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C. Beaugé1, N. Callegari Jr.2, S. Ferraz-Mello3 and
T.A. Michtchenko3

1 Observatorio Astronómico, Universidad Nacional de Córdoba, Laprida 854, (X5000BGR)
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Abstract. This paper reviews recent results on the dynamics of multiple-planet extra-solar
systems, including main sequence stars and the pulsar PSR B1257+12 and, comparatively, our
own Solar System. Taking into account the degree of gravitational interaction of the planets, the
known planetary systems may be separated into four main groups: (Ia) Planets in Mean-motion
resonance (Ib) Low-eccentricity near-resonant pairs; (II) Non-resonant planets with a significant
secular dynamics; and (III) Weakly interacting planet pairs. Different analytical and numerical
tools can help to understand the structure of the phase space, to identify stability mechanisms
and to categorize different types of motions in the cases of more significant dynamical interaction.
The origin of resonant configurations is discussed in the light of the hypothesis of planetary
migration.
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1. Introduction
Currently 12 systems with 2 or more planets around Main Sequence stars are known

(see Schneider, 2004) and others are to be announced soon. Twelve of them are shown
in Table 1. When the ratio of orbital periods in each planet pair is plotted (fig. 1), we
see a more or less continuous distribution (at least in a logarithmic scale) between two
extreme cases: In the lower end, we have planet pairs with P2/P1 ≈ 2 and at the upper
end, P2/P1 > 300. We may distinguish, tentatively, three different classes (one of which
includes two sub-classes).

Class Ia. Planets in Resonant Orbits (MMR)
We put in Class I those planets at the lower end of the distribution shown in figure 1

with large masses and eccentricities and orbiting in relatively small orbits. These planets
are liable to strong gravitational interaction and are significantly perturbed over orbital
timescales. They are unable to remain stable if not tied by a mean-motions resonance
(MMR). They are among the more interesting extra-solar systems for Celestial Mechanics
studies.

The first two pairs are the two well-known pairs in 2:1 mean-motion resonance: HD
82943 and GJ 876 (= Gliese 876). The next two pairs appear in fig. 1 with open circles
because of doubts concerning one of the planets in the pair. They are 47 Uma and the
planets b,c of 55 Cnc. In these 2 pairs, the outer planet cannot yet be considered as
confirmed, as there is no consensus among the observers about their existence (Naef
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Figure 1. Ratio of the orbital periods of pairs of planets in motion around a main sequence
star (see text for details). Open circles indicate pairs for which the existence of one of the
components is still under discussion. The abscissas (not shown) are just sequence numbers of
the pairs arranged in increasing order.

et al. 2004). If the existence of 55 Cnc c and the resonance is confirmed, this planet pair
will be added to the two known resonant pairs to form a set of examples whose study
may contribute to our understanding of the physics underneath the capture of exoplanets
into resonance. A recent paper considers that the planetary hypothesis for the 44-day
oscillations in the radial velocity is more likely because this star is a very inactive star
(McArthur et al. 2004).

The planets of 47 UMa have large orbits and small eccentricities and, perhaps, may
remain stable even in non-resonant orbits, in which case this system would rather be
considered in Class Ib.

Class Ib. Low-eccentricity Near-resonant pairs

This is a special class including systems with low-eccentricity planets in successive
pairs, with small period ratio, but with circumstances making the gravitational interac-
tion between the planets less important. We put in this class the planets pairs of the
pulsar PSR B1257+12. We may also include here the planets of the two sub-systems of
the Solar System. In the planetary system of the pulsar PSR B1257+12 (see Table 2),
as well as in the inner Solar System, the orbits are relatively close one to another, but
the masses are relatively small. In the outer Solar System the masses are larger, but the
distances between the planets is always large allowing this system to show long-term
stability notwithstanding the fact that the planets have low period ratios.

The most conspicuous characteristic, here, is the presence of a large number of pairs
in near resonance. The most conspicuous examples are the pair Jupiter-Saturn with a
period ratio ∼2.5 (5:2 MMR) (see Michtchenko and Ferraz-Mello, 2001b) and the two
outer planets of the pulsar PSR B1257 +12 with period ratio ∼1.5 (3:2 MMR). The
closeness of the pulsar outer planets to commensurability produces perturbations large
enough to be observed from Earth thus allowing the very existence of the planets to be
confirmed in a few years of continuous observations (Rasio et al. (1992); Malhotra et al.
(1992)).

