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ANALYTIC SUBALGEBRAS OF VON NEUMANN
ALGEBRAS

PAUL S. MUHLY AND KICHI-SUKE SAITO

1. Introduction. Let M be a von Neumann algebra and let {a,},cg be
a o-weakly continuous flow on M; i.e., suppose that {a,},cp is a
one-parameter group of *-automorphisms of M such that for each p in the
predual, M,, of M and for each x € M, the function of ¢, p(e,(x) ), is
continuous on R. In recent years, considerable attention has been focused
on the subspace of M, H*(a), which is defined to be

{x € Mlp(a,(x)) € H®R), for all p € M,},

where H(R) is the classical Hardy space consisting of the boundary
values of functions bounded analytic in the upper half-plane. In Theorem
3.15 of [8] it is proved that in fact H™(a) is a o-weakly closed subalgebra
of M containing the identity operator such that

H®@a) + H®(a)* (= {x + y*Ix,y € H®@a) })
is o-weakly dense in M, and such that

H®a) N H®(a)* = M* = {x € Mla,(x) = x,t € R}
(see [7] and [27] also). Consequently, the elements of H*(a) are called
analytic with respect to {a,},cg and H(a), itself, is called the analytic
subalgebra of M determined by {a,},cg- The algebras H*(«) provide a
very interesting generalization to the noncommutative setting of certain
well known classes of function algebras and, perhaps more importantly,
they provide a common perspective from which one can analyze certain
types of non-self-adjoint operator algebras that have received significant
attention lately. Indeed, if there is a faithful family of a-invariant, normal
states on M, then as is shown in [7] and [8], H(a) is a maximal
subdiagonal algebra in M in the sense of Arveson [1] and, as it turns out,
most subdiagonal algebras can be realized as H°(a) for a suitable
automorphism group {a,},cg- Also, each nest subalgebra of a von
Neumann algebra may be realized as an H(«).
In this paper we contribute some partial answers to the following
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Question. When is H®(a) maximal among the o-weakly closed
subalgebras of M?

The reason we are interested in this question has two components, at
least. First of all, from the function algebra perspective, it is intrinsically
interesting, and when we can answer it, the proofs are nontrivial. The fact
that H°(R) and H°(T) are maximal weak-* closed subalgebras of L(R)
and L°(T), respectively, is classical and certainly well known. The next
results, in the abelian case, were obtained by the first author in [14], using
[13]. Of course in the abelian case, M may be identified with L°(Q) for
some measure space {2, which we may take to be a standard Borel space with
finite measure m if M is o-weakly separable. In this case {e,},cg is imple-
mented by a measurable action of R on  leaving m quasi-invariant:

(w,t) > Tw, we QteR

The space H*(a), then, may be viewed as {¢ € L*(2) | for m-almost
all w, the function of ¢, ¢(7,w), lies in H*(R) }. It is proved in [14] that if m
is invariant, then H%(a) is maximal among the o-weakly closed
subalgebras of L>(Q) if and only if m is ergodic. An examination of the
proof reveals that it is not necessary to assume that m is invariant. Of
course, m is ergodic if and only if M® is a factor. So, in the abelian case, we
conclude that H*(a) is maximal among the o-weakly closed subalgebras
of M if and only if M is a factor. The first noncommutative results were
obtained by the authors in joint work with M. McAsey. The strongest
result of our three papers relating to the subject [10-12] may be expressed
as follows. Suppose that N is a o-finite von Neumann algebra and that B8 is
a *-automorphism of N preserving a faithful normal state. Let M be the
crossed product determined by N and B and let {a, },cg be the (periodic)
action of R on M that is dual, in the sense of Takesaki [25], to the action of
Z on N determined by 8. Then H*(a), which is called the analytic crossed
product determined by N and B, is maximal if and only if M*(= N) is a
factor. In [10-12], the maximality of H(a) is related to its invariant
subspace structure and ideal structure. Subsequent results along these
lines were obtained by the second author [17-19] who considered almost
periodic actions of R (alias compact group actions) on finite von
Neumann algebras and related results were obtained by Solel [21]. On the
basis of the results of these investigations, one might be led to conjecture
that H°(a) is maximal among the o-weakly closed subalgebras of M
precisely when M is a factor. However, this is not the case. Indeed, if M is
the algebra of 2 X 2 matrices, and if {,},cg is nontrivial, then H*(«)
is (isomorphic to) the algebra of upper triangular matrices, which is
maximal in this case, but M* is (isomorphic to) the algebra of diagonal
matrices and is not a factor. In Corollary 3.12 of [22], Solel subsumes this
example in a result that gives a necessary and sufficient condition for
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H*(a) to be a maximal o-weakly closed subalgebra of M under the
assumption that {a,},cg is periodic. Solel’s discoveries don’t seem to
generalize readily to the aperiodic setting and we must content ourselves
with partial results. Nevertheless, it is clear that the maximality of H*(a)
is tied in some fashion to whether or not M* is a factor.

The second reason why the maximality question intrigues us has to do
with the fact that H*(a) may always be viewed as the intersection of
(some faithful, normal representation of) M with a nest algebra (see
Proposition 2.4 below). If M has almost any intersection at all with the
projections determining the nest, then H°(a) is not maximal and M“ is
not a factor. In some sense, which as yet we are unable to make precise,
H®°(a) seems to be maximal if and only if M is highly “skewed” with
respect to the projections that determine the nest. In our view, M is most
highly “skewed” with respect to the projections in the nest, when M is the
crossed product of another von Neumann algebra by an action of R or Z.
In the case of a crossed product by an R-action, as we shall see in Theorem
5.2, H(a) is maximal if and only if M* is a factor.

