
Ergod. Th. & Dynam. Sys., (2023), 43, 1324–1350 © The Author(s), 2022. Published by Cambridge
University Press.
doi:10.1017/etds.2021.163

1324

Directional Kronecker algebra for Zq-actions
CHUNLIN LIU and LEIYE XU

CAS Wu Wen-Tsun Key Laboratory of Mathematics, School of Mathematical Sciences,
University of Science and Technology of China, Hefei, Anhui 230026, P.R. China

(e-mail: lcl666@mail.ustc.edu.cn, leoasa@mail.ustc.edu.cn)

(Received 10 June 2021 and accepted in revised form 23 November 2021)

Abstract. In this paper, directional sequence entropy and directional Kronecker algebra
for Zq -systems are introduced. The relation between sequence entropy and directional
sequence entropy are established. Meanwhile, directional discrete spectrum systems and
directional null systems are defined. It is shown that a Zq -system has directional discrete
spectrum if and only if it is directional null. Moreover, it turns out that a Zq -system has
directional discrete spectrum along q linearly independent directions if and only if it has
discrete spectrum.
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1. Introduction
Let q ∈ N. Throughout this paper, by a Zq -measure preserving dynamical system
(Zq -MPS for short) we mean a quadruple (X, BX, μ, T ), where X is a compact metric
space, the Zq -action T is a homeomorphism from the additive group Zq to the group
of homeomorphisms of X, BX is the Borel σ -algebra of X and μ is an invariant Borel
probability measure. We denote the corresponding homeomorphism of X by T �v for any
�v ∈ Zq , so that T �v ◦ T �w = T �v+ �w and T

�0 is the identity on X.
Kolmogorov [14] introduced the notion of entropy to dynamical systems, which played

an important role in the study of ergodic theory and topological dynamics to measure
the chaoticity or unpredictability of a system. To investigate the complexity of entropy
zero systems, many invariants were introduced. Kušhnirenko [16] developed an invariant,
sequence entropy, to distinguish non-isomorphic entropy zero systems. We refer to [11, 21]
for further study on sequence entropy. Katok and Thouvenot [12] introduced the notion
of slow entropy for measure-preserving actions of discrete amenable groups to measure
the complexity of entropy zero systems. Recently, Dou, Huang and Park [4] introduced
the notion of entropy dimension to classify the growth rate of the orbits of entropy zero
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systems. To investigate the Cellular Automaton map together with the Bernoulli shift,
Milnor [17] defined directional entropy. Many of its properties were further studied in
[1–3, 19, 20, 24].

In this paper, we introduce a new invariant, directional sequence entropy, for Zq -actions
based on classical sequence entropy and directional entropy. We investigate some proper-
ties of directional sequence entropy analogously to classical sequence entropy. Moreover,
we discuss the relation between the directional discrete spectrum and directional sequence
entropy. One of our main results is to show the directional version of Kušhnirenko theorem,
which tells us that a Zq -MPS has directional discrete spectrum if and only if its directional
sequence entropy is always zero for any sequence along a corresponding direction. In the
proof of this result, our main difficulty is that many theories of classical sequence entropy
can not be directly applied to our proof such as spectral mixing theorem of Koopman–von
Neumann [15], because these results are only available for the case of group actions.
Motivated by a Z-MPS, which was introduced by Park [20], we overcome this difficulty
by establishing the relation between directional Kronecker algebra and classical Kronecker
algebra. Taking advantage of the relation between the two, we can show our results by some
classical consequences for the case of Z-actions. Meanwhile, we show that directional
sequence entropy is closely relevant to classical sequence entropy and a Zq -MPS has
directional discrete spectrum along q linearly independent directions if and only if it has
discrete spectrum.

For convenience, we focus on Z2-MPS. Using exactly the same methods, we can
obtain corresponding results of Zq -MPS for any integer q ≥ 2, which are introduced in
Appendix B. To be precise, let (X, BX, μ, T ) be a Z2-MPS and �v = (1, β) ∈ R2 be a
direction vector. (For simplicity, we write �v as (1, β). In fact all results in this paper are
true when �v = (0, 1) because this case is the same as the case of Z-actions.) For a finite
measurable partition α of X, let

Hμ(α) = −
∑
A∈α

μ(A) log μ(A).

We put

��v(b) = {(m, n) ∈ Z2 : βm − b/2 ≤ n ≤ βm + b/2}.

For any infinite subset S = {(mi , ni)}∞i=1 of ��v(b) that {mi}∞i=1 is strictly monotone, we
put

hS
μ(T , α) = lim sup

k→∞
1
k
Hμ

( k∨
i=1

T −(mi ,ni)α

)
.

Then we can define the directional sequence entropy of T for the infinite subset S by

hS
μ(T ) = sup

α
hS

μ(T , α),

where the supremum is taken over all finite measurable partitions of X.
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Define the �v-directional Kronecker algebra by

K �v
μ (b) = {B ∈ BX : {U(m,n)

T 1B : (m, n) ∈ ��v(b)} is compact in L2(X, BX, μ)},
where U

(m,n)
T : L2(X, BX, μ) → L2(X, BX, μ) is the unitary operator such that

U
(m,n)
T f = f ◦ T (m,n) for all f ∈ L2(X, BX, μ)

and 1B is the indicator function of B ∈ BX, that is,

1B(x) =
{

1, x ∈ B,
0, x /∈ B.

In §3, we prove that K �v
μ (b) is a σ -algebra and the definition of K �v

μ (b) is independent of
the selection of b ∈ (0, ∞). So we omit b in K �v

μ (b) and write it as K �v
μ .

Motivated by the work in [10], we can show the following consequence.

THEOREM 1.1. Let (X, BX, μ, T ) be a Z2-MPS, �v = (1, β) ∈ R2 be a direction vector
and b ∈ (0, ∞). Let α be a finite measurable partition of X. For any infinite subset S ′ of
��v(b),

hS′
μ (T , α) ≤ Hμ(α|K �v

μ ).

Moreover, there exists an infinite subset S = {(mi , ni)}∞i=1 of ��v(b) such that {mi}∞i=1 is
strictly monotone and

hS
μ(T , α) = Hμ(α|K �v

μ ).

Remark 1.2. Let α be a finite measurable partition of X. We define

h�v,∗
μ (α) = sup

S⊂��v(b)

{hS
μ(T , α)}, (1.1)

where the supremum is taken over all infinite subsets S = {(mi , ni)}∞i=1 of ��v(b). By
Theorem 1.1, h�v,∗

μ (α) = Hμ(α|K �v
μ ) and then (1.1) is well defined because it is independent

of the selection of b.

To investigate entropy zero systems, Kušhnirenko [16] introduced the notion of sequence
entropy and studied spectral theory via sequence entropy. He obtained a classical conse-
quence, that is, a Z-MPS is a discrete spectrum system if and only if it is a null system.
Motivated by his work, we define directional discrete spectrum systems and directional
null systems as follows.

Definition 1.3. Let (X, BX, μ, T ) be a Z2-MPS and �v = (1, β) ∈ R2 be a direction vector.
(a) We say μ has �v-discrete spectrum if K �v

μ = BX.
(b) We say (X, BX, μ, T ) is �v-null if for any b ∈ (0, ∞) and infinite subset S =

{(mi , ni)}∞i=1 of ��v(b), hS
μ(T ) = 0.

We obtain one of our main results which is a directional version of Kušhnirenko
theorem.
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THEOREM 1.4. Let (X, BX, μ, T ) be a Z2-MPS and �v = (1, β) ∈ R2 be a direction
vector. Then the following two conditions are equivalent:
(a) μ has �v-discrete spectrum;
(b) (X, BX, μ, T ) is �v-null.

Meanwhile, we establish the relation between sequence entropy (respectively discrete
spectrum) and directional sequence entropy (respectively directional discrete spectrum) as
follows.

THEOREM 1.5. Let (X, BX, μ, T ) be a Z2-MPS and α be a given finite measurable
partition of X. If there exists an infinite subset S of Z2 such that hS

μ(T , α) > 0, then there
is at most one direction �v = (1, β) ∈ R2 such that h�v,∗

μ (α) = 0.

THEOREM 1.6. Let (X, BX, μ, T ) be a Z2-MPS. Then the following statements are
equivalent:
(a) there exist two directions �v = (1, β1), �w = (1, β2) ∈ R2 with β1 �= β2 such that μ

has �v-discrete spectrum and �w-discrete spectrum;
(b) μ has discrete spectrum.

This paper is organized as follows. In §2, we recall some basic notions that we use in this
paper. In §3, we introduce the directional Kronecker algebra and study many properties of
directional sequence entropy to describe it. In §4, we prove Theorems 1.1 and 1.4. In §5,
we prove Theorems 1.5 and 1.6. In Appendix A, we prove some consequences that are
not directly relevant to the main purpose of this paper. In Appendix B, we introduce the
corresponding results of Zq -MPS.

