two zeros. Moreover, there exist α∗, β∗ and
γ∗, such that Lα∗,β∗,γ∗ cuts Σ at exactly two points. We conclude that two is the exact
upper bound for the number of limit cycles bifurcating from system (1.2) under small
quadratic polynomial perturbations. �

5. Proof of Theorem 1.2

After making the transformation x = x̄4, y = ȳ (which has a unique value for x > 0)
and changing back to (x, y), the system (1.2) and its first integral (2.1) becomeẋ = 1

4 xy,

ẏ = 3
8 y2 + 9

210 (1 − x4),
(5.1)

H(x, y) = x−3( 1
2 y2 + 3px4 + p) = h,

with the integrating factor M(x, y) = x−4, p = 3/28. We denote the family of closed
curves surrounding the center (1, 0) by Πh = {(x, y) : H(x, y) = h}, where h ∈ S .

L 5.1. Under arbitrary perturbations of degree n, the Abelian integral V(h)
related to system (5.1) can be expressed as

I(h) = α(h)J−1(h) + β(h)J0(h) + γ(h)J1(h) + δ(h)J2(h), (5.2)

where α(h), β(h), γ(h) and δ(h) are real polynomials in h, and Ji(h) =
∮

Πh
xi−4y dx with

i = −1, 0, 1 and 2. If n ≥ 4 is even,

deg α(h) = 2n − 4, deg β(h) = 2n − 5, deg γ(h) = 2n − 6, deg δ(h) = 2n − 3;

if n ≥ 4 is odd,

deg α(h) = 2n − 5, deg β(h) = 2n − 6, deg γ(h) = 2n − 7, deg δ(h) = 2n − 4.

Moreover, if n = 3,

deg α(h) = 1, deg β(h) = deg γ(h) = 0, deg δ(h) = 2.

The proof of Lemma 5.1 is similar to that of Proposition 2.1 in [12], so we omit it.
By similar arguments to Lemmas 2.1 and 2.2, we obtain the following lemmas.

L 5.2. For system (5.1), V(h) = col(J−1(h), J0(h), J1(h), J2(h)) satisfies the
Picard–Fuchs equation

V(h) = M(h)V ′(h), (5.3)
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where

M(h) =


3
4 h −3p 0 0
0 h −4p 0
0 0 3

2 h −6p
−4p 0 0 h

 .
L 5.3. The ratio ν(h) = J′′

−1(h)/J′′0 (h) satisfies the Riccati equation

G(h)ν(h)′(h) = − 16
3 p2hν2(h) + 2

3 h3ν(h)(h) − 16
3 hp2, (5.4)

where G(h) = h4 − 256p4.

L 5.4. The function I(h) has the representation

δ2(h)I(h) = δ1(h)J′(h) + ∆(h), (5.5)

where
∆(h) = α3(h)J′−1(h) + β3(h)J′0(h) + γ3(h)J′1(h).

P. From (5.2) and (5.3), we get

I(h) = α1(h)J′−1(h) + β1(h)J′0(h) + γ1(h)J′1(h) + δ1(h)J′2(h). (5.6)

Differentiating (5.6) with respect to h directly yields

I′(h) = α2(h)J′−1(h) + β2(h)J′0(h) + γ2(h)J′1(h) + δ2(h)J′2(h). (5.7)

Eliminating J′2(h) from (5.6) and (5.7), we get (5.5). �

L 5.5. Denote ∆1(h) = (∆(h)/β3(h))′, the function ν(h) satisfies

∆1(h)
J′1(h)

=
α4(h)ν(h) + ν4(h)

G(h)β2
3(h)

. (5.8)

P. Differentiating (5.1) with respect to h yields

G(h)


J′′
−1(h)

J′′0 (h)
J′′1 (h)
J′′2 (h)

 =


1
3 h3 − 16

3 hp2

64
3 p3 − 4

3 h2 p
16
3 hp2 − 1

3 h3

4
3 h2 p − 64

3 p3


(
J′
−1(h)
J′1(h)

)
. (5.9)

From the definition of ∆(h) and (5.9), we get (5.8). �

P  T 1.2. Letting ∆2(h)=α4(h)ν(h)+γ4(h), and substituting it into (5.4),

G(h)α4(h)∆′2(h) = − 16
3 ph2∆2

2(h) + R1(h)∆2 + R2(h), (5.10)

where

R1(h) = 32
3 p2h2γ4(h) + G(h)α′4(h) + 2

3 h3α4(h),

R2(h) = − 16
3 p2h(γ2

5(h) + α2
4(h)) − 2

3 h3α4(h)γ4(h) + G(h)(γ′4(h)α4(h) − γ4(h)α′4(h)).
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By the methods of [7, Lemma 4.2], from (5.5) and (5.10) we obtain

#I(h) 6 #∆(h) + #δ2(h) + 1,

#∆2(h) 6 #G(h) + #α4(h) + #R2(h) + 1.

The definitions of ∆(h) and ∆2(h) yield

#∆(h) 6 #∆1(h) + 1 = #∆2(h) + 1.

Then we get
#I(h) 6 #G(h) + #α4(h) + #R2(h) + #δ2(h) + 2.

Theorem 1.2 follows from the degrees of α4(h), R2(h) and δ2(h). �
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