As mentioned above, in earlier work the maximality question is related
to the invariant subspace structure of H*(a); the same is true here. We
refine the invariant subspace analysis presented in [8] and use it to
establish our maximality theorems. In Section 2, we recall the basic facts
about von Neumann algebras in standard form from the perspective of
Haagerup’s I”7-spaces, [6] and [26]. In Section 3, we show that when M is
in standard form, there is essentially a one-to-one correspondence between
invariant subspaces of H”(a) and cocycles for {a,},cg in M. In Section 4,
we use this correspondence to show that when M is o-finite and finite and
{a,},cr preserves a faithful, normal, finite trace, then H () is a maximal
o-weakly closed subalgebra of M whenever M® is a factor. Besides
showing, in Section 5, that H"°(«) is maximal if and only if M* is a factor
(under the assumption that M is a crossed product and {a,},cg is a dual
action), we generalize Solel’s analysis in [21], and identify all of the
a-weakly closed subalgebras of M containing H*°(a) when H(a) is not
maximal.

2. Algebras and automorphisms in standard form. There are a number of
ways in which one can view the standard form of a von Neumann algebra.
The form we find most congenial and the one we shall use is that
developed by Haagerup. So let M be a von Neumann algebra and form the
noncommutative Lebesgue space LZ(M ) in the sense of Haagerup [6] (cf.
[26] also). Recall that L*(M) is a certain space of (generally unbounded)
operators. For x € M, let L, (resp. R, ) be the operator on L*(M) defined
by the formula L y = xy (resp. R,y = yx),y € L2(M ). Then by Theorem
3.6 of [26], L (resp. R) is a faithful normal representation (resp.
antirepresentation) of M on the Hilbert space L2(M ). If J is defined on
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LZ(M ) by the formula Jy = y*, y € L}(M), then J is a conjugate linear
isometric involution of L?*(M). The von Neumann algebras L(M) and
R(M) are communtants of one another (in general, for a subset S of M, we
write L(S) for {L, }, c¢and R(S) for {R, },cs), and JL(M)J = R(M). In
fact, the quadruple

{L(M), LX(M), J, LX(M), },

where L2(M )4 is the cone of positive operators in L2(M ), is a standard
form of M in the sense of [3], by Theorem 36 of [26]. That is, the quadruple
satisfies the following assertions:

1) JL(M)Y = R(M),

2)JL.J = L. for all ¢ 1n the center of M, 2(M);

3)Jy =y, for ally € L (M)+, and

4) LJL,J(LXM),) € L*(M),, foralla € M.

Let {a }.cr be a o-weakly continuous flow on M, i.e., a o-weakly
continuous, one-parameter group of *-automorphisms of M. Then by
Theorem 3.2 of [3], there is a uniquely determined unitary group {U,},cr
on L? (M) such that

HUJ =JU,
2) U(L*(M),) = L*(M),, and
3) La,(x) = (]thUt*

forall x € Mand ¢t € R.

We need Arveson’s theory [2] of spectral subspaces and so we recall the
definitions here. The groups {«,},cgr and {U,},cgr may be integrated
yielding representations a(-) and U(:) of L (R). Specifically,

a(fHx = '[Ojoo fWea(x)dt, x € M, f € L'(R), and

vy = [t v e 2on, £ L,
For L'(R), we denote by Z(f) the set
{t € R|f(t) = 0} where

fay = f o€ "f(s)ds.
For x € M (resp.y € L2(M) ), we define Sp,(x) (resp. Spy(y) ) to be the
set

N{Z()If € L'R), a(f)x = 0}

(resp. N{Z(f)|f € L'(R), U(f)y = 0} ) and for any closed subset S of R
we define the spectral subspace M*(S) (resp. L*(M)Y(S)) to be

{x € MISp,(x) € S}
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(resp. {y € L*(M) Spy(y) S S}). If S is not closed M%(S)
and L2(M )U(S) are defined to be the o-weak and norm closures, res-
pectively, of the sets

{xISpy(x) & S} and {yISpy(y) € S}.
Finally, we define the spectrum of a, Sp(«), to be

N{Z(f) la(f) = 0}
and the spectrum of {U,},cr, Sp(U), to be

N{Z(NH 1U(Sf) = 0}.

We refer the reader to [2], [8], and [23] for the basic facts about spectra.

In this paper, we write H*(a) for M*(R,) and H{ (a) for M*R )
where R, = [0, o0) and R, ; = (0, 00). It is not difficult to see that H*(a)
defined in this way coincides with our definition of H°(a) in the
introduction. Let E be the spectral measure of {U,},cg and define HX (o)
to be E[0, oo)Lz(M ); likewise, define Hg(a) to be E(O, oo)Lz(M ). Observe
that in the classical setting when M = L™(R) or L™(T) and {e,},cpg is
translation then H” (a) coincides with the classical Hardy space H” (R) or
HP(T), for p = 2, co. Of course

H”(R) = H{(R)
while
HP(T) + HYT), p =2, co.

We write ¢, for L(H®(a)), R, for R(H®(a)), L[z, o0) for L(M*([1,
©0))), and R[s, co) for R(M®([t, o0))). Finally, we write M for
M®( {0} ) and note that

M* = {x € Mla,(x) = x,t € R}.

Definition 2.1. Let M be a closed subspace of L2(M ). We say that It is:
left-invariant, if L .M S WM; left-reducing, if LIM)M < M; left-pure, if M
contains no left-reducing subspaces; and left-full, if the smallest left-
reducing subspace containing It is all of LZ(M ). The right-hand versions

of these concepts are defined similarly, and a closed subspace which is
both left-invariant and right-invariant is called two-sided invariant.

The proof of the following proposition is straightforward and so will be
omitted; the key fact that one needs, to fill in the details, is the relation

M([t, 00) YM®([s, 00) ) € M%([s + ¢, 00)).

PROPOSITION 2.2. Let M be a left-invariant subspace of LX(M). Then
1) M reduces L(M®*);
2) té\o[ﬁ[t, co)R], and t\</0[53[t, co)IR], are left-reducing subspaces of

LY (M);
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3) if M is left-pure, then
L8l ool = {0);
and
4) M is left-full if and only if
_ r2
VIR, o)t = L(M),

where, for a subset S C LZ(M ), [S], denotes its closure in Lz(M ).
If M is a left-invariant subspace of L2(M ), then we write 9, for
’é\o[ﬁ[t, o)), and M for t\>/0[ﬂ[t, o0) W],

Definition 2.3. Let M be a left-invariant subspace of L2(M ). Then M is
said to be left-normalized (resp. right-normalized) in case M = D4 (resp.
MW = MW _)). If M is both left- and right-normalized, then we call M
completely normalized.