2. Preliminaries
In this section, we recall some notions of measure preserving systems that are used later
(see [5–7, 23]).

2.1. General notions. In this article, the sets of real numbers, rational numbers, integers,
non-negative integers and natural numbers are denoted by R, Q, Z, Z+ and N, respectively.
We use ‖f ‖p to denote the Lp-norm of a function f defined in a Borel probability measure
space (X, BX, μ), that is,

‖f ‖p =
( ∫

X

|f |pdμ

)1/p

if 1 ≤ p < ∞

and

‖f ‖∞ = inf{a ≥ 0 : μ({x : |f (x)| > a}) = 0}.

2.2. Conditional expectation. Let X be a sub-σ -algebra of BX. Then L2(X, X, μ) is
contained as a subspace in L2(X, BX, μ) and the conditional expectation is given as the
orthogonal projection map:

E(·|X) : L2(X, BX, μ) → L2(X, X, μ).
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It is known that the conditional expectation is uniquely determined by the following
statements (see [6]):
(a) E(f |X) is X-measurable for all f ∈ L2(X, BX, μ);
(b) for all A ∈ X,

∫
A

f dμ = ∫
A
E(f |X) dμ.

Therefore, we have the following result of conditional expectation.

PROPOSITION 2.1. Let (X, BX, μ) and (Y , BY , ν) be two Borel probability spaces. Let
X and Y be sub-σ -algebras of BX and BY , respectively. Then for any f ∈ L2(X, BX, μ)

and g ∈ L2(Y , BY , ν),

E(fg|X×Y) = E(f |X)E(g|Y)

for μ × ν-almost everywhere (a.e.) (x, y) ∈ X × Y , whereX×Y is the product σ -algebra
of X and Y.

2.3. Classical Kronecker algebra and discrete spectrum. Let (X, BX, μ, T ) be a
Z-MPS andH = L2(X, BX, μ). In complex Hilbert spaceH, we define a unitary operator
UT : H→ H by

UT f = f ◦ T

for all f ∈ H. We say that f is an almost periodic function if {Un
T f : n ∈ Z} is a compact

subset of H. It is well known that the set of all bounded almost periodic functions forms
a UT -invariant and conjugation-invariant subalgebra of H (denoted by Ac). The set of
almost periodic functions is just the closure of Ac (denoted by Hc). It is known that (see
[25, Theorem 1.2]) there exists a T-invariant sub-σ -algebra Kμ of BX such that

Hc = L2(X, Kμ, μ).

The sub-σ -algebraKμ is called the Kronecker algebra of (X, BX, μ, T ). It is easy to know
that Kμ consists of all B ∈ BX such that

{Un
T 1B : n ∈ Z} is compact inH.

We say μ has discrete spectrum ifBX = Kμ. Similarly, the Kronecker algebra and discrete
spectrum for the case of Zq -actions can be defined (see [9]).

Let S ⊂ Z+ be an infinite sequence. We define the upper density and lower density by

d(S) = lim sup
n→∞

1
n
|S ∩ {0, 1, . . . , n − 1}|

and

d(S) = lim inf
n→∞

1
n
|S ∩ {0, 1, . . . , n − 1}|

where |A| is the number of elements of a finite set A. If d(S) = d(S) = d , we say S has
the density d.

We recall the spectral mixing theorem of Koopman–von Neumann [15].
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THEOREM 2.2. The Hilbert spaceH can be decomposed asH = Hc ⊕H⊥
c , where

Hc = span{f ∈ H : there exists λ ∈ C, such that UT (f ) = λf }
and

H⊥
c = {f ∈ H : there exists S ⊂ N, d(S) = 1,

such that for all g ∈ H, lim
n→∞
n∈S

〈Un
T f , g〉 = 0}

where d(S) is the density of S and 〈f , g〉 = ∫
X

f (x)g(x) dx is an inner product onH.

2.4. Sequence entropy. Let (X, BX, μ, T ) be a Z2-MPS. Given a finite measurable
partition α of X, let

Hμ(α) = −
∑
A∈α

μ(A) log μ(A).

For any infinite subset S = {(mi , ni)}∞i=1 of Z2, we put

hS
μ(T , α) = lim sup

k→∞
1
k
Hμ

( k∨
i=1

T −(mi ,ni)α

)
.

Then we define the sequence entropy of T for the infinite subset S by

hS
μ(T ) = sup

α
hS

μ(T , α),

where the supremum is taken over all finite measurable partitions of X.

2.5. ε-net. Let A be a subset of a normed linear space (X, ‖ · ‖) and ε > 0. A subset
Aε ⊂ X is called an ε-net for A if for each x ∈ A, there is an element of A within an ε

distance to some element of Aε .
It is known that (see [18, p. 76, Corollary 6.20]) a closed subset A of a Banach space

(X, ‖ · ‖) is compact if and only if for any ε > 0, there is a finite ε-net Fε ⊂ X for A. That
is, there is a finite set Fε ⊂ X such that

A ⊂
⋃
x∈Fε

B(x, ε).

Note that the ε-net mentioned in this paper is relative to L2-norm unless we explicitly
indicate otherwise.

3. Directional Kronecker algebra
In this section, we introduce the directional Kronecker algebra and describe it via
directional sequence entropy.

Let (X, BX, μ, T ) be a Z2-MPS, �v = (1, β) ∈ R2 be a direction vector and b ∈ (0, ∞).
We put

��v(b) = {(m, n) ∈ Z2 : βm − b/2 ≤ n ≤ βm + b/2}.
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LetA�v
c (b) be the collection of f ∈ L2(X, BX, μ) such that

{U(m,n)
T f : (m, n) ∈ ��v(b)}

is compact in L2(X, BX, μ). It is easy to see thatA�v
c (b) is a UT �w -invariant for all �w in Z2

and conjugation-invariant subalgebra of L2(X, BX, μ). It is known that (see [25, Theorem
1.2]) there exists a T-invariant sub-σ -algebra K �v

μ (b) of BX such that

A�v
c (b) = L2(X, K �v

μ (b), μ). (3.1)

By (3.1), the �v-directional Kronecker algebra of (X, BX, μ, T ) can be defined by

K �v
μ (b) = {B ∈ BX : {U(m,n)

T 1B : (m, n) ∈ ��v(b)} is compact in L2(X, BX, μ)}.
The following result shows that the definition of K �v

μ (b) is independent of the selection
of b ∈ (0, ∞).

PROPOSITION 3.1. Let (X, BX, μ, T ) be a Z2-MPS and �v = (1, β) ∈ R2 be a direction
vector. Then K �v

μ (b1) = K �v
μ (b2) for any b1, b2 ∈ (0, ∞).

Proof. We put

U(B, b) = {U(m,n)
T 1B : (m, n) ∈ ��v(b)}

for b ∈ (0, ∞) and B ∈ BX. Fix b1, b2 ∈ (0, ∞). Without loss of generality, we assume
that b1 > b2.

We first prove that K �v
μ (b1) ⊂ K �v

μ (b2). For a fixed B ∈ K �v
μ (b1), U(B, b1) is compact

in L2(X, BX, μ) and hence U(B, b2) is compact in L2(X, BX, μ) because U(B, b2) is
closed in L2(X, BX, μ) and U(B, b2) ⊂ U(B, b1). It follows that

K �v
μ (b1) ⊂ K �v

μ (b2).

Next we show that K �v
μ (b2) ⊂ K �v

μ (b1). Given B ∈ K �v
μ (b2), U(B, b2) is compact in

L2(X, BX, μ). Note that we can find a finite subset C of Z2 such that

U(B, b1) ⊂
⋃

(m′,n′)∈C

{U(m+m′,n+n′)
T 1B : (m, n) ∈ ��v(b2)}. (3.2)

For each (m′, n′) ∈ C, one has

{U(m+m′,n+n′)
T 1B : (m, n) ∈ ��v(b2)}

is compact in L2(X, BX, μ), which is from the fact that {U(m,n)
T 1B : (m, n) ∈ ��v(b2)}

is compact in L2(X, BX, μ). Moreover by (3.2), U(B, b1) is compact in L2(X, BX, μ),
because it is closed in L2(X, BX, μ). This implies that B ∈ K �v

μ (b1). Therefore,

K �v
μ (b2) ⊂ K �v

μ (b1).

