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Abstract

We consider the class of solvable groups in which all subnormal subgroups have subnormal normalizers,
a class containing many well-known classes of solvable groups. Groups of this class have Fitting length
three at most; some other information connected with the Fitting series is given.

2010 Mathematics subject classification: primary 20D10; secondary 20D35.

Keywords and phrases: subnormal subgroups, permutable subgroups, hypercentrally embedded
subgroups.

1. Introduction

Among the classes of finite solvable groups there has been much attention to
classes of groups with particular properties of their subnormal subgroups: we name
here groups with all of their subnormal subgroups normal (T-groups), permutable
with all subgroups (PT-groups), permutable with all Sylow subgroups (PST-groups),
normalized by the nilpotent residual. These classes form a hierarchy; a class not
considered so far and containing all the classes mentioned before is the class of
solvable groups all of whose subnormal subgroups have subnormal normalizers. As
we will see, this class does not only comprise metanilpotent groups, but the extension
is very restricted.

2. A hierarchy of subgroup classes

A subgroup U of G is called permutable if it is permutable with all subgroups
of G. Maier and Schmid [5] have shown that permutable subgroups are hypercentrally
embedded, that is, U/UG is contained in the hypercenter of G/UG. In particular, U is
subnormal.

A subgroup U of G is called S-permutable if it is permutable with all Sylow
subgroups of G. Kegel [4] has shown that these subgroups are subnormal, Schmid [7]
proved that GN ⊆ N(U) and UN ⊆ UG.
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As a consequence we have the following hierarchy of subgroup classes.

P 1. The following statements for the subgroup U of G are pairwise
nonequivalent; the later mentioned statement follows from the preceding one.

(i) U is permutable.
(ii) U is hypercentrally embedded.
(iii) U is S-permutable.
(iv) GN ⊆ N(U).
(v) N(U) is subnormal.

P. (i)⇒ (ii) was shown by Maier and Schmid [5], (ii)⇒ (iii) is obvious, (iii)⇒
(iv) follows from Kegel [4] and Schmid [7], and (iv)⇒ (v) is again obvious.

We show the nonequivalence by means of three examples.

(A) If D is a nonabelian dihedral 2-group, any noncentral subgroups of order two are
not permutable. So (ii); (i).

(B) Consider the wreath product W = A4 oC2. Let K be the Klein 4-group of one of
the factors A4. Then KW = 1 = Z(W) and K is S-permutable, so (iii); (ii).

(C) Consider V = 〈x, y, z, w〉 with the following relations.

z7 = w7 = [z, w] = y3 = z5y2zy = w3y2wy = 1,

x4 = yx3yx = zx3wx = wx3zx = 1.

Here 〈z〉V = 1, N(〈z〉) = VN and 〈z〉〈x〉 , 〈x〉〈z〉. So (iv) ; (iii). Further, 〈zw〉
is subnormal and N(〈zw〉) = 〈z, w, x2〉 is subnormal but does not contain VN ,
showing that (v); (iv). �

We turn now to groups all of whose subnormal subgroups satisfy one of the
statements (i)–(iv) of Proposition 1.

T 2. Let G be a solvable group such that all of its subnormal subgroups satisfy
one of the statements (i)–(iv) of Proposition 1. Then GN = M is a Dedekind group,
and the following statements hold:

(a) statement (iv) is true for all subnormal subgroups of G if and only if the following
conditions hold for all Sylow p-subgroups S :

(i) there is a supplement CS of S ∩ M in S such that [CS , S ∩ M] = 1;

(ii) if M′ , 1 and p = 2, then CS is elementary abelian;

(b) statement (iii) is true for all subnormal subgroups of G if and only if all
subgroups of M are G-invariant and M is a Hall subgroup;

(c) statement (ii) is true for all subnormal subgroups of G if and only if all subgroups
of M are G-invariant and M is a Hall subgroup;