The following two propositions describe some basic properties of
H®°(a) and H2(a) and their proofs rest ultimately on Theorem 2.9 of [8].

PROPOSITION 2.4. The algebra H*(a) coincides with
{x € MI|L E[t, c0)LA(M) C E[t, c0)L*(M), for all t € R}
and with
{x € M|R E[t, 0)LXM) C E[t, c0)LA(M), for all t € R}.
Proof. Since
Loy = ULUy, forallx € Mandt € R,

the first identification is a consequence of Theorem 2.9 of [8]. On the other
hand, since JU, = U,J for all ¢t and JL,J = R« for all x € M, the
following calculation and Theorem 2.9 of [8] complete the proof:

Ryy = JLo(md = JU LU
= UJL.JU* = UR U

PROPOSITION 2.5. (1) The space H*(a) is a left-full, right-full, two-sided
invariant subspace of L*(M).

(2) The space Hg(a) is a left-pure, right-pure, two-sided invariant subspace
of LA(M).

a(x)

Proof. Proposition 2.4 shows that Hz(a) is a two-sided invariant and it
also shows that H(z)(a) is two-sided invariant once one notes that

E(t, c0) = S\>/t E [s, 00).
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(1) It suffices to prove that Hz(a) is left-full. To this end, consider
VORI co)HA@) |y = [L(M)H (@) ]
Since [L(M)H(a) ], is a left-reducing subspace of L*(M), there is a
projection p € M such that
[LAM)HY ) ], = R,LAM).

Since H®(a) is {U,},cg-invariant and L(M) is {a,},cg-invariant,
RpLz(M) is {U,},cg-invariant. Thus p is {a,},cg-invariant. Also, since
R, = E[0, oo), we have R, _, = E(—oo, 0). Set

=
Q = Ll —pRl —p°

Then, by Lemma 2.6 of [3], the quadruple
{(OL(M)Q, QLAM), QIQ, QLA (M)}

is a standard form for QL(M)Q. Since 1 — p is {a,},cg-invariant, Q
commutes with {U,},cg. So, if {atQ},eR is the automorphism group of
QL(M)Q defined by

a2(QL,Q) = QLy(\Q, x € M,
then the restriction,
UrQ = UtlQLZ(M)’

of U, to QL2(M ) is the canonical unitary group that implements
{af},cr and preserves the standard form. On the other hand, since
R,_, = E(—00, 0), we find that

Sp(U?) C (—oo, 0),
and so

Sp(U?) € (—o0,0) N (0, 0) = @
since

U20JQ = QIQU? forallt € R.

Thus Q = 0, and by Corollary 2.5 of [3], p = 1. Hence Hz(a) is
left-full.
(2) Put

W = AL, o) HA (@) ]y

and note that by Proposition 2.2, I is left-reducing. Consequently there is
a projection p in M such that

M = R,LX(M).
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Since M is {U},},cp-invariant, p is {a, },cg-invariant. Also since E(0, o) is
the projection onto

Y [t c0)HX(@) ],

R, = E(0, ©0). So, as in the proof of (1), we conclude that p = 0, proving
that H?‘(a) is left-pure, and completing the proof.

Remark 2.6. 1t follows from Proposition 2.7 of [19] and Lemma 3.3 of
[21] that Hz(a) need not be left- or right-pure.

3. Invariant subspaces and cocycles. In this section we refine the results
of [8] and parameterize the invariant subspaces for H(«) in terms of
cocycles. Let I be a left-invariant subspace of L*(M). By Theorem 5.2
of [8], I has a “Wold” decomposition IM; & M,, where M, is a left-
pure, left-invariant subspace, and I, is a left-reducing subspace. Since it
is sufficient to describe the left-pure part, I¢,, of M we assume now,
without loss of generality, that It = ;. Also, we shall assume that It is
left-normalized, the argument when It is right-normalized is similar. For
t € R, let F, be the projection of L*(M) onto

A\€s, o)y,

and let

E= VF.
t€R

Since
2 -
ELXM) =V [2[t, o),
is left-reducing by Proposition 2.2, there is a projection p € M such that
E = R,. Since M is left-pure, by assumption,
té\R[ﬁ[s, o)), = 0

by Proposition 2.2, and so

AF, = 0.
teR

As in the proof of Theorem 5.2 of [8], there is a spectral measure with
values in the projections on R L2(M) such that F[t, c0) = F, By
construction and the hypothesis that It is left-normalized, we see that

M = FyL’(M) = F[0, )R, L*(M) = F[0, 0co)L*(M).
Also, by construction,

(X[t, 00) )F[s, c0)R,LAM) S F[s + t, c0)R,LX (M),
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for all s, t+ € R. Consequently, if {V},e g is the strongly continu-
ous unitary representation of R on R, L’ (M) which is the Fourier-Stieltjes
transform of F, then

LyyR, = VL,Vy forx € Mandt € R,

by Theorem 5.2 of [8]. Put A, = VUy. Then since V'V, = VV} = R, we
have

AL, = VUL, = VUL U?

I

= VtLo‘,,(x)l];|= = KV;kKLa (x) Ut*
= VL, ViV,Ur = LR,V,Ur

= LYUf = LA,

for all x € M and ¢ € R. This implies that 4, lies in L(M)" = R(M).
Consequently, there is a strongly continuous family, {a,},cg, of partial
isometries in M such that 4, = R, . Since

Ryrg, = RyRyx = VUIUVE
=WVt =R,
and
R,pr = RpR, = UVIVUF = UR,U?
= Ratpy

we find that afa, = p and a,af = «,(p). Moreover, {a,},cg has the co-
cycle property, namely, since

= R, UR, U} = VUrU VU UF
=V Ui =R

s

afa)a,

at5

a,., = a,(ag)a, for all s, ¢ € R. The discussion to this point is summarized
in the first half of the following theorem; the proof of the second half is
straightforward, and so will be omitted.