This ends the proof of Proposition 3.1.
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Now we establish the relation between directional Kronecker algebra and directional
sequence entropy. Let us begin with some notation. Because complex Hilbert space
H = L2(X, BX, μ) is separable, there exists an infinite subset

S = {(mi , ni)}∞i=1 (3.3)

of ��v(b) such that lim
i→∞〈g, U

(mi ,ni)
T f 〉 exists for any f , g ∈ H. Now for a fixed f ∈ H, we

define J : H→ C by

J (g) = lim
i→∞〈g, U

(mi ,ni)
T f 〉.

Obviously, J is a continuous linear functional on H. By Riesz representation theorem,
there exists S(f ) ∈ H such that

J (g) = 〈g, S(f )〉 (3.4)

for all g ∈ H.
With the help of the above analysis, we obtain the following lemma.

LEMMA 3.2. Let (X, BX, μ, T ) be a Z2-MPS, �v = (1, β) ∈ R2 be a direction vector and
b ∈ (0, ∞). Then for any finite measurable partition α of X, there exists an infinite subset
S′ = {(m′

i , n′
i )}∞i=1 of S such that {m′

i}∞i=1 is strictly monotone and

hS′
μ (T ) ≥

∑
B∈α

∫
X

−S(1B) log S(1B) dμ,

where S and S(·) are defined by (3.3) and (3.4), respectively.

Proof. Enumerate α as {B1, . . . , Bk}. Fix a finite measurable partition η = {D1, . . . , Dl}
of X. Let S = {(mi , ni)}∞i=1 be the subset defined in (3.3). Then

lim
i→∞〈U(mi ,ni)

T 1Bs , 1Dt 〉 = 〈S(1Bs ), 1Dt 〉 (3.5)

for any s ∈ {1, 2, . . . , k} and t ∈ {1, 2, . . . , l}. Let

f (x) =
{−x log x, x > 0,

0, x = 0,

and

μDt (·) = μ(· ∩ Dt)/μ(Dt)

for each t ∈ {1, 2, . . . , l}. Then by the concavity of f (x), one has

−
( ∫

Dt

S(1Bs )
dμ

μ(Dt)

)
log

( ∫
Dt

S(1Bs )
dμ

μ(Dt)

)

= f

( ∫
Dt

S(1Bs ) dμDt

)
≥

∫
Dt

f (S(1Bs )) dμDt
(3.6)

= −
∫

Dt

S(1Bs ) log (S(1Bs ))
dμ

μ(Dt)
.
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Therefore, we deduce

lim inf
i→∞ Hμ(T −(mi ,ni)α|η)

= lim inf
i→∞

∑
s,t

−μ(T −(mi ,ni)Bs ∩ Dt) log
(

μ(T −(mi ,ni)Bs ∩ Dt)

μ(Dt)

)

= lim
i→∞

∑
s,t

−〈U(mi ,ni)
T 1Bs , 1Dt 〉 log

( 〈U(mi ,ni)
T 1Bs , 1Dt 〉

μ(Dt)

)

(3.5)=
∑
s,t

−〈S(1Bs ), 1Dt 〉 log
( 〈S(1Bs ), 1Dt 〉

μ(Dt)

)

=
∑
s,t

μ(Dt )

(
−

( ∫
Dt

S(1Bs )
dμ

μ(Dt)

)
log

( ∫
Dt

S(1Bs )
dμ

μ(Dt)

))
(3.6)≥

∑
s,t

−
∫

Dt

S(1Bs ) log (S(1Bs )) dμ

=
∑

s

−
∫

X

S(1Bs ) log (S(1Bs )) dμ

=
∑
B∈α

−
∫

X

S(1B) log (S(1B)) dμ. (3.7)

Now we can define inductively an infinite subset S ′ = {(m′
i , n′

i )}∞i=1 of S by using (3.7)
repeatedly such that {m′

i}∞i=1 is strictly monotone and for any i ∈ N,

Hμ

(
T −(m′

i ,n
′
i )α|

i−1∨
j=1

T
−(m′

j ,n′
j )

α

)
≥

∑
B∈α

−
∫

X

S(1B) log (S(1B)) dμ − 1
2i

.

As Hμ(
∨k

i=1T
−(mi ,ni)α) = Hμ(

∨k−1
i=1 T −(mi ,ni)α) + Hμ(T −(mk ,nk)α|∨k−1

i=1 T −(mi ,ni)α),
therefore,

hS′
μ (T ) = lim sup

k→∞
1
k

k∑
i=1

Hμ

(
T −(m′

i ,n
′
i )α|

i−1∨
j=1

T
−(m′

j ,n′
j )

α

)

≥ lim sup
k→∞

1
k

k∑
i=1

( ∑
B∈α

−
∫

X

S(1B) log (S(1B)) dμ − 1
2i

)

=
∑
B∈α

−
∫

X

S(1B) log (S(1B)) dμ.

Now we finish the proof of Lemma 3.2.

For further discussion, we need a classcial consequence [23, p. 94].

LEMMA 3.3. Let (X, BX, μ) be a Borel probability space and r ≥ 1 be a fixed integer.
For each ε > 0, there exists δ = δ(ε, r) > 0 such that if α = {A1, A2, . . . , Ar} and
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η = {B1, B2, . . . , Br} are any two finite measurable partitions of (X, BX, μ) with∑r
j=1 μ(Aj�Bj ) < δ, then Hμ(α|η) + Hμ(η|α) < ε.

By Lemmas 3.2 and 3.3, we can get the following result.

THEOREM 3.4. Let (X, BX, μ, T ) be a Z2-MPS, �v = (1, β) ∈ R2 be a direction vector
and b ∈ (0, ∞). Let B ∈ BX and P be an infinite subset of ��v(b). Then the following
conditions are equivalent:

(a) {U(m,n)
T 1B : (m, n) ∈ P } is a compact subset of L2(X, BX, μ);

(b) for any infinite subset S′ = {(m′
i , n′

i )}∞i=1 of P,

hS′
μ (T , {B, Bc}) = 0;

(c) for any infinite subset S′ = {(m′
i , n′

i )}∞i=1 of P that {m′
i}∞i=1 is strictly monotone,

hS′
μ (T , {B, Bc}) = 0.

Proof. (a) ⇒ (b). Let η = {B, Bc}. If {U(m,n)
T 1B : (m, n) ∈ P } is a compact subset of

L2(X, BX, μ), then for any infinite subset S′ = {(m′
i , n′

i )}∞i=1 of P,

{U(m′,n′)
T 1B : (m′, n′) ∈ S′}

is a compact subset of L2(X, BX, μ). So for any δ > 0, there exists s ∈ N such that for
any (m′

i , n′
i ) ∈ S′,

μ(T −(m′
i ,n

′
i )B�T

−(m′
ji

,n′
ji

)
B) = ‖U(m′

i ,n
′
i )

T 1B − U
(m′

ji
,n′

ji
)

T 1B‖2 < δ

for some ji ∈ {1, 2, . . . , s}. It follows from Lemma 3.3 that for any ε > 0 and
(m′

i , n′
i ) ∈ S′, there exists ji ∈ {1, 2, . . . , s} such that

Hμ(T −(m′
i ,n

′
i )η|T −(m′

ji
,n′

ji
)
η) + Hμ(T

−(m′
ji

,n′
ji

)
η|T −(m′

i ,n
′
i )η) < ε.

Thus for any i > s,

Hμ

(
T −(m′

i ,n
′
i )η|

i−1∨
j=1

T
−(m′

j ,n′
j )

η

)
≤ Hμ(T −(m′

i ,n
′
i )η|T −(m′

ji
,n′

ji
)
η) < ε.

We conclude that

hS′
μ (T , η) = lim sup

n→∞
1
n

n∑
i=2

Hμ

(
T −(m′

i ,n
′
i )η|

i−1∨
j=1

T
−(m′

j ,n′
j )

η

)
≤ ε.

Let ε → 0. We obtain that hS′
μ (T , η) = 0.

(b) ⇒ (c). This is obvious.

(c) ⇒ (a). If {U(m,n)
T 1B : (m, n) ∈ P } is not a compact subset of L2(X, BX, μ), then

there exists ε > 0 and an infinite subset F of P such that for all (m, n), (s, t) ∈ F with
(m, n) �= (s, t),

μ(T −(m,n)B�T −(s,t)B) = ‖U(m,n)
T 1B − U

(s,t)
T 1B‖2 ≥ ε. (3.8)
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Similar to (3.3), we obtain an infinite subset SF = {(mi , ni)}∞i=1 of F such that

lim
i→∞〈g, U

(mi ,ni)
T f 〉 = 〈g, SF (f )〉

for any f , g ∈ H. It follows from Lemma 3.2 that there exists an infinite subset
S′

F = {(m′
i , n′

i )}∞i=1 of SF such that {m′
i}∞i=1 is strictly monotone and

h
S′

F
μ (T , {B, Bc}) ≥

∫
X

−SF (1B) log (SF (1B)) − SF (1Bc) log (SF (1Bc)) dμ.