(d) statement (i) is true for all subnormal subgroups of G if and only if all Sylow
subgroups are modular, all subgroups of M are G-invariant, and M is a Hall
subgroup.
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P. Assume that the most general statement (iv) is true; then M is a T-group. The
elements of M/F(M) induce power automorphisms in F(M) and these are central
automorphisms of F(M), so [G, M] ⊆ F(M). However, [G, M] = M since M is the
nilpotent residual of G. We deduce that M (=F(M)) is a Dedekind group. Now |M′| ≤ 2
and Z∞(G) ∩ M = Z(G) ∩ M = M′ (see Robinson [6, Theorem 9.2.7, p. 264]). Let C
be a Carter subgroup of G. Then CM = G and C ∩ M = M′. Consider a prime p which
divides |M| and |G/M| and choose a Sylow p-subgroup S of G such that S ∩C is the
Sylow p-subgroup of C. Then S = (S ∩C)(S ∩ M). If R is the Hall p′-subgroup of M,
then (S ∩C)R is subnormal in G and S ∩ M ⊆ M ⊆ NG((S ∩C)R) by statement (iv).
Since S ∩ M is a normal subgroup of G, we obtain [S ∩ M, S ∩C] ⊆ S ∩ M′. The
statement is true for all Sylow p-subgroups since Sylow subgroups and Carter
subgroups are conjugacy classes, and we have shown the necessity of (i) for p , 2 or
M′ = 1. For the remaining case, assume the existence of x ∈ S ∩C with [x, S ∩ M] =

M′ , 1. Let V = CS∩M(x). Then [S ∩ M, V] = 2 and V is normalized by the Hall
2′-subgroup K of C; which is impossible since [K, S ∩ M] = S ∩ M. This shows
that [S ∩ M, S ∩C] = 1. Now let y ∈ S ∩C and y2 , 1. Since S ∩ M is a nonabelian
Dedekind group it contains a subgroup 〈a, b〉 � Q8. Let R be the Hall 2′-subgroup of
M. Then 〈ya, R〉 is a subnormal subgroup of G and b < N(〈ya, R〉), contradicting the
condition that all normalizers of subnormal subgroups contain M. This shows that
both (i) and (ii) are necessary in (a).

On the other hand, pick a Sylow p-subgroup S and CS as mentioned in (a), and
assume further that CS (S ∩ M) = S with [CS , S ∩ M] = 1 for all Sylow p-subgroups.
For p = 2 and M′ , 1 assume further that (CS )2 = 1. Every subnormal subgroup T
of G is generated by the subnormal hulls of the elements x ∈ T of p-power order,
and N(T ) contains the intersection of the normalizers of these subnormal hulls.
Therefore, it suffices to show that if x ∈G is an element of p-power order and V is
its subnormal hull in G, then M ⊆ N(V). So pick a Sylow p-subgroup S with x ∈ S
and V as described, and denote the Hall p′-subgroup of M by R. Since S R = S M is
a normal subgroup of G, we have VR = 〈x, R〉 and V = 〈x, [x, R]〉. If p , 2 or M′ = 1,
then also [x, M] = [x, R] and M ⊆ N(V). If M′ , 1 and p = 2, we inspect x more
closely. We have x = yz where y ∈CS and z ∈ M ∩ S , where y2 = 1 and [y, M ∩ S ] = 1
by hypothesis. If z2 = 1, then [x, M] = [x, R] as before, and M ⊆ N(V). If z2 , 1,
then |M,C(z) ∩ M| = |M,C(yz) ∩ M| = 2 and there is an element w ∈ M ∩ S such that
w−1zw = z−1. Thus w−1(yz)w = (yz)−1 and w ∈ N(〈yz〉). So M ⊆ N(V) in this case too,
and (a) is proved.

The remaining statements are ordered such that the lower number is used for a
stronger statement for (single) subnormal subgroups. Therefore we are able to use
statement (a) and prove the possibly stronger property (b), (c), (d) of all subnormal
subgroups.