Among the extra-solar systems, the low-eccentricity planets of 47UMa are possibly
to be included in this class. The current orbits are near the resonance 8/3, but new
observations are necessary to confirm the data of this system.
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Table 1. Extra-solar Planetary Systems with 2 or more planets †
Star/ planet mass × sin i period period semi-major eccentricity
spectrum (mJup) (days) ratio axis (AU)

HD 82943(1) c 1.7 219.5
1.99

0.75 0.39

G0 b 1.8 436.2 1.18 0.15

GJ 876(2) c 0.56 30.12
2.03

0.13 0.27

M4 V b 1.89 61.02 0.21 0.10

47 UMa(2) b 2.9 1079.2
2.64

2.1 0.05

G0 V c (?) 1.1 2845.0 4.0 0

55 Cnc(3) e 0.045 2.81
5.2

0.038 0.2

(=ρ1 Cnc) b 0.78 14.7
2.99

0.115 0.02

G8 V c (?) 0.22 43.9
103

0.24 0.44

d 3.91 4517 5.26 0.3

µAra(4) d 0.044 9.55
67.5

0.09 −
(=HD 160691) b 1.67 645

4.63
1.50 0.20

G3 IV-V c 3.1 2986 4.2 0.6

υAnd(2) b 0.64 4.617
52.2

0.058 0.01

F8 V c 1.79 241.16
5.29

0.805 0.27

d 3.53 1276.1 2.543 0.25

HD 12661(2) b 2.30 263.6
5.48

0.823 0.35

G6 c 1.57 1444.5 2.557 0.20

HD 169830(5) b 2.88 225.62
9.32

0.81 0.31

F8 V c 4.04 2102 3.6 0.33

HD 37124(2) b 0.86 153.3
12.7

0.543 0.1

G4 IV-V c 1.0 1942 2.952 0.4

HD 168443(2) b 7.64 58.1
30.5

0.295 0.53

G5 c 16.96 1770 2.873 0.20

HD 74156(2) c 1.61 51.6
> 51

0.745 0.65

G0 b >8.2 >265 >3.82 0.35

HD 38529(2) b 0.78 14.309
152

0.129 0.29

G4 c 12.7 2174.3 3.68 0.36

† Update: Oct. 2004. ε Eri pair is too uncertain and was not included.
(1) Ref: Ferraz-Mello et al. (2005).
(2) Ref: Fischer et al. (2003).
(3) Ref: McArthur et al. (2004).
(4) Refs: Santos et al. (2004), McCarthy et al. (2004).
(5) Ref: Schneider (2004).

Class II. Non-resonant Planets with a Significant Secular Dynamics

The period ratio of the planet pairs considered in this class lies above 4.5 and is
large enough to make very difficult a capture into a MMR. The gravitational interaction
between these planets may be strong but the conservation of the angular momentum
limits the eccentricity variations, allowing them to remain stable even if not in a MMR.
They present long-term variations, primarily described by secular perturbations, large
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Table 2. Planetary System of the pulsar PSR B1257+12†
Star planet mass period period semi-major eccentricity inclination

(mEarth) (days) ratio axis (AU) (degrees) ‡

B1257 +12 A 0.020‡‡ 25.262
2.63

0.19 0.

B 4.3 66.5419
1.47

0.36 0.0186 53

C 3.9 98.2114 0.46 0.0252 47

† Ref: Konacki and Wolszczan (2003). Adopted pulsar mass: 1.4M�
‡ over the tangent plane to the celestial sphere.
‡‡ adopting the inclination i = 50◦

variation of the eccentricities and interesting dynamical effects such as the alignment and
anti-alignment of the apsidal lines (see Michtchenko and Malhotra, 2004).

Among the extra-solar planetary systems, the most conspicuous examples in this class
are three important systems: the outer planets of µ Ara, HD 12661 and the outer planets
of υ And. In all cases, they do not seem to be in MMR or close to one; the outer planets
of υ And are paradigms of systems showing apsidal lock due to a non-resonant secular
dynamics.

Class III. Weakly interacting Planet Pairs
These are the planets given at the bottom of table 1. One example is HD 38529 where

P2/P1 ∼ 150. The outermost and innermost planets of 55 Cnc are such that P2/P1 ∼ 1700
forming the more separated known pair (out of the scale of fig. 1). The large period ratios
(> 30) allow these planets to be considered as weakly interacting planets; the mutual
gravitational interaction exists, but is less important than in the previous case and the
probability of capture in a MMR is negligible. We remind that in many dynamical studies
of the outer Solar System, the mass of the inner planets is just added to the mass of the
Sun!