As h
S′

F
μ (T , {B, Bc}) = 0, it follows that −SF (1B) log SF (1B) = 0 for μ-a.e. x ∈ X. So

SF (1B) is an indicator function and hence

〈1X, SF (1B)〉 = ‖SF (1B)‖2.

Because

〈1X, 1B〉 = lim
i→∞〈1X, U

(mi ,ni)
T 1B〉 = 〈1X, SF (1B)〉,

it follows that

‖SF (1B)‖2 = ‖1B‖2.

Hence,

lim
i→∞ ‖U(mi ,ni)

T 1B − SF (1B)‖2 = 0.

This implies that for sufficiently large i and j,

μ(T −(mi ,ni)B�T −(mj ,nj )B) <
ε

2
,

which contradicts (3.8). Therefore, {U(m,n)
T 1B : (m, n) ∈ P } is a compact subset of

L2(X, BX, μ).

The following description of directional Kronecker algebra is obtained immediately
from Theorem 3.4.

COROLLARY 3.5. Let (X, BX, μ, T ) be a Z2-MPS, �v = (1, β) ∈ R2 be a direction vector
and b ∈ (0, ∞). Then for any B ∈ BX. the following statements are equivalent:
(a) B ∈ K �v

μ ;
(b) for any infinite subset S = {(mi , ni)}∞i=1 of ��v(b),

hS
μ(T , {B, Bc}) = 0;

(c) for any infinite subset S = {(mi , ni)}∞i=1 of ��v(b) that {mi}∞i=1 is strictly monotone,

hS
μ(T , {B, Bc}) = 0.

Moreover, for any finite measurable partition α ⊂ K �v
μ of X and any infinite subset

S = {(mi , ni)}∞i=1 of ��v(b),

hS
μ(T , α) = 0.
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Remark 3.6. By Corollary 3.5, we immediately obtain

K �v
μ = {B ∈ BX : for any infinite subset S of ��v(b), hS

μ(T , {B, Bc}) = 0}.

4. Directional discrete spectrum systems and null systems
In this section, we prove Theorem 1.1, which is divided into two lemmas. Moreover,
we prove the directional version of Kušhnirenko theorem, that is, Theorem 1.4. For this
purpose, we begin with the following property of directional sequence entropy.

THEOREM 4.1. Let (X, BX, μ, T ) be a Z2-MPS, �v = (1, β) ∈ R2 be a direction vector
and b ∈ (0, ∞). Suppose that {αn}∞n=1, satisfying αn ↗ BX, is a family of finite measur-
able partitions of X. Then for any infinite subset S = {(mi , ni)}∞i=1 of ��v(b),

lim
n→∞ hS

μ(T , αn) = hS
μ(T ).

Proof. For any finite measurable partition η of X and k, n ∈ N,

Hμ

( k∨
i=1

T −(mi ,ni)η

)
≤ Hμ

( k∨
i=1

T −(mi ,ni)(η ∨ αn)

)

= Hμ

( k∨
i=1

T −(mi ,ni)αn

)
+ Hμ

( k∨
i=1

T −(mi ,ni)η|
k∨

i=1

T −(mi ,ni)αn

)

≤ Hμ

( k∨
i=1

T −(mi ,ni)αn

)
+

k∑
i=1

Hμ

(
T −(mi ,ni)η|

k∨
i=1

T −(mi ,ni)αn

)

≤ Hμ

( k∨
i=1

T −(mi ,ni)αn

)
+ kHμ

(
η|αn

)
.

Dividing by k from both sides and taking the upper limits when k → ∞, we can get

hS
μ(T , η) ≤ hS

μ(T , αn) + Hμ(η|αn).

By Martingale convergence theorem [9],

lim
n→∞ Hμ(η|αn) = Hμ(η|BX) = 0.

It follows that

hS
μ(T , η) ≤ lim inf

n→∞ hS
μ(T , αn) ≤ lim sup

n→∞
hS

μ(T , αn) ≤ hS
μ(T ).

Therefore,

hS
μ(T ) = sup

η
hS

μ(T , η) = lim
n→∞ hS

μ(T , αn),

where the supremum is taken over all finite measurable partitions of X.

Now we are able to prove Theorem 1.1. For clarity, let us divide the proof into two
lemmas.
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LEMMA 4.2. Let (X, BX, μ, T ) be a Z2-MPS, �v = (1, β) ∈ R2 be a direction vec-
tor and b ∈ (0, ∞). For any finite measurable partition α of X and infinite subset
S = {(mi , ni)}∞i=1 of ��v(b),

hS
μ(T , α) ≤ Hμ(α|K �v

μ ).

Proof. Because (X, BX) is separable, there exist countably many finite measurable
partitions {ηk}k∈N ⊂ K �v

μ such that

lim
k→∞ Hμ(α|ηk) = Hμ(α|K �v

μ ).

For a fixed k ∈ N and an infinite subset S = {(mi , ni)}∞i=1 of ��v(b), one has

lim
l→∞

1
l
Hμ

( l∨
i=1

T −(mi ,ni)ηk

)
= 0 (4.1)

by Corollary 3.5. Therefore, we conclude

hS
μ(T , α) = lim sup

l→∞
1
l
Hμ

( l∨
i=1

T −(mi ,ni)α

)

≤ lim sup
l→∞

1
l
Hμ

( l∨
i=1

T −(mi ,ni)(α ∨ ηk)

)

(4.1)= lim sup
l→∞

1
l
Hμ

( l∨
i=1

T −(mi ,ni)(α ∨ ηk)

)
− lim

l→∞
1
l
Hμ

( l∨
i=1

T −(mi ,ni)ηk

)

= lim sup
l→∞

1
l
Hμ

( l∨
i=1

T −(mi ,ni)α|
l∨

i=1

T −(mi ,ni)ηk

)

≤ lim sup
l→∞

1
l

l∑
i=1

Hμ(T −(mi ,ni)α|T −(mi ,ni)ηk)

= Hμ(α|ηk).

We finish the proof by letting k → ∞.

For further proof, we need the following result [8, p. 69].

LEMMA 4.3. Let (X, BX, μ) and (Y , BY , ν) be two Borel probability spaces and (X ×
Y , BX×Y , μ × ν) be their product Borel probability space. Then for any B ⊂ X × Y , the
following two statements are equivalent:
(a) Bx := {y ∈ Y : (x, y) ∈ B} ∈ BY for μ-a.e. x ∈ X, By := {x ∈ X|(x, y) ∈ B} ∈

BX for ν-a.e. y ∈ Y ;
(b) B ∈ BX×Y .

LEMMA 4.4. Let (X, BX, μ, T ) be a Z2-MPS, �v = (1, β) ∈ R2 be a direction vector and
b ∈ (0, ∞). Then for any finite measurable partition α of X, there is an infinite subset
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S = {(mi , ni)}∞i=1 of ��v(b) such that {mi}∞i=1 is strictly monotone and

hS
μ(T , α) ≥ Hμ(α|K �v

μ ).

Proof. To prove our result, we need a Z-MPS in the direction of �v, which was introduced
by Park [20]. Let

X̃ = X × [0, 1)2, μ̃ = μ × m and B̃ = BX × C,

where C is the Borel σ -algebra on [0, 1)2 and m is the Lebesgue measure on [0, 1)2. Let

φs,t (x, u, v) = (T ([s+u],[t+v])x, s + u − [s + u], t + v − [t + v]),

where [a] is the integer part of a. Write φn,nβ as Wn for any n ∈ N. Then we get the Z-MPS
(X̃, B̃, μ̃, W). LetKμ̃ be the Kronecker algebra of (X̃, B̃, μ̃, W). We divide the proof into
four steps.

Step 1. Kμ̃ = K �v
μ × C.

Proof of Step 1. It is enough to show that Kμ̃ ⊂ K �v
μ × C because the opposite side is

obviously true. We fix B ∈ Kμ̃ and put

B(s,t) = {x ∈ X : (x, s, t) ∈ B}

for (s, t) ∈ [0, 1)2. We are going to show that B ∈ K �v
μ × C. By Lemma 4.3, it is enough

to show that B(s,t) ∈ K �v
μ for m-a.e. (s, t) ∈ [0, 1)2. By the definition ofK �v

μ , it is sufficient
to show that

{U(m,n)
T 1B(s,t) : |βm − n| < 1, (m, n) ∈ Z2}

is a compact subset of L2(X, BX, μ) for m-a.e. (s, t) ∈ [0, 1)2. To do this, we let

fu(x, s, t) = 22u

∫
ηu
k,l

1B(x, ξ , ζ ) dξ dζ , if (s, t) ∈ ηu
k,l ,

where u ∈ N and ηu
k,l = [k2−u, (k + 1)2−u) × [l2−u, (l + 1)2−u), k, l ∈ {0, . . . , 2u − 1}.