THEOREM 3.1. Let M be a left-pure, left-invariant subspace of L>(M) that
is left-normalized (resp. right-normalized). Then there is a projection p in M,
a strongly continuous unitary representation {V,},cg of R on R L2(M)
and a strongly continuous family {a,},cg of partial isometries in M such
that

(l)La(XR = VL .V}, forallx € M, t € R;

V= for allt € R;

(3) afa, = p, a,a, = a,(p) and a, , = a,(a,)a,, for all s, t € R; and

4 M = FIO, oO)R, I? (M) (resp M = F(0, o)R, LZ(M) ), where F is the
spectral measure for v on R, LX(M).
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Conversely, given a projection p in M and a strongly continuous family
{a,},cr of partial isometries in M which satisfies (3), the family {V},cg,
defined by the formula

V=R, t€R

is a strongly continuous unitary representation on RPLQ(M ) that satisfies (1)
and has the property that if F is the spectral measure of {V,},cr on RpLz(M ),
then the space M defined by the formula(s) in (4) is a left-normalized (resp.
right-normalized), left-pure, left-invariant subspace of L*(M).

Definition 3.2. A strongly continuous family {a,},cg of partial
isometries in M satisfying condition (3) in Theorem 3.1 will be called a
cocycle and p will be called its initial projection.

Theorem 3.1 asserts that there is a one to one correspondence between
cocycles and left-normalized, left-pure, left-invariant subspaces. The next
proposition and its corollaries are devoted to describing the right invariant
subspaces of LZ(M ) that are left reducing. This is the key to determining
sufficient conditions for the maximality of H*(a).

ProPOSITION 3.3. Suppose there is a projection p € M such that the
subspace RpLz(M ) is right-invariant, but not right-reducing. Then there is a
projection q in Z(M) N\ M*® such that {a,qu},eR is inner.

Proof. Let W = R,L*(M), and put

Wy = AR, oMY,
Then on the basis of Proposition 2.2, it is easy to see that 3¢, reduces both
L(M) and R(M), i.e.,

M, = R, LY(M)
for some central projection ¢ € M, g = p, and

)
MM = R(p_q)L M)

is right-invariant and right-pure. As a result, we may assume without loss
of generality that I = RPLZ(M ) is right-pure.
Form

mH = AR, 0], and

()

I

V[, 0o,

Since M is left-reducing, so are M and M. Hence, there are
projections p,, and p_, in M such that

W — R, [AM) and M) =R, IXM).
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There are two cases to consider.

Case 1. M) and M) are right-reducing. In this case, of course,
P(+) and p._, are central, but since I is left-pure, by hypothesis, and
since M) € M, we conclude that P(—y = 0. But then we find that

(R, L)) 7 = @) = ;™ = (0}
by Corollary 5.6 of [8]. Hence

[R(r, cO)R,  LHM)], = {0} forall 1 > 0;
1.€.,

P(+yM°([t, 00)) = {0} forall z > 0.

We claim that p . \M & M* so that {«,| Mp<+>}!€R is trivial and therefore
inner. To see this, suppose there is an x € PryM\M % Then there is a

nonzero ¢t € R such that ¢t € Sp,(x). Since Sp(x*) = —Sp,(x), we may
suppose that + > 0. We may then choose a function f € L'(R) such
that

supp f C [t/2,31/2] and a(f)x # O.
Of course

Sp(a(f)x) S [t/2, 3t/2).
However, since

P(+yM*([s, ) ) = {0} fors >0,
we conclude that

a(f)P1y¥) = alf)x) = 0,

which is a contradiction. Hence, p.,\M S M* as we claimed.

Case 2. Either M) or M(7) is not right-reducing. We assume that
M) is not right-reducing; the argument for (™) is similar. By
Proposition 5.5 of [8], M) is left-normalized with respect to R .
By Theorem 3.1, there are a projection g in M, a strongly continuous
unitary representation {¥,},cg of R on Lqu(M ) and a cocycle {«,},cg of
partial isometries in M such that:

(1) RyL,=VR]Vy, x€ M 1t €R;

2 V=LU, t€R; and

(3) M = F[0, o)L, LH(M),

where F is the spectral measure for {V,},.g on Lqu(M). Since

Lqu(M) =V [Rlr, o),
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and M is left-reducing, g is a central projection in M. Since L, = R, (1)
implies that

RypRq = Roplqg = ViRV = VLV = L, = R,

and so a,(q) = ¢ for all + € R. On the other hand, since F[t, o) is the
projection of Lqu(M ) onto

A [R[s, 00,
and M is left-inducing, F[t, co) lies in L(M) = R(M). Thus V; € R(M),

and we conclude that there is a unitary representation {,},cg of R in Mg
such that V, = RV’. Appealing to (1), again, we have

Ry = R,R Ryqly = VR VE = RR R, = R
Thus

a(xq) alxq) — vEXqQV®

a,(xq) = v¥(xq)y, forallt € R,
and so {a,ly,},er is inner on Mq. This completes the proof.

COROLLARY 3.4. Suppose that {a,},cg is not trivial on M. If M® is a
factor, then every two-sided invariant subspace of L2(M ) which is not
left-reducing is left-full and left-pure.

Proof. Let M be a two-sided invariant subspace of Lz(M ) which is not
left-reducing. Form

My = A[RlL M, and M_o, = VOILL, c0)M),.

