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Prediction of rates of inbreeding in selected populations

NAOMI R. WRAY'f AND ROBIN THOMPSON2

1 Institute of Animal Genetics, University of Edinburgh, West Mains Road, Edinburgh EH9 3JN
2 AFRC Institute of Animal Physiology and Genetics Research, Edinburgh Research Station, Roslin, Midlothian, EH25 9PS

(Received 15 December 1988 and in revised form 18 July 1989)

Summary

A method is presented for the prediction of rate of inbreeding for populations with discrete
generations. The matrix of Wright's numerator relationships is partitioned into 'contribution'
matrices which describe the contribution of the Mendelian sampling of genes of ancestors in a
given generation to the relationship between individuals in later generations. These contributions
stabilize with time and the value to which they stabilize is shown to be related to the asymptotic
rate of inbreeding and therefore also the effective population size, Ne w 2N/(ji, + of), where N is
the number of individuals per generation and /ir and o\ are the mean and variance of long-term
relationships or long-term contributions. These stabilized values are then predicted using a
recursive equation via the concept of selective advantage for populations with hierarchical mating
structures undergoing mass selection. Account is taken of the change in genetic parameters as a
consequence of selection and also the increasing ' competitiveness' of contemporaries as selection
proceeds. Examples are given and predicted rates of inbreeding are compared to those calculated
in simulations. For populations of 20 males and 20, 40, 100 or 200 females the rate of inbreeding
was found to increase by as much as 75 % over the rate of inbreeding in an unselected population
depending on mating ratio, selection intensity and heritability of the selected trait. The prediction
presented here estimated the rate of inbreeding usually within 5 % of that calculated from
simulation.

1. Introduction

In a random mating population and in the absence of
differences in viability and fecundity, all families have
equal probabilities of contributing offspring to be
parents of the next generation. In a population
undergoing selection, families superior for the selected
trait will contribute more offspring to the next
generation than inferior families. Therefore, the rate
of inbreeding is higher in selected populations than in
randomly mated populations. In a given generation, t,
the mean level of inbreeding, ^t, and rates of inbreed-
ing, LF, (defined as ASF = ( ^ - ^ ^ / ( j -&tl))
can easily be calculated from pedigree information
after selection has occurred, but prediction of in-
breeding rate in the planning stage of a breeding
programme has proved to be difficult. Frequently,
advantages of new breeding schemes are discussed
solely in terms of responses to selection with little
regard to the effect of selection on inbreeding, with
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inbreeding rate per generation assumed to be simply
that of Wright (1931) (ASFW\

where M(F) are the number of males (females) entering
the population each generation. This rate of inbreeding
is only appropriate for randomly mated populations
with Poisson distributed variances of family size.

Inbreeding is often considered in terms of the
effective population size, which has an inverse re-
lationship with rate of inbreeding, AfF = \/2Ne.
Effective population size is a subject which has received
much attention in the study of natural populations
(see Crow & Denniston, 1988 for a review) but
selection is assumed to be absent. Where selection has
been considered in natural populations, the selection
criterion is usually assumed to be non-genetically
determined, that is, the selective advantage of an
individual is not inherited. In this way natural selection
is included via differential variance in family size
(Latter, 1959; Hill, 1972; Hill, 1979). Nei & Murata
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(1966) considered effective population size in natural
populations when fertility is inherited, but their
derivation is similar to that of Robertson (1961)
discussed below.

Robertson (1961) first considered prediction of
inbreeding in selected populations. He considered a
population consisting of TV full-sib families, that is a
total of 2N parents. Robertson's argument was based
on the variance of the change in gene frequency and
suggests a relationship between N/Ne, Q, i and p
(where Q is a measure of relative selective advantage,
/ is the selection intensity and p is the intra-class
correlation of selection criteria between sibs) of the
form,

We are unable to follow his derivation, since N must
now be re-interpreted because under no selection,
when p is zero, Ne = N and from Wright's formula, Ne

is the total number of parents. In equation (1), ?p is
the increment in the ratio of N/Ne following one
generation of selection and accounts for the effect of
the differential selective advantage between parents of
different genetic merit for the selected trait on the
variance of family size contributing to the next
generation. Q accounts for the way in which the
selective advantage accumulates with subsequent
generations of selection expressed relative to the
selective advantage in the initial generation, Pp.
Following a single round of selection Q = 1 by
definition, and Robertson argued that Q = \ following
two generations of selection and then increases as the
sum of a geometric series tending to a limiting value of
2 when the number of generations of selection is large.
The increase in relative selective advantage affects the
variance of the long-term family size and so the square
of Q is used, and equation (1) with Q2 as 4 is
Robertson's expression for the steady state rate of
inbreeding in a selected population.

The intra-class correlation of full-sibs is assumed to
be p = h2/2 where h2 is the heritability of the trait
under selection. The parents, themselves, are likely to
be a selected group and so to account for the effect of
reduction in variance Robertson used p =
(/i2/2)( 1 — kh2) where k = /(/—v) and v is the truncation
deviate. More correctly it should be p = (h2/2)(l —
£/I2) / (1-A:/JY2) (Buhner, 1971).