Two of the candidates to this category are the planets around HD 168443 and HD
74156. However, these systems have some very massive planets and the use of hierarchical
models to study these pairs should be preceded of specific analysis.

2. Chaos
Chaos is a common feature in systems with many degrees of freedom. In systems with

several planets, the neighborhood of the planets is filled by MMR. In the considered
low-eccentricity systems, the near resonant motion of neighboring planets gives rise to a
dense set of three-planet resonances, which occur when the periods corresponding to two
two-planet MMR form critical linear combinations. Jupiter and Saturn lie very close to
the 5:2 MMR, Uranus is confined between the domains of the overlap of the 7:1 MMR
with Jupiter and the 2:1 MMR with Neptune in one side, and the 3:1 MMR with Saturn
in the other; finally, Neptune is close to the 2:1 MMR with Uranus.

The resonant structure of these systems may be known through dynamical maps
constructed in the neighborhood of the actual planets (Michtchenko and Ferraz-Mello,
2001a). In these maps, the initial values of the semi-major axis and eccentricity of one
planet are uniformly chosen on a rectangular grid covering the vicinity of its actual po-
sition, while the initial positions of the other planets are fixed to the actual values at
the chosen epoch. The short-term oscillations (of the order of the orbital periods) are
eliminated by employing a low-pass filtering procedure on-line with the numerical inte-
gration and the resulting semi-major axes are used to construct the maps. The spectral
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Figure 2. Dynamical map of the neighborhood of Uranus. The main apparent MMR are indi-
cated on top of the figure by the letters a-h and identified in table 3. The star shows the current
position of Uranus. (Taken from Michtchenko and Ferraz-Mello, 2001a.)

Table 3. Main MMR in Uranus’ neighborhood

Position (fig. 2) MMR† Remarks (beat)

a J–S–4U beat of J–7U and S–3U
b 3J–10S+7U beat of 2(2J–5S) and J–7U
c U–2N
d J–7U
e 2J–6S+3U beat of 2J–5S and S–3U
f 2J–6S+3U beat of 2J–5S and 2(S–3U)
g S–3U
h 2J–3S+6U beat of 2J–5S and –2(S–3U)

† k1J ± k2S ± k3U ± k4N means the MMR k1nJ ± k2nS ± k3nU ± k4nN ≈ 0

number N presented in the maps is defined as the number of spectral peaks above 5%
of the largest peak. The counting is stopped at N = 100. Regular orbits are identified
with small values of N , while large numerical values correspond to increasingly chaotic
trajectories.

Uranus’s neighborhood

We present here the dynamical map of the neighborhood of Uranus (figure 2). This
neighborhood is dominated by the 3:1 resonance with Saturn (S–3U) and the 2:1 reso-
nance with Neptune (U–2N), one on each side of the actual position of Uranus. There
are also several narrow bands of chaotic motion associated with three-planet MMR (see
Table 3). The small hatched domains in figure 2 are those in which collisions (i.e. dis-
rupting close approaches) occur in the time span of the numerical integration (50 Myr).

The neighborhood of the outer pulsar planet

The dynamics of the neighborhood of the pulsar planets is not so complex as the
neighborhood of the outer Solar System planets. The dynamical map constructed with
minimal masses (sin i = 1) is shown in fig. 3. This neighborhood is dominated by the
resonance 2B–3C with narrow bands due to several higher-order resonances (indicated
above the top axis of fig. 3).
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Figure 3. Dynamical map of the neighborhood of PSR B1257+12 planet C. The main apparent
MMR are indicated on top of the figure. The cross shows the position of planet C. Same gray
scale as fig 2. (Taken from Ferraz-Mello and Michtchenko, 2003.)

3. Dynamics of a MMR and its Neighborhood
We summarize in this section some results of the study of the low-eccentricity dynamics

of the 2:1 MMR by Callegari et al. (2004) showing how the dynamics of a system of 2
planets evolves when it passes from outside to inside the MMR.

Fig. 4 shows three surfaces of section of the planetary motion defined by the sectioning
condition θ1 = 2λ2 − λ1 − �1 = 0 and represented on the plane (x = e1 cos ∆�, y =
e1 sin ∆�) with ∆� = �1 − �2, for three different energy levels†.