We have the following claim.

CLAIM 1. The following statements are true:
(1) for each u ∈ N and (s, t) ∈ [0, 1)2,

{U(m,n)
T fu(x, s, t) : |βm − n| < 1, (m, n) ∈ Z2}

is a compact subset of L2(X, BX, μ);
(2) for m-a.e. (s, t) ∈ [0, 1)2,

lim
u→∞ ‖fu(·, s, t) − 1B(s,t)‖2 = 0.
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Because the proof of Claim 1 is somewhat long and complicated, we move it to
Appendix A. Now let us assume that Claim 1 holds. Then we deduce that

{U(m,n)
T 1B(s,t) : |βm − n| < 1, (m, n) ∈ Z2}

is a compact subset of L2(X, BX, μ) for m-a.e. (s, t) ∈ [0, 1)2, because 1B(s,t) ∈
L2(X, BX, μ) for m-a.e. (s, t) ∈ [0, 1)2. By the arguments at the beginning, we finish
the proof of Step 1. �

Step 2. For a given measurable partition C = {D1, D2, . . . , Dr}, there exists an infinite
subset S′ = {(m′

i , n′
i )}∞i=1 of ��v(b) depending on C such that {m′

i}∞i=1 is strictly monotone
and

lim
i→∞〈U(m′

i ,n
′
i )

T (1Dj
− E(1Dj

|K �v
μ )), 1B〉 = 0 (4.2)

for any B ∈ BX and j ∈ {1, 2, . . . , r}.
Proof of Step 2. By Theorem 2.2, there exists a sequence S̃ ⊂ Z+ with d(S̃) = 1 such that

lim
n→∞,n∈S̃

〈Un
W(1Dj

× 1[0,1)2 − E(1Dj
× 1[0,1)2 |Kμ̃)), 1B × 1[0,1)2〉 = 0 (4.3)

for any B ∈ BX and j ∈ {1, 2, . . . , r}, where 1Dj
× 1[0,1)2 = 1Dj

(x) · 1[0,1)2(s, t) is

defined on X̃. We omit the independent variable for convenience. By Step 1 and
Proposition 2.1, we have

E(1Dj
× 1[0,1)2 |Kμ̃) = E(1Dj

× 1[0,1)2 |K �v
μ × C)

= E(1Dj
|K �v

μ ) × E(1[0,1)2 |C) = E(1Dj
|K �v

μ ) × 1[0,1)2 .

Let fj = 1Dj
− E(1Dj

|K �v
μ ), j ∈ {1, 2, . . . , r}. Then we conclude

fj × 1[0,1)2 = 1Dj
× 1[0,1)2 − E(1Dj

× 1[0,1)2 |K μ̃), j ∈ {1, 2, . . . , r}.
By Fubini’s theorem,

|〈Un
W(fj × 1[0,1)2), 1B × 1[0,1)2〉 − 〈U(n,[nβ])

T (fj × 1[0,1)2), 1B × 1[0,1)2〉|
=

∣∣∣∣
∫

[0,1)2

∫
B

(fj (T
([n+s],[nβ+t])x) − fj (T

(n,[nβ])x)) dμ(x) dt ds

∣∣∣∣
=

∣∣∣∣
∫

[0,1)

∫
B

(fj (T
(n,[nβ+t])x) − fj (T

(n,[nβ])x)) dμ(x) dt

∣∣∣∣
=

∣∣∣∣
∫

B

∫ 1

1−{nβ}
(fj (T

(n,[nβ+t])x) − fj (T
(n,[nβ])x)) dt dμ(x)

∣∣∣∣
≤ {nβ}

∫
B

|fj (T
(n,[nβ]+1)x)| + |fj (T

(n,[nβ])x)| dμ(x)

≤ 2‖fj‖1{nβ}, (4.4)

where {nβ} is the decimal part of nβ. Let M = 2 max1≤j≤r{‖fj‖1} and �γ = {n ∈ Z+ :
{nβ} ≤ ε/2γ M} for all γ ∈ N. Because �γ is a syndetic set (a subset S of Z+ is syndetic
if it has bounded gaps, that is, there is a number N ∈ N such that {i, i + 1, . . . , i + N} ∩
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S �= ∅ for every i ∈ Z+), it follows that d(�γ ∩ S̃) > 0 for all γ ∈ N. Take nγ ∈ �γ ∩ S̃

for each γ ∈ N. By (4.4), we obtain that

lim
γ→∞ |〈Unγ

W (fj × 1[0,1)2), 1B × 1[0,1)2〉 − 〈U(nγ ,[nγ β])
T (fj × 1[0,1)2), 1B × 1[0,1)2〉| = 0

(4.5)

for all j ∈ {1, 2, . . . , r}. By the construction of �γ , there exists γ0 ∈ N such that for any
γ > γ0, we have (nγ , [nγ β]) ∈ ��v(b). It follows that there exists an infinite subsequence
{nγ }∞γ=γ0+1 of S̃ such that (nγ , [nγ β]) ∈ ��v(b) and

lim
γ→∞〈U(nγ ,[nγ β])

T (1Dj
− E(1Dj

|K �v
μ )), 1B〉

= lim
γ→∞ |〈U(nγ ,[nγ β])

T (fj × 1[0,1)2), 1B × 1[0,1)2〉| (4.3)(4.5)= 0

for all j ∈ {1, 2, . . . , r}. Let

S′ = {(m′
i , n′

i ) : (m′
i , n′

i ) = (nγ0+i , [nγ0+iβ]), i ∈ N},
which is the infinite subset we want.

Step 3. Let η be a finite measurable partition of X. Then there exists an infinite subset
S′′ = {(m′′

i , n′′
i )}∞i=1 of ��v(b) such that {m′′

i }∞i=1 is strictly monotone and

lim inf
i→∞ Hμ(T −(m′′

i ,n′′
i )α|η) ≥ Hμ(α|K �v

μ ).

Proof of Step 3. Let α = {A1, A2, . . . , Ak} and η = {B1, B2, . . . , Bl}. By Step 2,
there exists an infinite subset S′′ = {(m′′

i , n′′
i )}∞i=1 of ��v(b) such that {m′′

i }∞i=1 is strictly
monotone and

lim
i→∞〈U(m′′

i ,n′′
i )

T (1Ap − E(1Ap |K �v
μ )), 1Bq 〉 = 0 (4.6)

for all p ∈ {1, 2, . . . , k} and q ∈ {1, 2, . . . , l}. Hence,

lim inf
i→∞ Hμ(T −(m′′

i ,n′′
i )α|η)

= lim inf
i→∞

∑
p,q

−μ(T −(m′′
i ,n′′

i )Ap ∩ Bq) log
(

μ(T −(m′′
i ,n′′

i )Ap ∩ Bq)

μ(Bq)

)

= lim inf
i→∞

∑
p,q

−〈U(m′′
i ,n′′

i )

T 1Ap , 1Bq 〉 log
( 〈U(m′′

i ,n′′
i )

T 1Ap , 1Bq 〉
μ(Bq)

)

(4.6)= lim inf
i→∞

∑
p,q

−〈U(m′′
i ,n′′

i )

T E(1Ap |K �v
μ ), 1Bq 〉 log

( 〈U(m′′
i ,n′′

i )

T E(1Ap |K �v
μ ), 1Bq 〉

μ(Bq)

)
.

Let ai
pq = −〈U(m′′

i ,n′′
i )

T E(1Ap |K �v
μ ), 1Bq 〉 log (〈U(m′′

i ,n′′
i )

T E(1Ap |K �v
μ ), 1Bq 〉/μ(Bq)) and

μBq (·) = μ(· ∩ Bq)/μ(Bq). Similar to (3.6), we deduce from concavity of −x log x
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that

ai
pq

μ(Bq)
= −

( ∫
Bq

U
(m′′

i ,n′′
i )

T E(1Ap |K �v
μ )

μ(Bq)
dμ

)
log

( ∫
Bq

U
(m′′

i ,n′′
i )

T E(1Ap |K �v
μ )

μ(Bq)
dμ

)

= −
( ∫

Bq

U
(m′′

i ,n′′
i )

T E(1Ap |K �v
μ ) dμBq

)
log

( ∫
Bq

U
(m′′

i ,n′′
i )

T E(1Ap |K �v
μ ) dμBq

)

≥ −
∫

Bq

U
(m′′

i ,n′′
i )

T E(1Ap |K �v
μ ) log (U

(m′′
i ,n′′

i )

T E(1Ap |K �v
μ )) dμBq

= −
∫

Bq

U
(m′′

i ,n′′
i )

T E(1Ap |K �v
μ )

μ(Bq)
log (U

(m′′
i ,n′′

i )

T E(1Ap |K �v
μ )) dμ.