Then both M, and M __, are left-reducing and right-invariant
subspaces of L2(M ). If either M,  or M _  is not right-reducing, then by
Proposition 3.3, there is a nonzero projection g in Z(M) N M* such
that {a[s/,},eg is inner. Since M*® is a factor, ¢ = 1, and we conclude that
there is a unitary group in M which implements {a,},cg. Since this
unitary group is contained in the center of M*, which is a factor, we see
that a,(x) = x forall t € Rand x € M, ie., {a},cg is trivial. This
contradiction shows that I,  and M __ are two-sided reducing
subspaces of L2(M ). Hence there are central projections p_ ., such that

M. o, = R, LA(M).
Form
Em(_,_) = té\O[Q[t’ OO)EIR]2 and EIR(_) = t\>/0[8[t’ OO)EIR]Q.
If both M, and M _, are left-reducing, then W) = M_,, while

M _y = M, . In this event, the argument in the proof of Proposition 3.3
shows that
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{edvip_—p o dicr
is trivial on M(p_, — p.,) Which, in turn, means that
P-oo 7 Pt+oo € Ma N g(M)

Since M is a factor, we have p__ — p,. = 1, a contradiction.
Therefore, either M4y or EIYE(V) is not left-reducing. Setp = p_ o — P4 oo
If M, is not left-reducing, then by Theorem 3.1, there is a unitary group
{V},cr On RpLz(M) such that

LyoR, = VLVF, x € M.
Since Lp = Rp, we have

LypL, = VLVF = V¥V V¥ = L,
and so «,(p) = p for all t € R. Thus

p € FM) N M

Since M“ is a factor, p = 1, which implies thatp__ = l and p, = 0.
Hence I is left-pure and left full, and the proof is complete.

COROLLARY 3.5. Suppose that {a,},cg is not trivial and M* is a factor.
If M is a two-sided invariant subspace of L*(M) which is not left-reducing,
then M, is not left-reducing.

Proof. Let M be a two-sided invariant subspace of L2(M ) which is
not left-reducing. Applying Corollary 3.4, we know that 9t is left-pure and
left-full. If M, were left-reducing, then M ) = L*(M) because I
is left-full. By Theorem 3.1, then, there is a strongly continuous unitary
group {V},cgp On LZ(M), whose spectrum is nonnegative, which
implements {a,},cg. By the corollary to Theorem 3.1 of [2], there is a
unitary group {w,},cg in M such that

Loy = L, L.L,s.
This unitary group must lie in the center of M, and since M“ is a factor,
we conclude that {a, },c g is trivial on M. This contradiction completes the

proof.

4. Maximality of H(«). Finite algebras. In this section, we suppose
that M is a o-finite, finite von Neumann algebra. Recall that this is
tantamount to assuming that there is a faithful, normal, finite trace 7 on
M. We fix one such trace for the remainder of this section and we assume
that there is a 7-preserving, o-weakly continuous flow {a,},cgp on M. We
note that L2(M ) coincides with Segal’s Lz-space, [20], constructed from T,
L*(M, 7), and we note that since M is finite and {a,},cr preserves 7, there
is a faithful, normal, {«,},cg-invariant expectation ¢, from M onto M*. It
results from this, as is proved in [7], [8], and [27], that H*(«) is a finite,
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maximal, subdiagonal algebra in M with respect to ¢, in the sense of
Arveson [1]. Finally, we note that since {a,},cg 1s 7-preserving, the
canonical unitary group {U, },cg On L*(M, 7) determined by {a,},cgr asin
Section 2 is given by the formula

Ux) = a,(x), x € M.
This observation yields
LEMMA 4.1. If {E[t, 00) },cRg is the spectral measure for {a,},cp, then
E[t, 00)LA(M, 1) = [M®([t, 00)) ],.
Proof. From elementary spectral theory we know that
E[t, co)LA(M, 7) = {x € L*(M, 7)|Spy(x) € [t, o0) }.
Since {U,},cg is an extension of {a,},cp,
E[t, co)LXM, 7) N M = M%([t, o0)).

Since E[t, oo)Lz(M, 7) is a left-invariant subspace of LZ(M, 7), Theorem 1
of [16] implies that

E[t, 0o)L*(M, 1) = [M*([t, 00)) ],
and completes the proof.

THEOREM 4.2. Let M be a von Neumann algebra with a faithful, normal,
finite trace T on M, and let {a,}, g be a o-weakly continuous flow on M such
that o a, = 7, for all t € R. If M* is a factor, then H®(a) is a maximal
a-weakly closed subalgebra of M.

Proof. Suppose that there is a o-weakly closed subalgebra B of M such
that H(a) € B € M. Form M = [B], and apply Theorem 1 of [16] to
conclude that

M # LM, 7).

Moreover, I is a two-sided invariant subspace of LZ(M, 7) which is not
left-reducing since 1 € B. By Corollary 3.4, M is left-pure and left-full,
and so, by Corollary 3.5, M, is not left-reducing. Therefore, by Theorem
3.1, there is a unitary group {V}},cg and a cocycle {a,},cg of unitary
operators in M such that

v, = R, U, M, = F[0, 0)L*(M, 1), and
M, = F(0, c0)L*(M, 1),

where F is the spectral measure of {V/},.g. Since
MWy €M< M,

the projection of L2(M, 7) onto M, Py, commutes with the spectral
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measure {F[t, o0)},zg, and so Pg commutes with {}}, cg.
Hence VIt = M for all t € R. Put

B ={x € MILI® C M).

Then B is a o-weakly closed subalgebra of M that contains B and satisfies
[B], = [B],, as may be seen from the~proof of Theorem 4.1 of [10].
By Theorem 1 of [16], then, we find that B = B. Next observe that for all
X € B,

Loy = VLV = VLI C VI = N,
for all + € R, and so B is {a,},cg-invariant. Since
U,F[t, 0)U*LA(M, 7) = U,F[t, c0)L*(M, 7)
— 2
= U AIRIr, 0oy, & A J[RIr, co)iR

= Ft, 00)L*(M, 7),
we see that
UF[t, co)U¥ = F[t, c0) forallt € R.

This implies that equality holds and, therefore, that {}]},cg and {U,},cr
commute. As a result, we find that {«,},cg is a unitary group in M*®. Since
each of the spaces FJt, oo)Lz(M, 1) is right-invariant, each is R(M®%)-
invariant. Thus, for all ¢, F[t, co) lies in R(M®)Y and so, therefore, does
{¥,},cgr- From this we conclude that

R, € R(M® N R(M®Y,
and since M® is a factor, there must be a real number A such that a, = eN.
Thus

V= ei}‘tl/, for all € R.