At the right of each surface of section are shown the corresponding dynamic power
spectra of the solutions, parameterized by the value of x corresponding to y = 0. The
points marked in these plots are the points where the frequency in the power spectrum
is higher than a given level above noise level. The ordinates are the frequencies (in
yr−1). In dynamic power spectra, the lines have the same behavior found in frequency
map analysis: frequencies remain almost constant inside resonance islands, have vertical
displacements when crossing a saddle point and become erratic when a chaotic layer is
reached (Laskar, 1993).

At the lower energy level (top panels in fig. 4), the system is outside the 2:1 MMR; its
dynamics is dominated by secular interactions and characterized by two secular modes
of motion known from the linear secular theories (see Pauwels 1983). There are two
periodic solutions: one at ∆� = 0 and another at ∆� = π. In the surfaces of section,
these solutions appear as fixed points. These two periodic orbits and the domains around
them are indicated as Mode I and Mode II, respectively. The Mode I of motion is located
on the right-hand side of the section while Mode II is located on the left-hand side. The
curves around the fixed points are quasi-periodic solutions.

Around Mode I, the angle ∆� oscillates about 0, while around Mode II, ∆� oscillates
about π; in both cases the eccentricity of the planets vary regularly around the eccen-
tricity value of the periodic orbit. Between the two cases, the angle ∆� = �1 −�2 is in
direct circulation. It can be shown that, in this near resonance zone, the critical angles

θ1 = 2λ2 − λ1 − �1

θ2 = 2λ2 − λ1 − �2

are in circulation. No infinite-period separatrix exist between the solutions around Mode
I and Mode II and the quasi-periodic solutions shown in the surface of section form one
continuous family. This fact is clearly seen in the corresponding dynamic power spectrum

† The subscripts 1 and 2 represent Uranus and Neptune, respectively.
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Figure 4. Left: Surfaces of Section of the averaged low-eccentricity planetary system in the
neighborhood of the 2:1 resonance for three energy levels. Axes x = e1 cos ∆�, y = e1 sin ∆�.
Right: Dynamic power spectrum of the solutions parameterized by the value of x corresponding
to y = 0. Frequencies in yr−1. The planets have the same masses as Uranus and Neptune. (Taken
from Callegari et al. 2004).

where only two fundamental frequencies and a few harmonics appear. The lower line (at
∼3 × 10−6 year−1) corresponds to the proper frequency associated with the angle ∆�.
We can see that the line shows a discontinuity near the fixed points, indicating that the
amplitude associated to the secular frequency tend to zero at those points. The secular
period is ∼400, 000 years in the center of Mode I and ∼300, 000 years in the center
of Mode II. The upper line (at ∼10−4 year−1) corresponds to the second fundamental
frequency, which is associated with the circulation of the critical angles (transversal to
the surface of section).

At the next energy level (middle panels in fig. 4), the resonance 2/1 is already visible.
The surface of section seems similar to the previous one, but the dynamic power spec-
trum shows that an important difference exists. The two vertical broad lines seen in the
dynamic power spectrum, at the abscissas corresponding to the curve labeled S1 in the
surface of section, indicate that S1 is indeed a separatrix (even if it does not show any
visible feature in the surface of section). The domain inside S1 (called RIII by Callegari
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et al.) is a resonant regime of motion in which the critical angles θ1 and θ2 oscillate
(librate) about 0 and π, respectively. Their difference ∆� librates around π. Outside
S1, θ2 and ∆� alternate between libration and circulation, while in general θ1 remains
librating around zero until it reaches the domain formed by oscillations about Mode I. In
this case, once again we have circulation of the critical angles. At the highest energy level
(bottom panels in fig. 4), a separatrix (S2) appears inside the MMR domain, separating
two distinct resonant regimes of motion. The new regime of motion (called RIV by Cal-
legari et al.) fills the largest portions of the surfaces of section for higher energies (deep
resonance). The dynamic power spectrum (at the right) shows that the lower frequency
becomes equal to zero at the two points corresponding to the intersections of S2 with the
x-axis. The direction of the phase flow inside the separatrix S2 is inverted with respect
to what it is outside that separatrix. A true resonance occurs (with one proper frequency
passing through zero). The dynamic power spectrum also shows that the solutions in the
immediate neighborhood of S2 are chaotic. The above-discussed example (Callegari et al.
2004) is a true secular resonance inside the U-2N MMR†.

The appearance of the surface of section inside RIV is similar to that around MII, with
only a different direction of the rotation. However, from the dynamical or topological
point of view, these neighborhoods are very different. In the top panels, the apsidal
proper frequency is always different from zero and the frequency variation from Mode
II oscillations to circulations and to Mode I oscillations (from right to left in fig. 4top.)
is smooth (continuous). In the bottom panels, the apsidal proper frequency is equal
to zero at the separatrix S2; thus, the motions inside and outside S2 are separated by a
true infinite-period separatrix (bifurcation) and no continuous transformation exist going
across S2.