In practice, equal numbers of offspring from each
family (« of each sex) are likely to be measured prior
to selection, which is likely to induce a larger effective
population size than if the family sizes are Poisson
distributed (as assumed in Robertson's derivation).
Robertson (1961) corrected for this using a formula of
Crow & Morton (1955),

(2)

Experimental checks of the predictions presented in
equations (1) and (2) have been few, probably because
the prediction only allows for a limited family structure
-only full-sib or only half-sib families. Long-term
experiments with Drosophila (Jones, 1969; Yoo, 1980)
have shown the prediction to be reasonable, although
it is noted that the traits under selection were of low
heritability (016 and 005 respectively). Simulation
studies (e.g. Hill, 1985) have found the prediction to
severely overestimate inbreeding at moderate
heritabilities and high selection intensities.

Burrows (1984 a) estimated probabilities of pairwise
coancestry (i.e. probabilities of two selected
individuals being sibs) following a single generation of
selection using the same full-sib family structure as
Robertson (1961). He derived a prediction of in-
breeding rate for which equation (1) with Q = 1 is
only a first order approximation, the higher order
terms becoming important at high selection intensities
and high correlations between selection criteria of
sibs. The prediction was not extended to subsequent
generations and so the prediction is not for asymptotic
rates of inbreeding. Different family structures were
considered (Burrows, 19846), for example, the hi-
erarchical structure commonly used in animal breed-
ing programmes. However, the candidates available
for selection are envisaged as a mixed group of males
and females, a scenario which is useful in plant
breeding since a selected plant can take on the role of
either male or female parent but which is not applicable
to animal populations. By not separating the sexes
there is no allowance for the differential selection
intensities which are an essential feature of an animal
hierarchical breeding programme. Differential selec-
tion criteria for males and females also cannot be
accommodated. In addition, Woolliams (1989) found
the estimates of frequencies of co-selection of sibs
derived from the formulae of Burrows (19846) to be
gross over-estimates, in some cases generating
frequencies substantially greater than 1.

This paper presents a method of predicting asymp-
totic rates of inbreeding in closed populations
undergoing selection, which improves on equation (1)
for populations of full-sib families and which can be
extended to populations with a hierarchical mating
structure with differing numbers of males and females.
A list of notation is given in Appendix I.

2. Model, assumptions and simulations

The trait under selection is assumed to be under the
control of many genes each of small additive genetic
effect, the infinitesimal model (Bulmer, 1980).
Breeding values of individuals in the base population,
prior to selection, are assumed to be distributed
normally with mean zero and variance cr\. In
subsequent generations the breeding value (A') of an
individual / is assumed to be,

A't =&'.+& (3)
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where A', and A'd are the breeding values of the sire and
dam respectively and <f>{ is the Mendelian sampling
effect unique to individual /. cf>t is distributed normally
with mean zero and variance

r*A,

where / , and /d are the inbreeding coefficients of the
sire and dam. Generations are assumed to be discrete
with the selected population consisting of M male and
F female parents each generation. Populations are
assumed to be large enough such that L!F is
approximately constant each generation. Truncation
selection is assumed, whereby the individuals with the
highest scores under the selection criteria are selected,
and selected individuals are mated at random.

Rates of inbreeding are assumed to be predicted for
loci whose effect is neutral with respect to the selected
trait. Under an infinitesimal model, however, rates of
inbreeding are unlikely to be substantially different
for loci affecting and not affecting the selected trait.

In section 3 the relationship between A ^ and long-
term contributions or relationships is demonstrated.
In section 4 the prediction of long-term relationships
is given for a population with a heirarchical mating
structure (F ̂  M) with F/M being an integer. Each
female and male parent is assumed to have nt and nm

offspring respectively of each sex available for selec-
tion, where nm = (F/M)nf. The selection criterion is
assumed to be individual phenotype (mass selection).

Checks are made on the derived methodology by
comparing predicted results with those calculated
from simulation. Simulated populations have the
same population, mating and selection structure as
described in the assumptions above. Individual breed-
ing values are simulated by sampling from a normal
distribution as described in equation (3). Phenotypes
are simulated as the sum of breeding values and
environmental or error effects. The latter are sampled
from a normal distribution with mean zero and
variance <r%. The total phenotypic variance, a% is
defined as <r2

P = cr2
A + <r2

E = 100 units. Traits with
different heritabilities are considered, h2 = o-A/ap =
10"8, 01, 0-2, 0-4, 0-6. Different population structures
are considered, M = 20, F= 20, 40, 100, 200. Simu-
lation results are the average of 100 replicates and
selection is continued for up to 20 generations.
Asymptotic rates of inbreeding are calculated from
simulation as,

i 14 or ar

"-"10^1 1 J ^ '

where #", is the level of inbreeding in generation
averaged over 100 replicates.

3. Relating the rate of inbreeding to long-term
contributions

The matrix of additive genetic relationships between
individuals and how its components relate to A^ is
considered initially.