Now suppose first that all subnormal subgroups G are S-permutable. Then G
is known to be a PST-group (that is, the S-permutability property is transitive), all
subgroups of M = GN are normal in G, and M is a Hall subgroup of G (see [1]). On the
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other hand, provided that M satisfies these two conditions then, by [2, Theorem 2.4.4,
p. 90], all subnormal subgroups of G are hypercentrally embedded. We have obtained
that all subnormal subgroups of a group are S-permutable if and only if all of them are
hypercentrally embedded (and if and only if G is a PST-group). This shows (b) and
(c), so (b) and (c) are equivalent.

Statement (d) follows by specialization of (c) and the fact that all subgroups of
G/GN must be permutable and that M is an abelian Hall subgroup with all subgroups
normal in G by [2, Theorem 2.1.11, p. 60]. �

3. NSS-groups

The widest class in the hierarchy requires more. For brevity we will call these
groups NSS-groups, since normalizers of subnormal subgroups are subnormal. We
will see by means of counterexamples that NSS-groups need not be metanilpotent (see
Lemma 5). However, they will be shown later to be of Fitting length three at most.

Before we look into some special cases needed later on we notice the following: if
G is an NSS-group and U ⊆ V where U is a subnormal subgroup of G, then NV (U) is a
subnormal subgroup of V . In particular, the class of NSS-groups is closed with respect
to subnormal subgroups and quotient groups. We begin with three special cases.

L 3. Assume that the Fitting subgroup F(G) of the NSS-group G is a p-group.
Then G/F(G) is a p′-group.

P. Let G∗ = G/F(G). We must show that G∗ is a p′-group. To derive a
contradiction, we assume the existence of some element xF(G) ∈G∗ of order p. Let
x be an element of order a power of p. We denote the subnormal hull of x by X. Let
A/B be a p-group and a chief factor of X, and let U/B ⊆ A/B be a cyclic x- invariant
subgroup of A/B. Now U is a subnormal subgroup of X and of G and x ∈ N(U),
so X ⊆ N(U). This shows that U = A and all p-chief factors of X are cyclic and
(X/B)/CX/B(A/B) is an abelian p′-group. But X = XN 〈x〉 so that X/XN is of order
some power of p, so all p-chief factors of X are central. Hence F(X) is a p-group, it is
the hypercenter of X and X is nilpotent contrary to construction, so the element xF(G)
of order p does not exist. Lemma 3 is shown. �

C 4. NSS-groups are of p-length one for all primes p.

P. If L is an NSS-group and W is the maximal normal p′-subgroup of L, consider
L/W. Here F(L/W) is a p-group and (L/W)/F(L/W) is, by Lemma 3, a p′-group. �

First nonmetanilpotent NSS-groups can be derived from the following.

L 5. Assume that the Fitting subgroup F(G) of the NSS-group G is a minimal
normal subgroup of G and that |F(G)| = p2 for some prime p. If G is not metanilpotent,
then p < {2, 3} and one of the following three cases arises:

(a) p ≡ 2 (mod 3) and G/F(G) is isomorphic to a subgroup of the central product of
SL(2, 3) and Cn with 2n = p − 1;
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(b) p ≡ 3 (mod 4) and G/F(G) is isomorphic to a subgroup of the direct product

Ck × 〈x, y | x
2k = y4 = x−py3xy = xky2 = 1〉

where 2k = p − 1;
(c) p ≡ 3 (mod 4) and G/F(G) is isomorphic to a subgroup of the direct product

Ck × 〈x, y | x
2k+2 = y4 = x−py3xy = xk+1y2 = 1〉

where 2k = p − 1.

P. For |F(G)| = p2 and p ∈ {2, 3}, G is either metanilpotent or of p-length 2 and
not an NSS-group by Corollary 4. From now on p < {2, 3}.

A subgroup of GL(2, p) which is not nilpotent and not contained in (GL(2, p))2 but
in GL(2, p) possesses a nonsubnormal subgroup of order two, contrary to the NSS-
property. Therefore the subgroups mentioned in all cases have to be subgroups of
(GL(2, p))2.

We consider first the maximal NSS-subgroups of PSL(2, p) that are p′ groups: they
are isomorphic to (a) A4, (b) D2k, or (c) D2k+2 where Dn is the dihedral group of order
n and 2k = p − 1.