4. Mean-Motion Resonances and Apsidal Corotations
The surfaces of section in fig. 4 show that the anti-aligned periapses of the solutions in

Mode II are preserved in the evolution of a system of two low-eccentricity planets towards
resonance (notwithstanding the fact that the critical angles are circulating in Mode II and
librating in RIII and RIV). The surfaces of section with energies intermediary between
the two shown in fig. 4 (top and middle) show that the separatrix S1 emanates from the
very position of the periodic orbit labeled MII in the secular dynamics and increases up
to encompass the whole domain of solutions about ∆� = π and even large amplitude
oscillations around ∆� = 0 (see Callegari et al. 2004). This is a situation completely
different of that occurring in the capture of a particle into a resonance with one planet
(or satellite). In that case, the only effect is the capture of the critical angle‡

θ1 = (p + q)λ′ − pλ − q�

about 0 or π. The sidereal periods of particle and planet become approximately com-
mensurable but the pericenter of the particle orbit (whose longitude is �) continues to
rotate. That is, ∆� = � − �′ has a monotonic time variation. However, for some well
defined values of the eccentricity of the planet (satellite) orbit, it happens that not only
the angle θ1 but also the angle

θ2 = (p + q)λ′ − pλ − q�′

† Other examples of true secular resonance were given by Michtchenko and Ferraz-Mello
(2001b) and Michtchenko and Malhotra (2004).

‡ λ and � are the mean longitude and longitude of the periapsis of the trapped particle,
respectively, and λ′ and �′ are those of the trapping planet (or satellite).
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is trapped in the neighborhood of 0 or π. Consequently, ∆� is no longer circulating but
librating (Ferraz-Mello et al. 1993). This is the same phenomenon known as corotation
resonance in disc and ring dynamics (motion following the resonance pattern speed),
extended to beyond the narrow 1:1 resonance case of the epicyclic orbits theory. The
characterization of corotation resonance given by Greenberg and Brahic (1984): “reso-
nance that depends on the eccentricity of the perturbing satellite, rather than on the
eccentricity of the perturbed particle” means that we have a corotation resonance when
θ2 is in libration. But, in the trapping particle problem, θ2 cannot be in libration if
θ1 is circulating. Therefore the simultaneous libration of ∆� and θ1 is synonymous of
resonance corotation.

The resonant planar planetary three-body problem (averaged over short-period terms)
is a two-degree of freedom system (see Beaugé et al. 2003). “Exact apsidal corotations”
are solutions for which the angles

θ1 = (p + q)λ2 − pλ1 − q�1

θ2 = (p + q)λ2 − pλ1 − q�2.

and the momenta I1, I2 conjugated to them remain constant in time. It is important to
notice that these equilibrium solutions of the averaged equations correspond to periodic
orbits of the non-averaged problem. Initial conditions close to them are periodic solu-
tions of the averaged equations (quasi-periodic solutions of the non-averaged problem):
oscillations around the fixed point of the averaged system. One such solution with finite
amplitude oscillations will be generically referred to as “apsidal corotation resonance ”,
or, for short, “apsidal corotation”.

Although apsidal corotations have gained certain notoriety in exoplanetary dynamics,
they are not new and can be found in our own Solar System. It has long been known
(see Greenberg 1987 and references therein) that the Io-Europa pair is trapped in a 2/1
MMR and is in apsidal corotation. Both θ1 and ∆� oscillate (with very small amplitude)
around fixed values. The exact apsidal corotation is defined in this case by θ1 = 0 and
∆� = π. We will refer to this case as a (0, π)-corotation, a denomination more accurate
than just saying that the apsides are anti-aligned.

GJ 876, the first extra-solar resonant planetary system ever discovered around a main-
sequence star, also exhibits an apsidal corotation, although in this case the angular
variables oscillate around θ1 = 0 and ∆� = 0. We will denote this as an (0, 0)-corotation
(the apsides are aligned).