(i) Partitioning the relationship matrix

Let A be the symmetric matrix of the numerator of
Wright's coefficient of additive genetic relationship
(Wright, 1922) such that the (p,q) element avq

represents the numerator relationship between
individuals p and q. Consider individuals p (with
parents w and x) and q (with parents y and z) then
when p is older than q,

If p and q are in the same generation then,

(4)

and the numerator relationship of individual p with
itself is,

i.aww + awx + axw + axx)/4 + (l-aww/4- axj4\ (5)

(Thompson, 1977). In (5) app has been partitioned
into two components, the first is analogous to the
relationship between two different individuals as in (4)
and the second is related to the Mendelian sampling of
genes with a correction for the way in which the mean
level of inbreeding of the parents reduces it.

Consider individuals from many generations, with
M+F individuals per generation. Let Xi} be the
relationship matrix between individuals of generations
/ and j of order (M+F)x(M+F) so that A is
composed of sub-matrices,

01 A0 2-

A1 2-

A2 2-

••Ao,

••A1(

..A2,A =

Therefore, if the relationships between individuals
of the ith and kth generations are known, relationships
between the offspring of the rth generation (i.e. the
(/+ l)th generation) and the Ath generation can be
derived. Let,

Z(A(* f o r £<»>
where Z( is a matrix of order (M+F)x (M+F) which
relates individuals of generation (/+ 1) to generation i
and whose elements are either 0 or f. Element (p, q) of
Z< is I if the ^th individual of generation i is a parent
of the pth individual in generation (i+ 1).

The relationship matrix between individuals in the
(/+ l)th generation, A((+1)(<+1), can be written in a
similar way,

"«+l)((+D = ^ < " « ^i ' ^((+i)>

(Thompson, 1977) where D((+1) is a diagonal matrix
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containing terms analogous to the term (1— aww/'\ —
axx/4) from (5), the terms of which are § if the parents
are non-inbred and which tend to 0 as the parents
become more inbred. It follows that the matrix A can
be written as (t = 2),

Z0I0ZJ

where, for example, Z\Z\...7Jt is a square matrix of
order (M+F) which relates ancestors of generation 1
to descendants of generation t. The pth column of
Z J Z J . . . Z ( ' gives the proportion of genes of the />th
individual in generation / derived from the ancestors
in generation 1. The sum of the M+F columns,
Z[ Z2 . . . Z't 1 = r( (where 1 is the unit vector) gives the
number of descendants arising from the M+F-
individuals in generation 1 weighted according to
their genetic contribution to the individuals in
generation /. Each column of Z[ Z'2... Z[ is the average
of two columns of Z\Z'%...Z't_x, so as / increases the
variance of the column vectors is reduced and each
column becomes closer to the mean vector rJ(M+F),
and

• o o .

In addition, as t increases, the sum of the columns will
tend to the same vector, r, and Z^ Z j . . . Z^ will tend to
rt\/(M+F) to a limit of r l / ( M + F ) . An alternative
argument for a limiting value of Z[ Z2 . . . Z't is found
from standard matrix theory by noting that the Z( are
stochastic matrices with a single largest eigenvalue of 1.

In generation /, A can be considered as a sum of

(/ + 1)' contribution' matrices (C) such that A = 2 C t
fc-0

is the matrix initiated in generation k and contains
the contributions to the numerator relationship matrix
from the Mendelian sampling of genes which took
place in generation k. Ck is composed of submatrices
{CkitJ)} relating generations iandj by the contributions
from k. For example when t = 2, A = Co + Cx + C2,
where,

I
.= zoi0

-ZxZoIo

C C C 1
'-'(KO.O) ^-0(0,1) v-0<0,2)

\

10 0 0

o D, DXZ;
o Z1D1 z

c c
v'0(l,0) ^0

c c
v'0(2,0) ^ 0[0 0 0
C 2 = 0 0 0

0 0 D,

\
'0U,2>

0(2,2)J

These contribution matrices can be calculated in a
similar way to the numerator relationship matrix.

CkV }) are null sub-matrices when / ory < k. Ck has its
first non-null sub-matrix at Ck(k k) and this is simply a
diagonal matrix of Mendelian sampling contributions
to individuals in generation k.

(ii) Relating the partitioned relationship matrix to

The mean of the diagonals of A(( (denoted diag {At(})
is 1 plus the mean inbreeding coefficient of the selected
individuals in generation / (J5,), that is, diag{A(J =

i

\+&t, and therefore diag {A((} = £ diag {Ck(t ()} =
1--0With discrete generations diag{C0(0 0)} = 1,

dIag{C0(11)} = dIag{C1(11)} = | and diag{C,((>l)}»
(1 — Jr

t_1)/2. The latter is only approximate because it
depends on the exact contribution from each parent
after selection has taken place. Following from this,

_
diag{C((M)}

( 1 -

diag{CW(i4)}

and analogously,

for 0 <k ^ t. (6)

In addition, as r^-oo then diag {CMt ()} ->• diag
{Cm+l (+1)}. This can be derived from the stochastic
nature of the Z matrices so that when this asymptote
is reached, all diagonal elements, and indeed all off-
diagonal elements of CkU t) are equal. The interpret-
ation is that the Mendelian sampling of selected genes
in the fcth generation contributes equally to all animals
by the rth generation, where / is sufficiently large to
have allowed stabilization of the dispersal of genes
throughout the population. It is this dispersal of genes
that James and McBride (1958) examined in retrospect
in data collected from selected poultry populations.