We conclude that∑
p,q

ai
pq ≥

∑
p,q

−
∫

Bq

U
(m′′

i ,n′′
i )

T E(1Ap |K �v
μ ) log (U

(m′′
i ,n′′

i )

T E(1Ap |K �v
μ )) dμ

=
∑
p

−
∫

X

U
(m′′

i ,n′′
i )

T E(1Ap |K �v
μ ) log (U

(m′′
i ,n′′

i )

T E(1Ap |K �v
μ )) dμ

=
∑
p

−
∫

X

E(1Ap |K �v
μ ) log (E(1Ap |K �v

μ )) dμ.

Therefore,

lim inf
i→∞ Hμ(T −(m′′

i ,n′′
i )α|η) ≥ Hμ(α|K �v

μ ).

Step 4. In this step, we finish the proof of Lemma 4.4.

We can define inductively an infinite subset S = {(mi , ni)}∞i=1 of ��v(b) by using Step 3
repeatedly such that {mi}∞i=1 is strictly monotone and for any i ∈ N,

Hμ

(
T −(mi ,ni)α|

i−1∨
j=1

T −(mj ,nj )α

)
≥ Hμ(α|K �v

μ ) − 1
2i

.

Therefore, one has

hS
μ(T , α) = lim sup

k→∞
1
k

k∑
i=1

Hμ

(
T −(mi ,ni)α|

i−1∨
j=1

T −(mj ,nj )α

)

≥ lim sup
k→∞

1
k

k∑
i=1

(
Hμ(α|K �v

μ ) − 1
2i

)

= Hμ(α|K �v
μ ).

This finishes the proof of Lemma 4.4. �

Remark 4.5. By Lemmas 4.2 and 4.4, we complete the proof of Theorem 1.1.
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By Lemmas 4.2 and 4.4, one of our main results, the directional version of Kušhnirenko
theorem, is proved as follows.

Proof of Theorem 1.4. Let (X, BX, μ, T ) be a Z2-MPS and �v = (1, β) ∈ R2 be a direction
vector.

(a) ⇒ (b). Assume that μ has a �v-discrete spectrum system. Then K �v
μ = BX. Fix b ∈

(0, ∞). By Lemma 4.2,

hS
μ(T , α) ≤ Hμ(α|K �v

μ ) = 0

for any infinite subset S = {(mi , ni)}∞i=1 of ��v(b), which implies (X, BX, μ, T ) is �v-null.
(b) ⇒ (a). Assume that (X, BX, μ, T ) is �v-null. Then for any b ∈ (0, ∞) and infinite

subset S = {(mi , ni)}∞i=1 of ��v(b),

hS
μ(T ) = 0.

Hence,

hS
μ(T , {B, Bc}) = 0

for any B ∈ BX, which implies B ∈ K �v
μ by Corollary 3.5. Therefore,K �v

μ = BX, that is, μ

has �v-discrete spectrum. This completes the proof of Theorem 1.4.

5. Sequence entropy and directional sequence entropy
In this section, we recall and prove Theorems 1.4 and 1.5, which establish the relation
between sequence entropy (respectively discrete spectrum) and directional sequence
entropy (respectively directional discrete spectrum). For these purposes, we recall a result
in [13, Lemma 5.1], which is restated as follows.

LEMMA 5.1. Let (X, BX, μ, T ) be a Z2-MPS. Then the following conditions are
equivalent:

(a) {U(m,n)
T 1B : (m, n) ∈ Z2} is a compact subset of L2(X, BX, μ);

(b) for any infinite subset S = {(mi , ni)}∞i=1 of Z2,

hS
μ(T , {B, Bc}) = 0.

Next we prove a combinatorial result as follows.

LEMMA 5.2. Let �v = (1, β1), �w = (1, β2) ∈ R2 be two directions with β1 �= β2. Then

Z2 = ��v(b) + � �w(b)

for any b > 4([|β1 − β2|] + 1), where

��v(b) + � �w(b) = {(m1 + m2, n1 + n2) : (m1, n1) ∈ ��v(b) and (m2, n2) ∈ � �w(b)}.
Proof. Given (m, n) ∈ Z2. By division algorithm, we can choose m1 ∈ Z such that

|n − β2m + (β1 − β2)m1| ≤ |β1 − β2|. (5.1)
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Because b/4 > [|β1 − β2|] + 1, we can choose n1 ∈ Z such that:
(a) β1m1 − b/2 ≤ n1 ≤ β1m1 + b/2;
(b) n1 = β1m1 + r with |r| ≤ b/4.

Let n2 = n − n1 and m2 = m − m1. Then it is sufficient to prove that

(m2, n2) ∈ � �w(b).

Note that

|n2 − β2m2| = |n − β2m + n1 − β2m1| = |n − β2m + β1m1 + r − β2m1|
= |n − β2m + (β1 − β1)m1 + r| (5.1)≤ |β1 − β2| + |r|
≤ ([|β1 − β2|] + 1) + b/4 ≤ b/2,

which implies (m2, n2) ∈ � �w(b). This finishes the proof of Lemma 5.2.

With the help of the above lemma, we are able to prove Theorems 1.4 and 1.5, which
are recalled and proved as follows.

THEOREM 5.3. Let (X, BX, μ, T ) be a Z2-MPS and α be a finite measurable partition of
X. If there exists an infinite subset S of Z2 such that hS

μ(T , α) > 0, then there is at most
one direction �v = (1, β) ∈ R2 such that

h�v,∗
μ (α) = 0,

where h�v,∗
μ (α) is defined by (1.1).

Proof. Let α be a finite measurable partition of X. Assume that there exists an infinite
subset S of Z2 such that

hS
μ(T , α) > 0.

In the following, we show that there is at most one direction �τ = (1, β) ∈ R2 such that
h�τ ,∗

μ (α) = 0. If this is not true, then there exist two directions �v = (1, β1), �w = (1, β2) ∈
R2 with β1 �= β2 such that

h�v,∗
μ (α) = 0 and h �w,∗

μ (α) = 0.

By Lemma 4.4 and (1.1), we obtain that

Hμ(α|K �v
μ ) = Hμ(α|K �w

μ ) = 0,

which implies that α ⊂ K �v
μ

⋂ K �w
μ . Fix B ∈ α. In the following, we show that

{U(m,n)
T 1B : (m, n) ∈ Z2}

is a compact subset of L2(X, BX, μ), which implies that hS′
μ (T , {B, Bc}) = 0 for any

infinite subset S′ = {(m′
i , n′

i )}∞i=1 of Z2 by Lemma 5.1. In fact, by Lemma 5.2, taking
b = ([|β1 − β2|] + 2), we have

��v(b) + � �w(b) = Z2
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and hence it suffices to prove that

Rb := {U(m,n)
T 1B : (m, n) ∈ ��v(b) + � �w(b)}

is a compact subset of L2(X, BX, μ). Note that B ∈ K �v
μ

⋂ K �w
μ . So

Pb := {U(m,n)
T 1B : (m, n) ∈ ��v(b)} and Qb := {U(m,n)

T 1B : (m, n) ∈ � �w(b)}
are compact subsets of L2(X, BX, μ). For any ε > 0, let

{(mi , ni)}si=1 ⊂ ��v(b) and {(uj , vj )}sj=1 ⊂ � �w(b)

be ε/2-nets of Pb and Qb in L2(X, BX, μ), respectively. Hence for any (p1, q1) ∈ ��v(b)

and (p2, q2) ∈ � �w(b), we conclude

‖U(p1,q1)
T 1B − U

(mi ,ni)
T 1B‖2 < ε/2 and ‖U(p2,q2)

T 1B − U
(uj ,vj )

T 1B‖2 < ε/2

for some i, j ∈ {1, . . . , s}. Moreover, we deduce

‖U(p1+p2,q1+q2)
T 1B − U

(mi+uj ,ni+vj )

T 1B‖2

≤ ‖U(p1,q1)
T 1T −(p2,q2)B − U

(mi ,ni)
T 1T −(p2,q2)B‖2

+ ‖U(p2,q2)
T 1T −(mi ,ni )B − U

(uj ,vj )

T 1T −(mi ,ni )B‖2 ≤ ε. (5.2)

It follows from (5.2) that

�b := {(mi + uj , ni + vj ) : 1 ≤ i, j ≤ s}
is a finite ε-net of Rb in L2(X, BX, μ), which implies that Rb is a compact subset of
L2(X, BX, μ). By the arguments at the beginning of this proof, we obtain

hS′
μ (T , {B, Bc}) = 0

for any infinite subset S′ = {(m′
i , n′

i )}∞i=1 of Z2.
Because

∨
B∈α{B, Bc} is finer than α, it follows that

hS′
μ (T , α) = 0

for any infinite subset S′ of Z2, which contradicts the fact that there exists an infinite subset
S of Z2 such that hS

μ(T , α) > 0. This completes the proof of Theorem 5.3.