The difference in behavior in these corotations is associated with the eccentricities of
these solutions (see Lee and Peale, 2002; Beaugé et al. 2003): The (0, π) solutions occur
for low eccentricities of the bodies, while (0, 0) corotations occur for larger eccentric-
ities. Until recently there was little information about the exact border between both
modes. The first study of families of periodic solutions of the exact equations of planets
in 2/1 MMR, considering different eccentricities but constant planetary masses, is due to
Hadjidemetriou (2002). Via numerical continuation of initially circular orbits for plan-
etary masses similar to GJ 876, Hadjidemetriou (2002) found that the (0, π) and (0, 0)
families are actually linked at (e1, e2) = (0.097, 0), and it is possible to pass from one to
another by a smooth variation of the total angular momentum.

Later discoveries of other extra-solar candidates in the same commensurability (as
HD82943) also showed the system in apsidal corotation. The same seems to be true in
other cases as the published orbits of two of the 55 Cnc planets, which lie in the 3/1
MMR. Even though some orbital fits are very imprecise, they seem to indicate that apsi-
dal corotation resonance constitutes strong stabilizing mechanisms for high-eccentricity
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Figure 5. Two solutions in (0, 0) apsidal corotation. Solid lines correspond to the masses and
initial conditions given in Table 4. Dashed lines are solutions obtained with same initial eccen-
tricities and angular variables, but increasing both the masses and semi-major axes by a factor
10.

resonant planets orbiting close to the central star. These examples justify the significant
effort done in recent years to study the location and stability of all apsidal corotations
allowing all families of corotations to be determined as function of the planets masses
and orbital elements.

Systematic searches using averaged analytical models and numerical simulations with
adiabatic migration were undertaken by Beaugé et al. (2003) and Ferraz-Mello et al.
(2003) aiming at finding all possible stable apsidal corotations in the 2:1 and 3:1 MMR,
as functions of all the parameters of the system. The first results were that, up to second
order of the masses, the position of corotations is only a function of the mass ratio m2/m1

of the planets, not depending on the individual masses themselves (as long as they are
not large).

Similarly, the solutions are practically independent of the semi-major axes a1, a2, but
only vary according to the value of the ratio α = a1/a2. These facts are illustrated in fig-
ure 5 where solid lines correspond to a numerical simulation of a (0, 0)-corotation (using
initial conditions shown in Table 4) while dashed lines show results obtained with the
same initial conditions, but increasing the planetary masses and semi-major axes by a fac-
tor 10. Although the oscillations around the exact apsidal corotation have different peri-
ods (see Beaugé et al. 2004), the overall behavior is practically the same. This makes clear
that solutions found for given values of the six-parameter set (m2/m1, α, e1, e2, θ1,∆�)
should be valid for any resonant exoplanetary system, independent of their proximity to
the star or size of the bodies.

Another important result of these investigation was the discovery of a different mode
of apsidal corotation, where the equilibrium values of the angles are not equal to zero
or π. They were found in both the 2/1 and 3/1 MMR and we called them “asymmetric
corotations”. The published orbits of the inner planets of 55Cnc seem to correspond to
such an asymmetric configuration (Beaugé et al. 2003, Zhou et al. 2004).
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Figure 6. Domains of different types of exact apsidal corotations in the 2/1 mean-motion
resonance in the e1, e2-plane. See text for details.
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Figure 7. Level curves of constant mass ratio (i.e. m2/m1 = const.) in the eccentricitie plane
for the 2/1 MMR. Broken curves show the (π, π) corotations.

However, the diversity of apsidal corotations does not stop here. Numerical studies by
Hadjidemetriou and Psychoyos (2003) and by Ji et al. (2003) have shown a new type of
solutions at very high eccentricities. Although they are symmetric, they correspond to
equilibrium values θ1 = π, ∆� = π. We have called them (π, π)-corotations. The orbital
elements initially published for HD82943 (Geneva planet search web page, July 31th,
2002) seemed to correspond to such a configuration.

Lee (2004) used numerical simulations with differential migration to map the extent
of this new family, finding that stable solutions are located beyond the line defined by
the collision condition of the (π, π) corotations: a1(1 + e1) = a2(1− e2). This theoretical
boundary is a limit for planet masses tending to zero. In fact, averaged models are not
valid if the two planets come very close one to another, the minimal distance allowed
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being proportional to the cube root of the planet masses (see Gladman, 1993). A similar
task was also undertaken by Beaugé et al. (2004) with a semi-analytical method.

The main results for the 2/1 resonance are seen in Figure 6, which shows the limits
of the domains of all types of apsidal corotation in the (e1, e2)−plane. One may also
note that the (π, π)-corotations domain covers a large area at very high eccentricities;
some parts of this domain overlaps with the asymmetric region, as well as the domain of
(0, 0)-corotations, for smaller values of e2. In the overlapping area, two distinct types of
stable solutions coexist, in some cases even for the same values of the mass ratios.