Using the identities presented above, a relationship
between the stabilised contributions of individuals of
the first generation and A& can be found, the details
of which are presented in Appendix II,

)}/2. (7)

Table 1 presents d!ag{Ct(M)} for k = 0,4 and t = 0,20
observed from simulation (mean of 100 replicates) of
a population of M = 20 males and F = 40 females
with nt = 3 undergoing mass selection on a trait with
heritability 0-4. The calculated mean AJ*" from
simulation is 00118 and AJ*" using (7) is 00110.

As f->oo, all elements of C1(M) are equal so that the
mean of all elements is the same as the mean of the
diagonals,

r C l

1

2{M+Ff
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Table 1. The mean of the diagonal elements of the first five contribution
matrices for a population of M = 20 and F = 40 with nf = 3 undergoing
mass selection on a trait with h2 = 0-4

t

0
1
2
3
4
5

10
15
20

d'ag{C0(,.()}

10000
0-5000
0-2653
01546
01009
00734

00490
00485
00485

diag{C1(M)}

00000
0-5000
0-2500
01310
00748
00470

00226
00221
00221

diag{C2((0}

00000
00000
0-5000
0-2500
01311
00737

00230
00218
00218

diag{C3(,(

00000
00000
00000
0-4919
0-2459
01282

00244
00219
00219

,} diag{C4(M)}

00000
00000
00000
00000
0-4863
0-2432

00277
00226
00225

\+F,

10000
10000
10153
1-0275
10390
10469

11023
11536
1-2032

Since, firstly, D : is a diagonal matrix with each
diagonal element being \, secondly, C

1(1 ()
1 =

Z2. . . Z(' 1 = \rt, and thirdly, when t is sufficiently large
that r( = r, it follows that,

1
4(M+F)> r r =

1

4(M+F)2 £
(8)

where r, is the ith element of r and represents the total
long-term contribution from the rth ancestor to
descendants, or equivalently the total long-term
additive relationship between ancestor and
descendants.

4. Prediction of long-term contributions

In the previous section we demonstrated how rate of
inbreeding may be related to the sum of squares of
long-term contributions or relationships (Sr(

2) of first
generation ancestors to descendants. The objective of
this section is to predict this quantity. The assumption
of a hierarchical mating scheme is now imposed. In
this case, males and females must be considered
separately due to their differential selection intensities.
Long-term contributions are then considered sep-
arately from male and female ancestors to male and
female descendants. Initially, the prediction of the
mean of the long-term contribution is considered.
Subsequently, the accumulation of the total sums of
squares over several generations of selection is
examined, in which the total sums of squares in a
given generation depends on the selection in all
previous generations.

(i) Notation

Subscripts m or/relate to the sex, male or female, of
individuals in a given generation for which there are
M males and F females per generation as before. For
generality, w, x and y may be used to allow for any
combination of male and female subscripts;
correspondingly W, X and Y denotes the numbers of
individuals of that sex in each generation. Subscripts

of the form xy, t refer to descendants of sex y in the tth
generation from ancestors (in the first generation) of
sex x, and those in the form xwy, t refer to descendants
of sex y in the rth generation from families of
descendants of sex w in generation / — 1 from ancestors
of sex x. The subscript xwy*,t is as for xwy, t but
denotes a conditioning on selection of individuals in
generation 1 up to t—\, accounting for the sexes
represented by the first two subscripts. A parent of sex
x has nx offspring of each sex, with nm = (F/M)nf.

Truncation selection is assumed and so the notation
px,ix,vx,zx and kx is used to denote the proportion
selected, the selection intensity, the normal deviate,
the normal ordinate and the variance reduction
constant kx = ix(ix — vx) associated with the selection
of individuals of sex x. In addition, k = (km + kf)/2.