The following example shows that they could both hold at the same time that there is an
infinite subset S of Z2 such that hS

μ(T , α) > 0 and there is a direction vector �v = (1, β) ∈
R2 such that h�v,∗

μ (α) = 0.

Example 5.4. Let (Y , 2Y , μ) denote the measure space, where Y = {0, 1}, 2Y is the
collection consisting of all subsets of Y and the points 0, 1 have measure 1/2. Let

(X, BX, m) =
∞∏

−∞
(Y , 2Y , μ).
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Define T1 = IdX : X → X by

T1({xn}) = {xn}
for any {xn} ∈ X. Define T2 : X → X by

T2({xn}) = {yn},
where yn = xn+1 for all n ∈ Z, that is, T2 is the two-sided ( 1

2 , 1
2 )-shift. Define the

Z2-action T by

T (m,n) = T m
1 T n

2 .

Then we obtain a Z2-MPS (X, BX, m, T ).
Let

α = {0[j ]0 : j = 0, 1}
be a finite measurable partition of X, where 0[j ]0 = {x = {xn} : x0 = j}. On the one hand,
take S = {(0, n)}∞n=1. It is known that (see [23, p. 102, Theorem 4.26])

hS
μ(T , α) = lim sup

n→∞
1
n
Hμ

( n∨
i=1

T −(0,i)α

)
= log 2 > 0. (5.3)

On the other hand, let �v = (1, 0). Because T1 = IdX, it is easy to see that

h�v,∗
μ (α) = 0.

It is known that for a Zq -MPS (X, BX, μ, T ), μ has discrete spectrum if and only if
BX = Kμ, where Kμ is the Kronecker algebra of (X, BX, μ, T ) (see [9]). Following the
proof of Theorem 5.3, we can immediately obtain the relation between classical discrete
spectrum and directional discrete spectrum.

THEOREM 5.5. Let (X, BX, μ, T ) be a Z2-MPS. Then the following statements are
equivalent:
(a) there exist two directions �v = (1, β1), �w = (1, β2) ∈ R2 with β1 �= β2 such that μ

has �v-discrete spectrum and �w-discrete spectrum;
(b) μ has discrete spectrum.

Proof. (a) ⇒ (b). If there exist two directions �v = (1, β1) and �w = (1, β2) with β1 �= β2

such that μ has �v-discrete spectrum and �w-discrete spectrum, that is,

K �v
μ = BX = K �w

μ .

Fix b ∈ (0, ∞) large enough. For any B ∈ BX,

Pb := {U(m,n)
T 1B : (m, n) ∈ ��v(b)} and Qb := {U(m,n)

T 1B : (m, n) ∈ � �w(b)}
are compact subsets of L2(X, BX, μ). By the proof of Theorem 5.3, we deduce

{U(m,n)
T 1B : (m, n) ∈ Z2}
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is a compact subset of L2(X, BX, μ), which implies Kμ = BX. That is μ has discrete
spectrum.

(b) ⇒ (a). If μ has discrete spectrum, then Kμ = BX, that is,

{U(m,n)
T 1B : (m, n) ∈ Z2}

is a compact subset of L2(X, BX, μ) for any B ∈ BX. Because for any b ∈ (0, ∞), Pb and

Qb are closed subsets of {U(m,n)
T 1B : (m, n) ∈ Z2}, it follows that Pb and Qb are compact

subsets of L2(X, BX, μ), which implies that

K �v
μ = BX = K �w

μ .

Therefore, μ has �v-discrete spectrum and �w-discrete spectrum.

Remark 5.6. By the proof of Theorem 5.5, it is clear that if μ has discrete spectrum, then
μ has �v-discrete spectrum for any direction �v = (1, β) ∈ R2.
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A. Appendix. Proof of Claim 1
In this section, we complete the proof of Claim 1.

It follows from Lebesgue differentiation theorem (see [22, p. 106, Corollary 1.5]) that
we obtain the following result.

LEMMA A.1. For any E ∈ C with m(E) > 0, we deduce

lim
u→∞

m(ηu(s, t)
⋂

E)

m(ηu(s, t))
= 1 (A.1)

for m-a.e. (s, t) ∈ E, where ηu(s, t) is the cube ηu
k,l containing (s, t).

By Lemma A.1, we can prove the following consequence.

LEMMA A.2. For μ-a.e. x ∈ X,

lim
u→∞ fu(x, s, t) = 1B(x, s, t)

for m-a.e. (s, t) ∈ [0, 1)2.

Proof. It is clear that fu(x, s, t) is measurable on [0, 1)2 for μ-a.e. x ∈ X. For a given
g(s, t) ∈ L∞([0, 1)2, C, m), we let

gu(s, t) = 22u

∫
ηu
k,l

g(ξ , ζ ) dξ dζ if (s, t) ∈ ηu
k,l ,
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where u ∈ N and ηu
k,l = [k2−u, (k + 1)2−u) × [l2−u, (l + 1)2−u) for all k, l ∈ {0, . . . ,

2u − 1}. To prove this result, we prove a stronger result, that is, for any g(s, t) ∈
L∞([0, 1)2, C, m), we have lim

u→∞ gu(s, t) = g(s, t) for m-a.e. (s, t) ∈ [0, 1)2.

First, we assume that g(s, t) ∈ C([0, 1)2), where C([0, 1)2) represents the set of all
continuous functions defined on [0, 1)2. For any ε > 0, there exists δ > 0 such that for any
(s, t), (s′, t ′) ∈ [0, 1)2 with |(s, t) − (s′, t ′)| < δ,

|g(s, t) − g(s′, t ′)| < ε.

So for any u large enough, we obtain that

|gu(s, t) − g(s, t)| =
∣∣∣∣22u

∫
ηu(s,t)

g(ξ , ζ ) − g(s, t) dξ dζ

∣∣∣∣
≤ 22u

∫
ηu(s,t)

|g(ξ , ζ ) − g(s, t)| dξ dζ ≤ ε,

where Iu(s, t) is the one that contains (s, t) in {ηu
k,l : k, l ∈ {0, . . . , 2u − 1}}. It follows

that lim
u→∞ gu(s, t) = g(s, t) pointwise.

Now we prove the general case. Fix a g(s, t) ∈ L∞([0, 1)2, C, m). For any q ∈ N,
taking εq = 1/q, by Lusin theorem, there exists a measurable closed set Eq ⊂ [0, 1)2 such
that Eq ⊂ Eq+1, m(Eq) > 1 − εq and g|Eq is continuous. Then m(

⋃∞
q=1 Eq) = 1. For

each q ∈ N, we conclude

lim
u→∞ |gu(s, t) − g(s, t)| ≤ lim

u→∞

(
22u

∫
ηu(s,t)

⋂
Eq

|g(ξ , ζ ) − g(s, t)| dξ dζ

+ 22u

∫
ηu(s,t)

⋂
Ec

q

|g(ξ , ζ ) − g(s, t)| dξ dζ

)

≤ 0 + lim
u→∞ 22u

(
m

(
Ec

q

⋂
ηu(s, t)

))
M

(A.1)= 0,

for m-a.e. (s, t) ∈ Eq , where M = max(s,t)∈[0,1)2{|g(s, t)|}. It follows from
m(

⋃∞
q=1 Eq) = 1 that gu(s, t) converges to g(s, t) for m-a.e. (s, t) ∈ [0, 1)2 as

u → ∞.

Now we are able to prove Claim 1.

Proof of Claim 1. Before proving it, we introduce a notation, that is, Uφm,nh = h ◦ φm,n

for all h ∈ L2(X̃, B̃, μ̃). Because B ∈ Kμ̃, it follows that

{Wn1B : n ∈ Z} is compact in L2(X̃, B̃, μ̃),

which implies that

{Uφm,n1B : |βm − n| < 1, (m, n) ∈ Z2} is compact in L2(X̃, B̃, μ̃). (A.2)

It follows from (A.2) that for any ε > 0, there exists a finite ε-net {Uφmi ,ni
1B}pi=1 with

(mi , ni) ∈ Z2 and |βmi − ni | < 1. That is, for any (m, n) ∈ Z2 with |βm − n| < 1, there
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exists i ∈ {1, 2, . . . , p} such that( ∫
|Uφmi ,ni

1B − Uφm,n1B |2 d(μ × m)

)1/2

= ‖Uφmi ,ni
1B − Uφm,n1B‖2 < ε.