For case (a), we consider the preimage of A4 under the epimorphism of SL(2, p) on
PSL(2, p). This is isomorphic to SL(2, 3). In (GL(2, p))2 we obtain the product of this
group with the center Cn with 2n = p − 1 with coinciding subgroup of order two. If
p − 1 is divisible by 3, there is a cyclic subgroup of F(G) which is invariant under an
element of order three and its normalizer is not subnormal in G. So p ≡ 2 (mod 3).

Cases (b) and (c) are treated in the same way: the preimages of the dihedral groups
again have only one involution, and this is therefore central. If the subgroup mentioned
in (b) is nonnilpotent, it possesses a nonsubnormal subgroup of order four which does
not leave invariant a cyclic subgroup in F(G) by the NSS property. Therefore the
condition p ≡ 3 (mod 4) is necessary, and so the central subgroup Ck is of odd order. �

We will have to consider (not necessarily subnormal) subgroups of NSS-groups
later. For this we will need some statements in a more general setting.

L 6. Assume that the group G and its minimal normal subgroup M satisfy the
following conditions.

(a) Z(F(G/C(M))) = Z(G/C(M)) and G/C(M) is nonnilpotent.
(b) There is an element x of order a power of a prime q such that:

(b1) G/C(M) = 〈xC(M), F(G/C(M))〉; and
(b2) G/C(M) is the subnormal hull of xC(M).

(c) (G/C(M))N is nilpotent.
(d) If U is a subnormal subgroup of GN then N(U) is subnormal in G.

Then:

(I) F(G/C(M)) is an extraspecial group of order 22m+1;
(II) q = 2m + 1 is a prime and xq ∈C(M);
(III) exp(M) is a nonsquare modulo q.
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P. For brevity we put S ∗ = S C(M)/C(M) for all subgroups S ⊆G. Consider a
nonabelian Sylow r-subgroup R∗ of (GN )∗. By (b1) and (b2) we know that r , q,
and from (a) we deduce that Z(R∗) ⊆ Z(G∗). Thus Z(R∗) ⊆ Z(G∗) is cyclic by Schur’s
lemma.

To derive a contradiction, we assume first that R∗ possesses a noncyclic elementary
abelian characteristic subgroup C∗ and choose a Hall r′-subgroup H∗ of G∗. The
r-module C∗ may be considered an H∗-module; it splits into a direct product U∗ ×
Z(G∗) ∩ R∗ such that U∗ is H∗-invariant. Therefore, H∗ ⊂ N(U∗) and R∗ * N(U∗), so
N(U∗) is not subnormal but U∗ is. Note that we are using (c) and (d) of the hypothesis
here.

We obtain:
(i) abelian characteristic subgroups of R∗ are cyclic.
By a theorem of Hall (see, for instance, Huppert [3, Satz III.13.10]), we obtain that

R∗ is a central product of an extraspecial group and a cyclic, dihedral, generalized
quaternion or semidihedral group.

We want to prove first that r , 2 is impossible. For odd r, we have that R∗ is a central
product of an extraspecial group E∗ and a cyclic group. Let 〈x〉C(M)/C(M) = Q∗.
Then [Q∗, E∗] , [(Q∗)p, E∗] = 1 and we may assume that Q∗ ⊆ N(E∗). Let F∗ be a
minimal Q∗-invariant subgroup of E∗ that is not centralized by R∗. If F∗ is abelian,
it is elementary abelian and F∗ ∩ Z(R∗) = 1. Now [Q∗, E∗] * N(F∗) but Q∗ ⊆ N(F∗),
in contradiction to (d). The same happens if Z(F∗) , F∗ ∩ Z(R∗). We deduce that F∗

must be an extraspecial subgroup of E∗. There is a number k such that |F∗ : T ∗| = sk