The phenotypic and additive genetic variances and
the heritability in the base generation before selection
are a2

P, <T2
A and h2 respectively. The offspring of the

base generation are denoted generation 1. The term
ancestors will be used to refer to the selected
individuals of generation 1 and the genetic variance of
the ancestors of sex x is,

Vx = {\-kxh*)o*A. (9)

h2 is the heritability appropriate for individuals in
generation t (prior to selection) which accounts for the
reduction in genetic variance due to previous
generations of selection (Bulmer, 1971), e.g. h\ = h2

and h\ = h\\ - i ^ 2 ) / ( l -hkh*).
rHxy) , is the sum of the contributions from the rth

ancestor of sex x in the first generation to descendants
of sex y in generation /.

bxy t is used as a regression of the selection score of
descendants of sex y in generation / on the breeding
value deviation (A() of its ancestor of sex x. The
breeding value deviation of the ancestor is defined as
A, = A\ — A, where A\ is the actual breeding value of
the ancestor and A is the mean breeding value of all
the ancestors, such that, E(At) = 0 and Var(^() = Vx.
Breeding value deviation will hereafter be called
breeding value.
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Where i appears as a subscript in terms such as
07, SS,, are. .^ , , . . - 'Uxy),f> '-"-'«*!/),<> ^^Hx),t e t C - Which

introduced in the text, a conditioning on the breeding
value of the ancestor / of sex x is implied. When the
subscript is omitted then an expectation has been
taken over all ancestors e.g. SSxy , = E[SSt(xy) J.

fip Q is the regression of P on Q, where P and Q can
be any random variables.

(ii) Prediction of the mean of long-term relationships

In this section, the mean (over all ancestors) of the
sum of long-term genetic contributions from ancestors
(with known breeding value) to descendants is
predicted considering males and females separately,
i.e. E[rHxy) t] is predicted. Under no selection each
ancestor of sex x is expected to contribute 2'~2(Y/X)
descendants of sex y in the rth generation. For
example, a male ancestor is expected to have one son,
two grandsons (one via his son and an expected M/F
grandsons from each of his F/M daughters), four
great grandsons, etc. The relationship between an-
cestor and descendant along a single pathway is
1/2'"1, the total contribution is, therefore, (\/2)(Y/X).
Under selection some ancestors are expected to
contribute more descendants than others; that is they
have a selective advantage which is a function of the
superiority of their breeding value over the breeding
value of their contemporaries, At. It follows that,

where 2l~2bxy t can be interpreted as the regression
coefficient of number of descendants of sex y in
generation t on the breeding value of their ancestors
of sex x and where E[r((xu)it] is strictly an expectation
conditional on A(. (The assumption of a linear
regression was checked by simulation and quadratic
effects were found to be non-significant for the example
populations.) In generation t, descendants can be
chosen either from male or female descendants in
generation t— 1, that is,

\\Y \\Yl
(10)

The coefficients of \ are part of the accumulation of
(I)'"1. The number of offspring selected from male
parent families is the product of the number of male
families [M/X+bxm,<,_!,/4J with the number of
descendants per male family [Y/M+bxmy. tA{]. Y/M
is the expected number of descendants of sex y from
each male parent family and the bxmy. t is the regression
coefficient which accounts for the additional selective
advantage of the ancestor to the descendant given the
selective advantage of the ancestor to the male parent.
Superior ancestors are expected to contribute more

male descendants that an average ancestor. In
addition, the male descendants of superior ancestors
are themselves expected to contribute more
descendants due to the superior genes they have
inherited. It follows that,

[

which can be written equivalently as,

/*«!»),( = /lHxm),t-l/J/i(xmW),t~^~flHxf),t-l/lUxfy*).t

where

-If! J]

In addition,

--\—b -b —b +-b 1
(13)

Therefore, the prediction of bxy t depends on the
regression coefficients of previous generations.

(a) Prediction of regression coefficients of selection
score of offspring (generation 2) on breeding value of
their ancestors in generation 1

The selection score of an offspring (generation 2), S2,
can take the value S2 = 1 if the offspring is selected,
and S2 = 0 if it is not, so that S2 is an all-or-none
variable. bxy t is the regression coefficient of total
selection score of offspring of sex y on the breeding
value of its parent (the ancestor in generation 1) of sex
x. Let fts A. be the same regression coefficient but for
a single offspring and where the * represents that the
ancestors were selected on the basis of their phenotype,
so that the regression is conditioned on this selection.
The regression of selection score on A* can be
completely explained through the relationship of S2

with the phenotype of the offspring (P2) on which the
selection decisions are based. Therefore it follows
that,

oxy 2 — nxps At = nxps p*PptA<., \1*)

where /?s P> is the regression coefficient of offspring
selection score on offspring phenotype given that the
ancestors are a selected group. The regression
coefficient PP_A. = \, regardless of the conditioning,
and,

A,.P.- = ^ ^ = ^ d5)

(Robertson, appendix in Dempster and Lerner, 1950),
where a2

P* is the phenotypic variance of the offspring
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given that their parents of sex x were selected on their
phenotype,

and finally,

bxy,2=\nx-

(b) Prediction of regression of selection score of
descendants (generation t) on the breeding value of
their ancestors in generation 1