Numerical simulations by Ferraz-Mello et al. (2003) and Lee (2004) have shown that
(0,0), (0,π) and asymmetric apsidal corotations are linked by isopleths of equal mass ratio
m2/m1 (see fig. 7). Every solution corresponds to a well-defined value of the mass ratio
and, depending on the value of this ratio, a given exoplanetary system may exhibit dif-
ferent types of corotations. All exact apsidal corotations in these families can be reached
by constant mass-ratio paths starting from initially circular orbits. This is not the case
of the (π, π) apsidal corotations, which do not appear to be reachable via a smooth vari-
ation of the parameters from a path starting from the low-eccentricity domains. Even in
the domain where (0, 0) and (π, π) overlap it does not seem possible to have a smooth
change of one into another.

Figures 8 and 9 show concrete examples of different solutions of this problem. In all
cases, we can see a very stable motion around one exact apsidal corotations with a
relatively small amplitude of oscillation.

Figure 8 shows two asymmetric solutions. As pointed by Lee (2004), if the mass ratio
satisfies the condition m2/m1 > 0.4, the asymmetric family returns to the (0,0) region for
large values of e1. Conversely, if the mass ratio is smaller than this value, the asymmetric
corotations seem to converge to a thin diagonal region for large values of e2. The two
numerical simulations shown in this figure correspond to each case. In gray we can see an
example of the upper high-eccentricity domain, while in black we present an asymmetric
corotation in the main domain.

Figure 9 shows examples of the (0, 0) and (π, π) cases taken in the rightmost area
where both solutions are possible. The two orbits shown have the same planetary masses
and same initial semi-major axes and eccentricities. Only the angles are different showing
that both apparently opposite behaviors are possible. We point out that, in the two cases,
the eccentricities do not have exactly the same averaged value (although very similar)
due to the different initial phase angles chosen in each case.

The examples shown in figs. 5, 8 and 9 were obtained with numerical integrations of
the exact equations with the masses and initial elements shown in Table 4.

5. Planetary Migration
Although apsidal corotation is a necessary condition for the survival of massive planets

in nearby high-eccentricity orbits, they are nevertheless very particular solutions of the
planetary three-body problem. The fact that they are verified by some exoplanetary
systems raises interesting questions about their origin: Were the planets formed in such
orbits? Or did they evolve towards them?

From early statistical studies by Roy and Ovenden (1954), it is known that it is highly
improbable to find two massive bodies in an exact mean-motion resonance if they were
formed independently. For instance, in the outer Solar System, the existence of several
pairs of resonant satellites can only be explained by a past smooth variation of their semi-
major axes due to tidal interactions; in other words, the current configuration is due to a
“migration” of the primordial non-resonant orbits until a resonance trapping took place.
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(0, π) Asym U.Asym (0, 0) (π, π)

m1 1.0 1.0 1.0 1.0 1.0
m2 0.016 0.607 0.0136 5.5 5.5
a1 0.6295 0.6291 0.6295 0.6295 0.6295
a2 1.0 1.0 1.0 1.0 1.0
e1 0.03 0.20 0.13 0.65 0.65
e2 0.02 0.28 0.57 0.24 0.24
λ1 0.0 36.92 178.4 0.0 180.0
λ2 0.0 216.92 358.4 180.0 180.0
�1 0.0 0.0 0.0 0.0 0.0
�2 180.0 97.17 264.14 0.0 180.0

Table 4. Initial conditions of the small amplitude corotations shown in figs. 5, 8 and 9. “Asym” =
Main domain of asymmetric corotations; “U.Asym” = Upper domain of Asymmetric corotations.
Planetary masses are in units of 10−4M�. The mass of the central star is taken as 1M�
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Figure 8. Numerical simulation of two initial conditions in asymmetric corotation. Black shows
an example of the low-eccentricity region, while in gray we present a case of the Upper asym-
metric domain. Initial conditions are given in Table 4.

After the trapping, both satellites remained locked in stable orbits with commensurable
periods. If migration continued after the trapping, both bodies evolved in such a way as
to maintain the resonance relationship intact. To say that a similar scenario occurred in
exoplanets depends on two things: (i) to find a plausible driving mechanism for planetary
migration, compatible with the formation process of the system, and (ii) to prove that this
orbital evolution allows resonance capture, and yields final orbits in apsidal corotation.