for all maximal abelian subgroups T ∗ of F∗ and |F∗| = s2k+1. By minimality of F∗, q
divides sk + 1 and is also different from 2 and smaller than sk since s is an odd prime.
By minimality of M we have also [M, Z(E∗)] = M. Consider a minimal Q∗-invariant
subgroup L of M. By construction, Q∗ ⊆ N(L) and therefore F∗ ⊆ N(L) since F∗ is
contained in the subnormal hull of Q∗ by (d). We consider the rank d(L) of L. Since
F∗ is a normal subgroup of N(L), we obtain that sk divides d(L). On the other hand,
since L is minimal Q∗-invariant and |Q∗| = qm for some m, we have d(L) = qtw where
w divides q − 1 and t ≤ m. Clearly w < q − 1. Since s and q are different primes,
we obtain by comparison that sk divides w, so sk ≤ w < p. However, Q∗ operates on
F∗/(F∗)′ without fixed points and q divides s2k − 1, so q < sk, a contradiction. This
shows that r = 2, that is,

(ii) F(G/C(M))/Z(F(G/C(M))) is a 2-group.
Our nonabelian Sylow subgroup R∗ of F(G/C(M)) is a 2-group and is a central

product where one factor is an extraspecial group E∗ and the other, K∗, say, is cyclic,
dihedral, semidihedral, or generalized quaternion. If K∗ is noncyclic, it is of order 16
at least. We will reduce the possibilities first to the cyclic case. If K∗ is nonabelian,
then exp(K∗) > exp(E∗) and the subgroup L∗ ⊆ R∗ generated by the elements of order
(exactly) exp(K∗) is of index two in R∗. Now [Q∗, R∗] ⊆ L∗ by (b2) and because L∗ is
characteristic in R∗. So L∗ = R∗, K∗ = Z(R∗) and R∗ is a central product of E∗ and the
cyclic subgroup Z(R∗). Now [Q∗, Z(R∗)] = 1 and [Q∗, R∗] = R∗ by (b2), so R∗ = E∗. If
|E∗| = 22m+1, we obtain that d(M) is a multiple of 2m since E∗ is a normal subgroup
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of G∗. On the other hand, since x is of some order qr+1, d(M) must be a divisor of
qr(q − 1). In particular, q − 1 must be a multiple of 2m. Since xM induces a nontrivial
automorphism on E∗, the only possibility is q = 1 + 2m and E∗/Z(E∗) is x-irreducible.
Also d(M) is divisible by q − 1 and exp(M) must be a nonsquare modulo q.

We have shown that:
(iii) F(G/C(M)) is an extraspecial 2-group of order 22m+1;
(iv) q = 2m + 1;
(v) exp(M) is a nonsquare modulo q.

Thus (I) and (III) and the first part of (II) are shown.
Let xq <C(M) and consider z ∈ 〈x〉 such that zqC(M) ∈ F(G∗) and zC(M) < F(G∗).

We have 1 = [xqC(M), E∗] = [zC(M), E∗] and 〈E∗, zC(M)〉 = W∗ is a normal subgroup
of G∗. Minimal W∗-invariant subgroups of M must be of rank 22m and so also d(M)
must be divisible by 22m. But this is impossible: d(M) = qr(q − 1). This contradiction
shows that:

(vi) xq ∈C(M).
Now (II) is proved by (iv) and (vi), and the proof is complete. �

L 7. Assume that the group G and its minimal normal subgroup M satisfy the
following conditions.

(a) Z(F(G/C(M))) , Z(G/C(M)).
(b) There is an element x and a prime q such that:

(b1) G = 〈x,GN ,C(M)〉;
(b2) |x| is a power of q.

(c) GNC(M)/C(M) is nilpotent.
(d) If U is a subnormal subgroup of GN then N(U) is subnormal in G.

Then:

(I) xq <C(M);
(II) xqC(M) ∈ Z(G/C(M));
(III) (GN )′ ⊆C(M).