If E denotes the spectral measure of {U,},cgr, then we conclude from this
and Lemma 4.1 that

[M*((—A, 00)) ], = E(—A, 0c0)L(M, 7)
= F(0, c0)L* (M, 7) € M C FI0, co)LA(M, 7)
= [M*([—A, 0)) L.

Since M 2 H*a), we have A > 0. Since [M%([—A, o0))], is a
left-invariant subspace and M%([—A, c0) ) is a-weakly closed, Theorem 1
of [16] implies that

M (=X, 0)) € B € M*([—A, 00)).

We must now consider two cases:
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(1) M*((—A, 00)) * H®@); and
(2) M*((—A, ) = H ().
Case (1). In this case, we have that for —A <t < 0,
[M*([t — A\, 00)) ], = E[t — A, 00)L*(M, 7) = F[t, c0)LA(M, 7)
= A _IRIs, )F0, c0)L*(M, 7)1,

S _ A _[Rs, 0o)[Bl,

—As<t
C [B), € F[0, co)L*(M, 7).

From this and Theorem 1 of [16], we conclude that M*( (—2A, c0) ), which
is the o-weak closure of

U M*([t — A, 00)),

—A<t

is contained in B. Repeating this argument, we conclude that M*( (—nA,
o0)) is contained in B for all n > 0 and, therefore, that B = M, a
contradiction.

Case (2). Since M® is a factor, Sp(a) is a subgroup of R by Proposition
16.1 of [23). If

M (=X, 00)) = H™(a),
then we conclude that

Sp(e) = {nA}, cz.
Set

B(—X) = BN M*({—A}).

Since B # H™(a), B(—\) # {0}. As in the proof of Theorem 2.3 of [18],
there is a unitary operator u in M*( {—A} ) such that

M*({—A}) = M*u = uM*.
Consequently,
H®(a) = u*M*([—A, 00)) 2 u*B 2 u*M%((—A\, 00)) = H'(a).

Now u*B is a o-weakly closed two-sided ideal in H°(a) containing
H () properly. Therefore, €,(u*B) is a nonzero ideal in M. Since M“is a
finite factor, and therefore algebraically simple, we see that

eu*B) = M°.
Therefore,

u*B = H®@a) and B = uH™®(a) = M%([—A, 00)).
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In particular, u € B and we have
B 2 uB = M%[—2\, o)) = v’H*(a).
Repeating this argument yields the inclusion
B 2 M*([—n\, 00)) foralln > 0,

which implies that B = M, again a contradiction. This completes the
proof.

5. Analytic crossed products. The continuous case. Let N be a von
Neumann algebra on a Hilbert space H, and let {f,},cg be a o-weakly
continuous flow on N. Recall that the crossed product, N X s R
determined by N and {8, },cg is the von Neumann algebra on the Hilbert
space LZ(R, H) generated by the operators m(x), x € N, and A(s), s € R,
defined by the equations

(@(x)f)t) = B_(x)f(t), f€ L* R, H),t €R,
and

AGS)f)0) = ft — s5), fe LR, H),1 €R.

The automorphism group {a,},cg of N Xz R which is dual to {B,},cg in
the sense of Takesaki [25] is implemented by the unitary representation of
R, {S,},cr, defined by the formula

(SS)s) = f(s), f € LR H);
that is,
a(y) = SySy, forally € N XzR.
The group {«,},cp is characterized by the equations
a,(m(x)) = m(x), x € N,t € R,
a,\(1)) = e “\(@), s, 1 € R.
In particular,
7(N) = {y € N Xz Rley(y) =y, for all € R}.

For simplicity, we write M for N Xz R. The following proposition was
proved by M. McAsey and the first author in the context of C*-crossed
products in [9]. In the von Neumann algebra setting, there is a simpler
proof.

ProposITION 5.1. Let N Xz R denote the o-weakly closed subalgebra
generated by w(N) and {\(s) };cr,. Then the three spaces, H “(a),
N Xg R and Hi () coincide.

Proof. Since m(N) = M® and since Sp(A(s)) = s, it is clear that
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N XgR, S H™(a).

To see that Hy (@) S N Xg R, choose x E M with compact spectrum
contained in (0, co). Then choose an fin L' (R) such that f ) =1, for
all + € Sp,(x) and such that the support of f supp f is compact and
contained in (0, c0). By Proposition 14.2 (9) of [25], a(f)x = x. Since M is
the o-weak closure of the linear span, L, of m(N) and {A(s) },cg. there is a
net {x,},cr in L that converges o-weakly to x. Then {a(f)x,},cr
converges o-weakly to a(f)x = x. Since

Spa(a(f) )x,) € supp fn Spa(x,) € (0, 00),

by Proposition 14.2(3) of [23], and since a(f )x, belongs to L, we see
that x € N X s R Since HO (a) is the o-weak closure of the set of all
x € M with compact spectra in (0, co), we conclude that

H(a) € N XgR,.

To complete the proof, we need only show that
H®(@) € HY ().

But if x € H*(a), then for all ¢ > 0,
No)x € H(a).

Since {A(?) },cg is a strongly continuous unitary group, A(z)x converges
o-weakly to x as t — 0. Thus x € H{ (a), and the proof is complete.

By Proposition 5.1, H®(a) is the o-weakly closed subalgebra of M
generated by m(N) and {A(?) },cg,, and so, as in [10-12], we call H*(a)
the analytic crossed product (formerly, non-self-adjoint crossed product)
determined by N and {f,},cg- Since there are no {e,},cg-invariant,
faithful, normal conditional expectations of M onto M* = #(N), H>(«a) is
not a subdiagonal algebra in the sense of [1]. However, we do have a
necessary and sufficient condition for H*(«) to be maximal among the
o-weakly closed subalgebras of M.

THEOREM 5.2. With the notation as above, H™(a) is a maximal o-weakly
closed subalgebra of M if and only if N is a factor.