In the past few years, several works have undertaken these questions. Although
several migration mechanism have been initially proposed, it seems that the most prob-
able process stems from the interaction between the planets and the gaseous primor-
dial disk. Hydrodynamical simulations by Kley (2001, 2003), Snellgrove et al. (2001)
and Papaloizou (2003), among others, have shown that an adequate choice of the
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16 Beaugé et al.

0 2500 5000
0.64

0.645

0.65

0.655

0.66

e1
0 2500 5000

0.23

0.235

0.24

0.245

e2
0 2500 5000

time  [yrs]

90

180

270

360

θ1

0 2500 5000
time  [yrs]

90

180

270

360

∆ω

Figure 9. Numerical integration of two orbits with the same masses, semi-major axes and
eccentricities. The initial angular variables were varied to place them in a stable (0, 0) and
(π, π)-corotation. Initial conditions are given in Table 4.

parameters of the gaseous disk can favor both, a large-scale inward migration and a
resonance trapping in corotation.

However, not all apsidal corotations can result from this scenario. In the case of the
2/1 resonance, we can group the different families into two distinct classes:

� Type I. Families that can be obtained through analytical continuation from initial
circular orbits e1 = e2 = 0. It includes the (0, π), (0, 0) and the asymmetrical families.

� Type II. The (π, π) solutions. At variance with the previous ones, this kinds of apsidal
corotation does not appear to be reachable via a smooth variation of the parameters from
the low-eccentricity domains.

From the point of view of migration, only Type I corotations can be attained through
a smooth orbital evolution starting from quasi-circular orbits. Thus, if the planetary
migration hypothesis is correct, and if all exoplanets entered the mean-motion resonance
in quasi-circular orbits, then we should only expect to observe Type I solutions in real
systems. The extra-solar planetary systems presently confirmed in the 2/1 resonance, GJ
876 and HD82843, show Type I apsidal corotations. In the 3/1 resonance, the published
orbit of 55 Cnc also corresponds to a Type I apsidal corotation (Beaugé et al. 2003, Zhou
et al. 2004).

In fact, there is only one system proposed to be in 2:1 MMR and Type II corotation:
the outer planets of HD160691 (Bois et al. 2003). However, more recent observations rule
out the possibility of a 2:1 MMR in this case (Goździewski et al. 2003, McCarthy, 2004).
Anyway, a (π, π) apsidal corotation was unlikely, since no adiabatic evolutionary process
could lead to such a situation.

6. Conclusions
In this review, we have presented a brief look at recent results on the dynamics of

extra-solar planetary systems. We have separated the known planetary systems into four
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main groups: (Ia) Planets in Mean-motion resonance (Ib) Low-eccentricity near-resonant
pairs; (II) Non-resonant planets with a significant secular dynamics; and (III) Weakly
interacting planet pairs. This division reflects the different degree of interaction between
the planets and, consequently, the different analytical models necessary to study their
evolution and stability.

Recently, the works of Callegari et al. (2004) and of Michtchenko and Malhotra (2004),
on the dynamics of systems with a significant secular dynamics, have shown new types
of motion, many of which unknown until very recently. The same can be said for MMR,
where an increasingly complex structure has been discovered. Even such simple solutions
as the exact apsidal corotations (which are simply fixed points of the averaged system)
show a large diversity of behavior.

A more difficult question is whether each class of extra-solar planetary systems is
indicative of different past evolutions and formation scenarios. Resonant pairs are strong
evidence in favor of a large-scale planetary migration before the dispersal of the stellar
nebula. However, it is not very clear how systems with small period ratio but not resonant
fit into this picture. Future work on disk-planet interactions, as well as better models
of capture into resonance and/or scattering will help us define more clearly the relation
between present day dynamics and the planetary origin.
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Beaugé, C., Ferraz-Mello, S. and Michtchenko, T.A. 2004, Mon. Not. R. Astron. Soc., submitted

(astro-ph/0404166)
Bois, E., Kiseleva-Eggleton, L., Rambaux, N. and Pilat-Lohinger, E. 2003, Astrophys. J., 598,

1312
Callegari Jr., N., Michtchenko, T. and Ferraz-Mello, S. 2004, Cel. Mech. Dyn. Astron. 89, 201
Ferraz-Mello, S., Tsuchida, M. and Klafke, J.C. 1993, Cel. Mech. Dyn. Astron., 55, 25
Ferraz-Mello, S. and Michtchenko, T.A. 2003, Rev. Mexic. Astr. Astrof. (serie conf.), 14, 7
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