P. M is a p-subgroup for some prime p. If GN ∩ M = 1, then GN ⊆C(M) and
G = 〈x,C(M)〉 by (b1), and F(G/C(M)) = G/C(M), contradicting (a). Thus:

(i) M ⊆GN .
Assume the existence of a proper x-invariant subgroup L of M. Then x ∈ N(L) and

N(L) is a subnormal subgroup of G by (d). By construction, N(L) = G contradicting
the minimality of M. We have derived that:

(ii) M is a minimal x-invariant subgroup.
In particular, if p = q we would have |M| = p = q and again F(G/C(M)) = G/C(M).
Thus:

(iii) M is not a q-subgroup.
Again we denote XC(M)/C(M) by X∗, for all X ⊆G. Put also T ∗ = (GN )∗. Since

M is a minimal x-invariant subgroup by (ii), the rank r(M) of M is of the form aqs
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where a is a divisor of q − 1, namely the minimal integer such that q divides pa − 1.
We will show that r(M) must be divisible by q and consequently xq <C(M).

By (a), Z(F(G∗)) , Z(G∗). Assume first that Z(F(G∗)) is not cyclic and consider
M under the operation of Z(F(G∗)). By Schur’s lemma we know that Z(V/C(N)) is
cyclic whenever N is a minimal normal subgroup of V . So in our case M is a direct
product of conjugate Z(F(G∗))-invariant subgroups, where the number of factors is
|G∗ : C(Z(F(G∗)))|, a power qn , 1. So:

(iv) r(M) is divisible by q if Z(F(G∗)) is noncyclic.
The second possibility is that Z(F(G∗)) is cyclic. Let M be a direct product of

minimal Z(F(G∗))-invariant subgroups L j; their rank r(L j) is the same since Z(F(G∗))
is a normal subgroup of G∗. The element xC(M) induces a nontrivial automorphism
on Z(F(G∗)). If xC(M) permutes the factors L j by conjugation such that no factor
is fixed, then the number of factors and r(M) are divisible by q. If one factor L j is
normalized by xC(M), then the conjugation of xC(M) induced in Z(F(G∗))/(C(L j))∗

is a field automorphism of the field of order |L j|. This happens only if r(L j) is divisible
by q (and L j = M). We summarize:

(v) r(M) is divisible by q if Z(F(G∗)) is cyclic.
In particular, r(M) ≥ q and we see that:

(vi) xq <C(M).
This shows (I).

Assume now that q is odd. We know that M is a minimal normal p-subgroup of
〈x, M〉 so r(M) = qta, with a as before, is divisible by q and t > 0. Now M splits into a
direct product of q minimal xq-invariant subgroups L j; they are all of rank r(L j) = qt−1a
and they are all xq-operator isomorphic because M is minimal x-invariant. Therefore
M may be considered as a vector space over the field F of order pqt−1a such that xp

operates as field multiplication, so xp is contained in the intersection of all normalizers
of F-subspaces of M, and this is contained in Z(GL(q, F)) and subnormal in G/C(M)
by (d). So xqC(M) ∈ Z(G∗) if q is odd. The same argument is correct for q = 2 provided
that r(M) > 2. For r(M) = 2 all possibilities are given in Lemma 5, and we obtain in
general:

(vii) xqC(M) ∈ Z(G/C(M)).
We have proved (II).

It remains to show the commutativity of (GN )∗. We distinguish three cases:
Z(F(G∗)) is noncyclic; Z(F(G∗)) is cyclic and |Z(F(G∗))| does not divide pt−1 − 1;
and Z(F(G∗)) is cyclic and |Z(F(G∗))| divides pt−1 − 1.

If Z(F(G∗)) is noncyclic, then M splits into a direct product of q factors L j

which are Z(F(G∗))-invariant. For any two different factors L j the centralizers
(C(LJ))∗ ∩ Z(F(G∗)) are different and normal in F(G∗). It follows that the factors L j

are F(G∗)-invariant and also (C(L j))∗ ∩ F(G∗) are normal subgroups of F(G∗).
Since the factors L j are minimal xp-invariant and 〈xp〉∗ ⊆ Z(F(G∗)), we obtain that
F(G∗)/F(G∗) ∩ (C(L j)∗ is abelian, and since the intersection of all C(L j) is C(M), we
have that F(G∗) is abelian.
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If Z(F(G) is cyclic and |Z(F(G∗))| does not divide pt−1 − 1, then M is minimal
Z(F(G∗)) invariant and F(G∗) = Z(F(G∗)) is abelian.