In order to predict bxy3, from (11), bxmy. 3 and bxfyt 3

are needed, where bxmy* 3 is then the regression of
selection score of grandoffspring (S3) of sex y on the
breeding value of their paternal grandparent (an-
cestor) of sex x given that both the grandparent and
parent were selected on the basis of their phenotype.
Using similar notation as in (14), but replacing
subscript 2 with 3 and the * now representing
conditioning on two generations of selection, it follows
that,

and analogous to (15),

a zy
Pavp* = — •

In general, the regression of number of descendants
of sex y in generation / on breeding value of ancestors
of sex x in generation 1, via descendants of sex w in
generation t—l, given that all generations from 1 to
t— 1 have been selected on the basis of their phenotype
(represented by *), bxwyt t can be written as,

bxwy',t = nwPst,A* = "w^S^P^P^A"

where the notation is as denned in (14), with subscript
2 replaced by t. Finally, analogous to (15) is,

conditional variance and covariance theory (Tallis,
1987) is,

*A(\-h*kx) aA{\-kx) frA(\-h*kx)

crp(l-\h*kx)

\*A(\-h*kx)
\o-A(\-kx)

symmetric <r%( 1 — ̂  hl kx) _

(17)

The regression fiP A, for an ancestor of sex x can be
found from (17) to be,

Pp*A* <rA{\-h2kx) 2

as expected, and also as expected,

To obtain matrix (18), selection has been imposed on
the phenotypes of the ancestors. Now to obtain
bxwyt 3 selection must also be imposed on the
phenotypes of individuals in generation 2. The sex of
the ancestor is now irrelevant, but the sex (w) of the
descendant in generation 2 is important. Therefore
before imposing further generations of selection on
the variance-covariance matrix replace the kx in (17)
by the average k, and for simplicity, represent the
resulting matrix by,

^03

' 2 3

y
' 33 -J

(18)

By next imposing selection onto the index values of
individuals of sex w in generation 2 and performing as
analogous step as from (16) to (17), matrix (18)
becomes,

In order to estimate the general fiP A, and ap*
consider the variance-covariance matrix of the bre-
eding value of the ancestor in generation 1, A,
phenotype of the ancestor in generation 1, Px, and the
phenotype of the descendants in subsequent gen-
erations, for illustration P2 and P3, in a situation in
which selection has not taken place,

Pi

symmetric

(16)

If selection is imposed on the phenotypes of the
ancestors in generation 1 then the variance-covariance
matrix of (16) conditioned on this selection, using

V2

21
VV — —21k V

' 0 0 js Ku> ' 0 1
' 2 2

V V
V 02 12lr V
'01 1/ "-W '02

—1c

Ki-Qkw V12(\-kw)

V V
y *02 y23 I
'03 T/- Ka

v2

— 23lc

(19)
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' 0 3

1/
' 0 0

V V
' 0 2 ' 2 3 l

' 2 2

V2
' 0 2

|

• a n d o-p t= 1
V2

V 23 k
33 y

' 2 2

and f!P A. and crp* are simply found from (19) to be,

A-,.** =

By this method, all the conditional regression
coefficients can be found. Their exact expressions are
cumbersome to write explicitly, but the recursion can
be easily incorporated into a computer algorithm in
which a variance-covariance matrix, as defined in (16)
is considered, but which has dimensions of one plus
the total number of generations. In each generation,
selection must be imposed on both male and female
parents of the descendants in generation / using km

and kf. However, the variance-covariance matrix
which is the basis for the conditioning imposed in
subsequent generations, must have the selection
imposed using the mean A>value, because only the sex
of the descendant (in generation t) and parent of the
descendant are relevant at each stage.

Conditioning on all generations of previous selec-
tion accounts for the reduction in variance as
consequence of selection (Bulmer, 1971). The method
accounts for the increasing ' competitiveness' of the
contemporaries, since all individuals born in a given
generation t are offspring born as a result of ? — 1
generations of selection. An alternative derivation for
ftp ,A* is presented in Appendix III which gives greater
insight into the concept of the increasing competi-
tiveness of the contemporaries.

(c) Properties of the regression coefficients of
selective advantage

The regression coefficients of selection of offspring
(generation 2) are related from (14) by,

h

and the asymptotic regression coefficients are related,
due firstly to the distributive process implicit in (13),
and secondly because the terms bxwv. t tend to zero

because they are a function of ——̂,

This ratio is the relative selective advantage of
Robertson (1961) {Q in equations (1) and (2)) who
expected it to asymptote to 2 when M = F. His
expectation is therefore a limiting case. From simu-
lation (see Tables 2 and 5) this ratio has been found to
asymptote to considerably less than 2, even for low
heritabilities. Robertson's argument did not account
for the increasing' competitiveness' of contemporaries
as selection proceeds as discussed above.

Example

For an example of M = 20, F = 40, nf = 3, h2 = 0-4
and 0> = 10 units, predicted regression coefficients
(bxy,) and those calculated form simulation for this
example are presented in Table 2. The bxwy. t terms
decrease by more than fifty percent each generation
and soon become zero.