The proof rests on several lemmas. First recall that the formula

e(x) = fo_ooo a,(x)dt, x € M

defines a faithful, normal, semi-finite, operator-valued weight € from M
onto m(N) by Lemma 5.2 of [S]. We denote {& € Mle(x*x) € M} by &.
As is shown in Section 1 of [4], {a,},cg has a natural extension to
the extended positive part of M, M. We keep the same notation for
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this extension. Since e 0 a, = ¢, ¢ € R, and since there is a faithful normal
semi-finite weight iy, on m(N), we obtain an {e,},cg- invariant, faithful,
normal, semi-finite weight on M through the formula

Wx) = Yple(x)), x € M,

(see [23, Proposition 11.6] ). In this section, we shall have to investigate the
subspaces of space L2(M ) associated with M and ¢ that are invariant
under H(a).

LEMMA 5.3. Put &, = H™(a) N &. Then &, is o-weakly dense in
H%(a).

Proof. Set
A = {x € H™(a) Isp,(x) is compact in (0, o) }.

Then, by Proposition 5.1, 4 is o-weakly dense in H*(a). Let x € 4 and
choose [ € L'(R) with compactly supported Fourier transform such
that supp f < (0, o0) and such that a(f)x = x. Since ¥ is o-weakly
dense in M, there is a net {x,},cr in & converging o-weakly to x. Then
a(f )x, converges o-weakly to a( f)x = x. By Lemma 21.3 of [23],

a(f)x, € AN < F,, forally €T
Hence &, is o-weakly dense in H”(a) and the proof is complete.

LeMMA 5.4. If B is a o-weakly closed subalgebra of M containing H*(a),
then B N & is o-weakly dense in B.

Proof. Since & is o-weakly dense in H°(a), by Lemma 5.3 there is a
net {e,}, cr in & converging o-weakly to 1. Since & is a left ideal in M,
xe, € B N ¥ and xe, converges o-weakly to x. This completes the
proof.

LEMMA 5.5. If M is a left-invariant subspace of L*(M), then I is
completely normalized.

Y

Proof. 1If SIR(+) #* EIR(_), then by Proposition 5.5 of [8], the vector state
determined by any unit vector in M, © M _ is {a, },cg-invariant. But
there are no {a,},cg-invariant normal states of M. For, if ¢ is one, then
since & is o-weakly dense in M, there is an x in $ such that ¢(x*x) # 0.
We then have

e = o [ atem Jar = [ ataaenr ar

= f_oo o(x*x)dt = oo.

This contradiction completes the proof.
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LEMMA 5.6. If N is not a factor and if {B,},cg acts ergodically on the
center, Z(N), of N, then there is a family {e,},_ of projections in Z(N) such
that

e, = eBe), s t<O,
and 0 < e, < 1 for some t < 0.

Proof. First we note that Z(N) is nonatomic. Indeed, if p is a minimal
projection in Z(N), then so is B,(p) for all 7. Consequently, for each
t € R, B(p)p = 0 or p. Since {B,},cr is o-weakly continuous, B,(p)
converges to p o-weakly as t — 0. It follows that 8,(p) = p for all 7 in a
neighborhood of 0 and, therefore, for all # € R. Since {8,},cg is ergodic
on Z(N),p = 1, and so N is a factor. This contradiction shows that there
are no atoms in Z(N).

Next we observe that there is a faithful normal state on Z(N). (Note:
We do not assume a priori that N is o-finite and therefore, that 2(N) is
o-finite.) Let ¢, be any normal state of Z(N) and let s(g,) be the support
projection of ¢,. Then

B,(s(py)) = s(gyo B_,) forallz € R.
By ergodicity,
IXRS(‘pO o B[) = 19

but also by the o-weak continuity of {8,},cr,
té/QS((po [e] ﬁt) = 1

If {z,},%, is a counting of the rationals, then

§ (l)% 0B,

n=1 2"

is a faithful normal state on Z(N).
By Cohen’s famous factorization theorem,

{a(/)xIf € L'R), x € Z(N)}

is a {a, },cg-invariant, o-weakly dense, C*-subalgebra of Z(N) on which
{B,},cr is strongly continuous. If £ is the maximal ideal space of this
subalgebra, then there is a continuous, one-parameter group of homeo-
morphisms, {7, },cg, of {, and, from what was just noted above, there is a
nonatomic, quasi-invariant, ergodic, probability measure p on £, with
supp(p) = £, such that

[(B,(x) Xw) = T(x)(T,w) a.e. (),
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where T is the canonical extension of the Gelfand transform to all
of Z(N), mapping isomorphically onto L>(p). Let E be an open subset
of © such that 0 < w(E) < 1. Since p is nonatomic and the function,
(t, w) = T,w, from R X  to 2 is continuous, there is an open subset W of
E (so (W) # 0), and a positive § such that if || < 8, and if € W, then

T.w € E. Thus
WC NTECE.
lij<s

For each t < 0, we set

E,= _n_TE.

1=s=0
Then
E ., =E NT(E) fors,t <0

and from the last inclusion, we conclude that there is a ¢ such that
0 < w(E,) < 1. So, if we define

e, =T7'(1g), <0,
then we obtain the desired family of projections, {e,},, in Z(N).

Proof of Theorem 5.2. Suppose that N is a factor and that B is a o-weakly
closed subalgebra of M such that H(@) € B & M. Then there are
nonzero vectors £ and 7 in Lz(M ) such that

wen(y) = (L m) =0, forally € B.

Form M = [L(B)¢],. Then M is a left-invariant subspace of L*(M) which
is not left reducing since w;, # 0. By Lemma 5.5, I is completely
normalized. Set

- 2
", r‘/E\R[Sv[t, oo)M],
to obtain a left-pure, left-invariant subspace of Lz(M ) that is completely

normalized. By Theorem 3.1, there is a projection p € M and there is a
strongly continuous representation {¥,},cg of R on RpLz(M ) such that

M = F[0, )R, LA (M),
where F is the spectral measure for {}]},cg. Set
B = {x € MIL:M < M}.
Since Rp > F[0, co), we have, for all x € B,
Loy = Ly FI0, 00)LX(M)
= LoR,LX (M) = V,L ,V¥F[0, 0)R,L*(M)
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N

V,L,F[0, 00)R,LA(M) S V,F[0, 00)R,LX(M)
F[0, co)LX (M) = .