Assume, finally, that Z(F(G∗)) is cyclic and |Z(F(G∗))| divides pt−1 − 1. We
have to show that M is a direct product of F(G∗)-invariant direct factors L j. This
happens if and only if the factors L j are operator isomorphic with respect to Z(F(G∗)).
Let Z(F(G∗)) = 〈xp〉∗ × 〈y〉∗ so that y is an element of order prime to q. We know
that x−1yxC(M) , yC(M) by (a). If k is minimal such that |yC(M)| divides pk − 1,
then k ≤ t − 1. Conjugation by y will permute the factors L j; if they are operator
isomorphic in GN , then x can be chosen such that x−1yxC(M) = ypk−1

C(M). On the
other hand, x−1xpxC(M) = xpC(M) , xpk

C(M) and x−1(xpy)xC(M) = xpypk−1
C(M) ,

(xpy)pk−1
C(M) have, as operators of different direct factors L j, different minimal

polynomials and therefore the factors L j are not operator isomorphic. We deduce
again that all L j are F(G∗)-invariant and F(G∗)/F(G∗) ∩ (C(L j))∗ is abelian as in the
first case, and F(G∗) is abelian. Thus (III) follows and the proof is complete. �

R. All three cases mentioned in the last paragraph of the proof of Lemma 7 do
appear. We indicate examples by mentioning possible triples (|M|, F(G∗), |xC(M)|).

(A) F(G∗) noncyclic: (73, K4, 9) with K4 the Klein 4-group.
(B) F(G∗) cyclic, |F(G∗)| is not a divisor of qt−1 − 1 : (73,C19, 9) (form the semidirect

product of E73 by C9 and extend by an element z of order three inducing by
conjugation the automorphism of order three. Choose a subgroup of index three,
not the semidirect product).

(C) F(G∗) cyclic, |F(G∗)| is a divisor of qt−1 − 1 : (79,C19, 27).

For our main result we need two further auxiliary statements.

L 8. If G is an NSS-group and exp(G/F(G)) is squarefree, then G/F(G) is
nilpotent.

P. Consider a p-chief factor U/V of G for some prime p. Then U/V is a
minimal normal subgroup of G/V and F(G/V) ⊆C(U/V). Since F(G)V/V ⊆ F(G/V)
we obtain:

(i) (G/V)/C(U/V) is of squarefree exponent.
Assume first that H = (G/V)/C(U/V) is metanilpotent. Consider an element

x ∈ H\F(H) of prime order and call X the subnormal hull of 〈x〉 in H. We have
X � W/C(U/V) for some subnormal subgroup W ⊆G. Now let U1/V1 with V ⊆ V1 ⊂

U1 ⊆ U be a chief factor of W. Now {W/V1, U1/V1} satisfy the hypotheses of {G, M} in
Lemma 6 or 7. In both cases the quotient group G/C(M) is not of squarefree exponent,
so W/CW/V1 (U1/V1) cannot be nonnilpotent and x ∈ F(H) contrary to construction.
It follows also that W/CW/V (U/V) is nilpotent. In particular, H = F(H) if H is
metanilpotent. In the general case, if we have for H the Fitting series

1 = A0 ⊆ A1 ⊆ A2 ⊆ · · · ⊆ H

https://doi.org/10.1017/S0004972710032855 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972710032855


20 J. C. Beidleman and H. Heineken [10]

such that Ai/Ai−1 = F(H/Ai−1) for all i > 0, we argue in the same way that A1 =

A2 (=H). So we obtain that H = (G/V)/C(U/V) is nilpotent for every chief factor
U/V of G. Lemma 8 is established. �

L 9. Assume that the solvable group G and the minimal normal subgroup M of
G satisfy the following conditions.

(a) There is an element x ∈G and a prime p such that x is of order a power of p and
G = 〈GN , x〉.

(b) G/C(M) is not nilpotent.
(c) If U is a subnormal subgroup of GN then N(U) is subnormal in G.