(ii) Accumulation of the total sum of squares of long-
term relationships

Let the expectation of the total sum of squares of
long-term relationships of contributions ( 2 r\,) from
ancestors of the first generation to descendants of
generation t be notated TSSr Considering male and
female ancestors separately, TSSt can be partitioned
into the sum of squares due to long-term contributions
of male ancestors TSSm t and that due to female
ancestors TSSft,

The Mendelian sampling of the male and female
ancestors is independent so .here is no cross-product
term. TSSmt and TSSf , can be partitioned further by
considering the sum of squares (SS) of long term
contributions to male and female descendants sep-
arately. If a given ancestor has more than the average
number of male descendants because of its selective
advantage, then it is also likely to have more than the
average number of female descendants, therefore a
cross-product is involved (CP),

TSSm t = SSmm

and tit. (21)

p mf oo w-mf, oo h =h

Clearly, when M = F, the regression coefficients in
any generation are equal.

In addition, the ratios

"mm,2.

and

bmf,2

and

and

F
 a s

^ — as
Zj M

-0.

(a) Total sum of squares of contributions following
one generation of selection

Following one generation of selection, that is selection
of the first generation ancestors when / = 2, the sum
of squares from parents of sex x to offspring of sex y
is,

" " iy ,2 ~ *-• l""«i») , 2J ~
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Table 2. Predicted and simulated regression coefficients for a population of M = 20, F = 40, nf = 3, undergoing
mass selection for a trait with h2 = 04

Generation
Predicted (simulated) regression coefficients

uxmf, I "x/f.t

2
3
4
5
6

10

0076 (0076) 0111 (0112) 0038 (0036) 0055 (0060) 0000
0094(0088) 0173(0168) 0047(0048) 0087(0088) 0028
0101(0096) 0196(0184) 0050(0052) 0098(0100) 0010
0103(0096) 0-204 (0-188) 0052(0052) 0102(0100) 0004
0104(0100) 0-207(0196) 0052(0052) 0104(0100) 0001

0104(0100) 0-209(0-196) 0052(0052) 0104(0100) 0000 0000 0000

0000
0014
0005
0002
0001

0000
0040
0015
0005
0002

0000
0021
0008
0003
0001

0000

1-37 (1.32) 1-88 (1-75) 1-37 (1-44) 1-88 (1-67)

since E[rHxy) 2] = fiHxy) 2 and Var[r(Uj, ) -2] = <r2
IV) 2 by

definition. fiiixy)2 = $)[Y/X+bxu,2At], where the (|)
comes from number of descendants in generation t
(2'~2) divided by the value of each contribution in
generation t (2'"1). /iHxyh2 can be interpreted as a (|)
multiplied by a binomial mean, nx[py + (bxy2/nx)A(]
where [py + (bxy 2/nx) At] is the probability that an
offspring is selected from the rth ancestor. Similarly it
follows that,

= * < " *

Jzy, 2

, (22)

where the \ is from (total number of descendants)/(the
value of each contribution)2 = £'. The first part of
aHxy), 2 is t n e binomial variance of offspring of sex y
from parents of sex x, and fsxy2 is the expected
additional covariance due to the nf members of a full-
sib family having selective advantage due to the mate
of the parent of sex x. Under the assumption of
hierarchical mating,

F ° -\ (23)

where \h\ is the intra-class correlation of full-sibs
given that the correlation via the parent x has already
been accounted for. Equation (23) depends on
bivariate normal distribution theory and is only a first
order approximation; Mendell & Elston (1974) pro-
vide a second order approximation which is necessary
at high selection intensities and heritabilities,

f

ft A
where O is the cumulative normal distribution
probability.

It follows that SSXV 2 is,

SSxy,2 = E[SSHxuh2] = ^[n2
xPl + nxPy{\ -Py)

+ b2
xy,2(\-l/nx)Vx+fsXUt2], (24)

where Vx was defined in equation (9). The cross-
product terms are similarly derived,

where o-i{xmxf)2 is the covariance of selective ad-
vantage between male and female full-sibs due to the
mate of the parent of sex x, so that (ri(xmxf)2 =
\fSxm,xt,2

 a n d analogous to (23),
F

fsxm,xf,2 = ^n2
f\h\zmzt. (26)

(b) Total sums of squares of contributions in
subsequent generations

In subsequent generations the sums of squares will be
dependent on the consequences of the latest generation
of selection conditional on the previous selection. For
a simple analogy, consider the variance of a variable v,
which occurs subsequently to, and is dependent on a
variable u, then Var(u) = Eu[Var(i;|M)]+Varu(E[t)|M]).
If v is the sum of u random variables with mean /iB and
variance a2 then E(v) = /iu/j,t and Var(u) = /iua

2 +
<T2

U/I2 and then for N observations TSSV = N\jiu<r2 +
tfivl +/*«)]• Extending this analogy to the two-sex
case relevant here, a recursive relationship then exists
between the total sum of squares in generation t with
those in generation / — 1,

E[Ml(i.M S,(I), t_, M^ . , J + XEfr,^ _, V W ) > J

W M-1V J, (27)
where

S,

and (<I>'' L/*'(-"•/*)•< A w r ) . J

[ 2 T

2 I '
^l(iwm, zwf*),t &i{xwf*), t J
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Where /it(xwy.ht (from equation (12)) and o-2
Hxwyt)t are

the mean and variance of the additional contributions
of an ancestor of sex x to a descendant of sex y in
generation t via a descendant of sex w in generation
/ — 1, over the contribution from x to w. It follows
that,

Similarly,

1
(28)

yA}, (29)

yiJSwm,wf,f

The terms fswy t and fswm wf , are as denned in equations
(23) and (26) but replacing the subscript 2 with /,
however, using h\ throughout has little consequence.