I

Thus B is an {«,},cg-invariant, o-weakly closed subalgebra of M such
that M 2 B C B (B # M because I is not left-reducing). (We will see
later, in Lemma 5.7, that the introduction of B really is superfluous; B
already is invariant.) By Lemma 5.4, B N & is o-weakly dense in B. Since
B (2 H®(«)) is {a,},cg-invariant, and {,},cg is an integrable action,
there is an element x € B such that

Sp(x) = {t} for somer <0

(cf. [23, Section 21.3]). But then there is an x; € N such that
x = m(xp)A(2). So,
T(N)Ym(xg)m(NA(2) = 7(N)m(x)A()m(N) = m(N) X #(N) € B.

Since N is a factor, and since m(N)m(xy)m(N) is a two-sided ideal of #(N),
we conclude from this inclusion that

a(N)A(t) € B

and, therefore, that \(f) € B. This implies that A(s) € B, for all s € R.
Indeed, if s > ¢, then

AGs) = MO — ) € B,

while if s < 7, then, choosing a positive integer n such that s = nt, we
conclude that

As) = A(#)"'A(s — nt) € B.

Since B contains 7(N), as well, we reach, finally, the contradiction that
B = M. Thus H*(a) is a maximal o-weakly closed subalgebra of M.

For the converse, suppose that N is not a factor. If {8,},cg is not
ergodic on &(N), then for any proper, {8,},cg-invariant projection p in
S(N), it is evident that

7(p)H™(a) ® (1 — p)M

is a proper o-weakly closed subalgebra of M containing H*°(«) properly.
Consequently, without loss of generality, we may suppose that {8,},cr
acts ergodically on Z(N). By Lemma 5.6, then, there is a family, {e, }, -,
of central projections in N such that

€15 = ¢B,(e),

foralls, s <0,and 0 < e, < 1 forsomet < 0. Wesete, = 1forz = 0,
and let B denote the o-weak closure of the linear span of

H%@) and  {7(e)m(N)N1) },<o-
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Evidently, H*(a) € B & M, and so, to complete the proof, it suffices to
prove that B is an algebra. If 7, s < 0, then

(m(e)m(NIAQ) )(m(eym(NIA(s) )
= (e, )m(B,(e) )m(N)A( + 5)
= 7(e, )m(NIA( + 5),

while if t < 0 and s = 0, then
(m(e)m(N)A(t) )m(N)A(s)
= @(e,)m(N)A(t + s)
C 7m(e,  )m(NIA( + 5).

These two computations show that B is closed under multiplication and
complete the proof.

This proof of Theorem 5.2 suggests the form of all the o-weakly closed
super-algebras of H®(a) when H®(a) is not a maximal o-weakly
closed subalgebra of M. Our objective in the remainder of the paper is
to show that the suggestion is correct. We need a series of lemmas; in
them, B will denote a fixed o-weakly closed subalgebra of M such that
H®a) € B S M.

LEmMMA 5.7. B is {a,},cgr-invariant.

Proof. As in the proof of Theorem 5.2, we can find proper,
{a,},cgr-invariant, o-weakly closed subalgebras of M that contain B. We
let B be the smallest such algebra. If B # B, then there are nonzero
vectors, ¢ and 7, in L2(M ) such that

we(x) =0 forallx € B
while

wgq(xp) # 0 for some x, € B.
Let

C = {x € M|L,[B}, < [B¢,}

As in the proof of Theorem 5.2, C is a proper o-weakly closed subalgebra
of M containing B that is {a,},cg-invariant. Therefore B S C. Since
[C£], = [BE£],, we have [B£], = [Bé],. But then,

wen(x) =0 forall x € B.
This contradiction completes the proof.

LEMMA 5.8. For each t << O, there is a central projection e, in N such
that
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B N MY {t}) = m(e,)m(N)A().
Proof. Let
B, = BN M%{t}) forallt<0.
Since m(N) = M°*({0}) € B,
7(N)B,n(N) = B,

Thus B,A(—t) is a o-weakly closed two-sided ideal in «(N) and we
conclude that there is a central projection e, in N such that

BA(—1t) = m(e,)m(N).
This completes the proof.
LEMMA 5.9. For all s,t < 0, e,,, = e,B,(e,).
Proof. Since
m(B,(e,)) = MD)m(e)N(t)*,
we have
m(e, (B, (e,) (NN + 5)
= m(e,)m(N)m(B,(e,) ym(NADA(s)
= (m(e, (NI (e, )m(NA(s) )
= B,B;, € B,;, = (e, Jr(N)A(t + s).
Thus ¢,B,(e,) = e,,,. To prove equality, observe that since
B.. \—s) C B,
we have ¢, = e,. On the other hand, since ¢+ << 0, we have
7(B_ (1) )m(N)A(s)
= M—t)m(e,  Jm(NIA(I + 5)
= AM—1)B,,, € B, = m(e,)mn(N)A(s).
This implies that 8_ (e, ,,) = e, and so e, = B,(e,). Thus
e,., = epf,(e) foralls, <0,
and the proof is complete.

OI:)EMMA 5.10. B is the o-weakly closed linear span of {B,},-, and
H™(a).

Proof. This is an immediate consequence of the Fourier inversion
theorem (cf. [23, Corollary 21.3]).
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Combining Lemmas 5.7-10 with a calculation in the proof of Theorem
5.2 gives a proof of our last result.

THEOREM 5.11. If B is a o-weakly closed subalgebra of M containing
H™(a), then there is a family, {e,},cgr. of central projections in N such
that

v

e, =epPe) s t<0,e=11=0,
and such that
B N M*({t}) = m(e,)m(N)A().

Conversely, given such a family {e,},cg. the o-weakly closed linear span of
the spaces

{W(ez)W(N)A(t) }16R
is a o-weakly closed subalgebra of M containing H®(a). Moreover, the

correspondence between subalgebras B and families {e,},cg is bijective.
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