Then [xp,G] ⊆ M.

P. Consider a chief factor K/L of G such that C(M) ⊆ L ⊂ K ⊆GN . If K/L is a
p-group, there is a cyclic subgroup Z/L such that [x, Z] ⊆ L. Since Z ⊆GN we have
that N(Z) subnormal in G. Since x ∈ N(Z) we obtain that Z is normal in G and Z = K.
Further, G induces by conjugation a group of order dividing p − 1 in K/L, while G/GN

is a p-group. We see by an obvious induction argument that GN must be an extension
of a p′-group by a p-group, and since G/GN is a p-group we obtain:

(i) GNC(M)/C(M) is a p′-group.
Assume that the proper subgroup T of M is x-invariant. Then x ∈ N(T ) and

N(T ) = G contrary to minimality of M. So:
(ii) M is minimal x-invariant.
Now let F/C(M) = F(G/C(M)) ∩GNC(M)/C(M). Then 〈x, [x, F]〉 also satisfies

the hypotheses of Lemma 9. We apply Lemma 6 if Z([x, F]C(M)/C(M)) ⊆ Z(〈x,
[x, F]〉) and obtain xp ∈C(M). In the other alternative we apply Lemma 7 and obtain
[xp, [x, F]] ⊆C(M) and [xp, F] = [xp, [xp, F]] ⊆ [xp, [x, F]] ⊆C(M). Remember that
F/C(M) = F(GNC(M)/C(M)) by the Fitting property. So CF/C(M)(F/C(M)) =

Z(F/C(M)) and CG/C(M)(F/C(M)) = 〈xpC(M), Z(F/C(M))〉 since [x, F] *C(M).
Now (F/C(M))CG/C(M)(F/C(M)) is a nilpotent normal subgroup of G/C(M)—it is
in fact F(G/C(M))—and 〈xpM〉 is a characteristic subgroup of this group. So also:

(iii) [xp,GN ] ⊆ M,
since xpC(M) and GNC(M)/C(M) are of relatively prime order. Now Lemma 9
follows since G = 〈x,GN 〉. �

T 10. For the NSS-group G the following statements are true:

(a) G is of p-length 1 for all primes p;
(b) if F1 = F(G) and F2/F1 = F(G/F1), then G/F2 is nilpotent of squarefree

exponent;
(c) denoting GNF(G)/F(G) by Q, then Q′ and Q/Z(Q) are of exponent two;
(d) GNN is nilpotent.

P. Statement (a) is shown in Corollary 4.
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For (b) take an element x ∈G\F2 of order some power of a prime p. Let X/F1

be the subnormal hull of xF1 in G/F1. Certainly X is an NSS-group. Consider a
normal subgroup Y of X which is maximal with respect to not containing F(X). Then
F(X)Y/Y = F(X/Y) is a minimal normal subgroup of X/Y and we have xpY ∈ Z(X/Y)
or equivalently [xp, X] ⊆ YF1 by Lemma 9. The intersection of all normal subgroups Y
as defined above is F1 itself, so:

(i) [xp, X] ⊆ F1.
In particular, 〈xp〉F1 is a subnormal subgroup of the subnormal subgroup X. Also:

(ii) xp ∈ F2.
This shows that G/F2 is of squarefree exponent. By Lemma 8 we deduce that:

(iii) G/F2 is nilpotent.
Denote by M a chief factor U/V of G with U ⊆ F(G). We apply Lemmas 6 and 7 to
obtain that if R = GNC(M)/C(M), then R2 and R/Z(R) are of exponent two in both
cases, Z(R) = Z(G/C(M)) or not. This shows (c).

Finally, G is of Fitting length 3 by (b), so GNN is nilpotent, and (d) is true. �

R. For example, the following nonsolvable groups are obviously NSS-groups.

(I) Extensions of any direct product of simple nonabelian groups by nilpotent
groups.

(II) Extensions of any elementary abelian group of order p2 by SL(2, 5) , where p is
a prime such that p + 1 is divisible by 60.

The restriction to solvable groups in this paper is therefore essential.
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