For a fixed u, we consider {Uφmi ,ni
fu}pi=1. By Minkowski’s inequality for integrals (see [8,

p. 194]), we conclude

‖Uφmi ,ni
fu − Uφm,nfu‖2

=
( ∫

X

∫
[0,1)2

|Uφmi ,ni
fu − Uφm,nfu|2 dm dμ

)1/2

=
( ∫

X

∑
k,l

∫
ηu
k,l

|Uφmi ,ni
fu − Uφm,nfu|2 dm dμ

)1/2

=
( ∫

X

∑
k,l

∫
ηu
k,l

|U(mi ,ni)
T

∫
ηu
k,l

1Bdm − U
(m,n)
T

∫
ηu
k,l

1Bdm|2 dm dμ

)1/2

=
( ∫

X

∑
k,l

m(ηu
k,l)|

∫
ηu
k,l

(Uφmi ,ni
1B − Uφm,n1B) dm|2 dμ

)1/2

≤
( ∫

X

∑
k,l

m(ηu
k,l)

∫
ηu
k,l

|Uφmi ,ni
1B − Uφm,n1B |2 dm dμ

)1/2

= 1
2u

( ∫
X

∫
[0,1)2

|Uφmi ,ni
1B − Uφm,n1B |2 dm dμ

)1/2

= 1
2u

( ∫
X×[0,1)2

|Uφmi ,ni
1B − Uφm,n1B |2 d(μ × m)

)1/2

<
1
2u

ε.

Hence, {Uφmi ,ni
fu}pi=1 is a finite ε/2u-net of {Uφm,nfu : |βm − n| < 1, (m, n) ∈ Z2},

which implies that

{Uφm,nfu : |βm − n| < 1, (m, n) ∈ Z2}
is compact in L2(X̃, B̃, μ̃) for all u ∈ N. For a fixed u ∈ N, we take a finite ε/2u-net
{Uφmi ,ni

fu}pi=1. Note that

Uφm,nfu(x, s, t) = fu(T
(m,n)x, s, t).

So for any (m, n) ∈ Z2 with |βmi − ni | < 1, there exists i ∈ {1, 2, . . . , p} such that

ε

2u
> ‖Uφm,nfu − Uφmi ,ni

fu‖2

=
( ∫

X

∫
[0,1)2

|fu(T
(m,n)x, s, t) − fu(T

(mi ,ni)x, s, t)|2 dm dμ

)1/2

. (A.3)
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For any (s, t) ∈ [0, 1)2, there exist k, l ∈ {0, . . . , 2u − 1} such that (s, t) ∈ ηu
k,l . Hence,

‖U(m,n)
T fu(·, s, t) − U

(mi ,ni)
T fu(·, s, t)‖2

=
( ∫

X

|fu(T
(m,n)x, s, t) − fu(T

(mi ,ni)x, s, t)|2 dμ

)1/2

=
( ∫

X

22u

∫
ηu
k,l

|fu(T
(m,n)x, s, t) − fu(T

(mi ,ni)x, s, t)|2 dm dμ

)1/2

≤ 2u

( ∫
X

∫
[0,1)2

|fu(T
(m,n)x, s, t) − fu(T

(mi ,ni)x, s, t)|2 dm dμ

)1/2

(A.3)≤ 2u · ε

2u
= ε.

Hence for a fixed (s, t) ∈ [0, 1)2, {U(m,m)
T fu : |βm − n| < 1, (m, n) ∈ Z2} has a finite

ε-net {U(mi ,ni)
T fu(x, s, t)}pi=1. It follows that

{U(m,m)
T fu : |βm − n| < 1, (m, n) ∈ Z2}

is compact in L2(X, BX, μ) for each (s, t) ∈ [0, 1)2. This ends the proof of the first
statement in Claim 1.

By Lemma A.1, we deduce that for μ-a.e. x ∈ X

lim
u→∞ fu(x, s, t) = 1B(x, s, t)

for m-a.e. (s, t) ∈ [0, 1)2. By dominated convergence theorem, we conclude that

lim
u→∞ ‖f (·, s, t) − 1B(s,t)‖2 = 0

for m-a.e. (s, t) ∈ [0, 1)2. Now we finish the proof of Claim 1.

B. Appendix. Results for Zq -MPS
In this section, we introduce the corresponding results of Zq -MPS, which are proved by
exactly the same methods for the case of Z2-MPS. Let (X, BX, μ, T ) be a Zq -MPS. For a
fixed finite measurable partition α of X and an infinite subset S = { �wi}∞i=1 of Zq , we put

hS
μ(T , α) = lim sup

k→∞
1
k
Hμ

( k∨
i=1

T − �wi α

)
.

Then we can define the sequence entropy of T for the infinite subset S by

hS
μ(T ) = sup

α
hS

μ(T , α),

where the supremum is taken over all finite measurable partitions of X.
Now we define directional sequence entropy for the case of Zq -actions. Let �v =

(1, β2, . . . , βq) ∈ Rq be a direction vector and b = (b2, . . . , bq) ∈ R
q−1
+ := {u =

(u1, . . . , uq−1) ∈ Rq−1 : ui > 0}. We put

��v(b) = { �w = (m1, . . . , mq) ∈ Zq : βim1 − bi/2 ≤ mi

≤ βim1 + bi/2, i ∈ {2, . . . , q}}.
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Define the �v-directional Kronecker algebra by

K �v
μ (b) = {B ∈ BX : {U �w

T 1B : �w ∈ ��v(b)} is compact in L2(X, BX, μ)},
where U �w

T : L2(X, BX, μ) → L2(X, BX, μ) is the unitary operator such that

U �w
T f = f ◦ T �w for all f ∈ L2(X, BX, μ).

Similarly, we can prove that K �v
μ (b) is a σ -algebra and the definition of K �v

μ (b) is
independent of the selection of b. So we omit b in K �v

μ (b) and write it as K �v
μ .

THEOREM B.1. Let (X, BX, μ, T ) be a Zq -MPS, �v = (1, β2, . . . , βq) ∈ Rq be a direc-
tion vector and b = (b2, . . . , bq) ∈ R

q−1
+ . Let α be a finite measurable partition of X. For

any infinite subset S′ of ��v(b),

hS′
μ (T , α) ≤ Hμ(α|K �v

μ ).

Moreover, there exists an infinite subset S = { �wi = (m
(i)
1 , . . . , m

(i)
q )}∞i=1 of ��v(b) such

that {m(i)
1 }∞i=1 is strictly monotone and

hS
μ(T , α) = Hμ(α|K �v

μ ).

Remark B.2. Let α be a finite measurable partition of X. We define

h�v,∗
μ (α) = max

S⊂��v(b)
{hS

μ(T , α)}. (B.1)

By Theorem B.1, h�v,∗
μ (α) = Hμ(α|K �v

μ ) and then (B.1) is well defined because it is
independent of the selection of b.

Corresponding to the case of Z2-MPS, we have the following definitions.

Definition B.3. Let (X, BX, μ, T ) be a Zq -MPS and �v = (1, β2, . . . , βq) ∈ Rq be a
direction vector.
(a) We say μ has �v-discrete spectrum if K �v

μ = BX;

(b) we say (X, BX, μ, T ) is �v-null if for any b = (b2, . . . , bq) ∈ R
q−1
+ and infinite

subset S = { �wi = (m
(i)
1 , . . . , m

(i)
q )}∞i=1 of ��v(b), hS

μ(T ) = 0.

Now we state main conclusions for the case of Zq -actions corresponding to Z2-actions,
which are proved by exactly the same methods for the case of Z2-MPS as follows.

THEOREM B.4. Let (X, BX, μ, T ) be a Zq -MPS and �v = (1, β2, . . . , βq) ∈ Rq be a
direction vector. Then the following two conditions are equivalent:
(a) μ has �v-discrete spectrum;
(b) (X, BX, μ, T ) is �v-null.

THEOREM B.5. Let (X, BX, μ, T ) be a Zq -MPS and α be a finite measurable partition of
X. If there exists an infinite subset S of Zq such that hS

μ(T , α) > 0, then there are at most
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q − 1 linearly independent directions { �vi = (1, βi
2, . . . , βi

q)}q−1
i=1 ⊂ Rq such that

h �vi ,∗
μ (α) = 0, i = 1, 2, . . . , q − 1.

THEOREM B.6. Let (X, BX, μ, T ) be a Zq -MPS. Then the following statements are
equivalent:
(a) there exist q linearly independent directions { �vi = (1, βi

2, . . . , βi
q)}qi=1 ⊂ Rq such

that μ has �vi-discrete spectrum for all i = 1, . . . , q;
(b) μ has discrete spectrum.
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