The prediction of the total sums of squares requires
only the correct accumulation of terms via (27) of the
regression coefficients of selective advantage predicted
in the previous section.

Examples

To demonstrate the accumulation of terms consider a
simple example when M = F = 20, nf = 3 and h2 = 0.
In this case there is no selective advantage for ancestor
breeding value so all regression coefficients are null.
Since all At are zero the / subscripts are omitted. With
M = F the SSxyt are all equal. Equation numbers
relevant to the calculations are presented in square
brackets following the answer in this section.

/ * „ , , = * 3 i = * and < , 2 = £ 3 H =

and CPX = 20[| |+0] = 5 [25].

TSSm2 = TSSf<2 = 8-3 + 8-3 + 2x 5 = 26-6 [21]

and TSS2 = 53-3 [20].

/W,3 = I [28]

SSxm.3 C*x,3

= ^ I = 0-083 [29]

x, 3

- G
ssx/,3

6-6
6.6
8-3
6-6

6-6
6-6
6-6"
8-3_

5
8-3 JLS f.

0

0083
1-6

0 10083J

0

[27]

0 ]
1-6J

\ss
xmA

CP

Jx/,i
1 1
2 2

\ \

Id 1
-10/

8-3
7-5

[8-3

ll>6
6-6 | |

8-3j[| \
^[0042 0 I
2[o
7-51

8-3

0042J

[27] TS,

J
ro-042

i Lo
S4 = 63-3 [20].

0 I
0042J

Under no selection or zero heritability the SSXV t do
not change as t increases, however, the CPX increase
geometrically to a limiting value of CPX t = SSxy 2

when TSS = 66-6, and from (8), A& = 00104.
For a population under selection, M = 20, F = 40,

nf = 3,h2 = 0-4, the predicted and total sums of
squares are presented in Table 3. The recursion was
continued until / = 15. The limiting value of TSS =
E[2/f] was predicted to be 1721. From equation (8),
AJ*7 is predicted to be 00120 which compares to that
of 00118 calculated directly from simulation.
Predicted (AJ^) and simulated ( A J ^ ) rates of
inbreeding for the range of mating ratios, heritabilities
and offspring/dam (selection intensities) are presented
in Table 4. A^c is in very good agreement with
(usually within 5 % and always within 11 % of) &&,tm
for these example populations.

5. Discussion

A method has been presented which relates rate of
inbreeding to long-term additive genetic contributions
between ancestors and descendants. An expression for
effective population size can be derived from equation
(8) by expressing Zr? as (M + F)(ji2 + <r2), where /ir

and a2 are the mean and variance of long-term
contributions, and if Â  = M+F, it follows that,

2N
(31)

This equation can be related to the more usual
expression,

N.
AN

(32)

and TSS3 = 60 [20].

(Wright, 1931) where /*, and <r2 are the mean and
variance of one generation family size. Under no
selection (31) and (32) should be equal. Let M = Fand
let the distribution of family size be Poisson, then each
individual is expected to contribute two offspring to
the next generation, one of each sex, so that /ie =
a-2 = 2, so that Ne from (32) is TV as expected. Consider-
ing the contributions from parents to offspring, each
parent contributes half the genes to both their expected
offspring, so that the mean and variance of the
contributions to the first generation are /ir = /iJ2 and
a-2 = o-2/4. From the example presented in section 4, it
is observed that under no selection /tr remains con-
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Table 3. Predicted and simulated sums of squares for a population of M = 20, F — 40 and nf = 3 undergoing
mass selection for a trait with h2 = 0-4

Generation
/

2
3
4
5
6

10

ssmm

10-2 (9-9)
11-2(10-2)
11-3(10-3)
11-4(10-5)
11-4(10-5)

11-4(10-7)

Predicted

ssmf

28-9 (28-3)
37-0 (34-3)
41-7(37-9)
43-8 (37-9)
44-8(41-5)

46-8 (42-7)

(simulated) SS

TSSm

631 (61-4)
82-8 (76-7)
93-6 (85-3)
98-4 (90-2)

100-6 (93-2)

102-3 (960)

of contributions from first generation

ssfm

7-4 (7-2)
7-8 (7-3)
7-8 (7-5)
7-8 (7-8)
7-8 (7-8)

7-8 (7-9)

SStf

180(17-8)
24-3 (23-2)
27-9 (27-2)
29-6 (28-9)
30-4(310)

31-0(31-4)

TSS,

38-3 (37-4)
52-4(51-4)
66-4 (60-7)
68-2 (65-4)
68-2 (68-3)

68-2 (70-7)

ancestors

TSS

101-4 (98-8)
136-6(128-2)
155-9(145-9)
164-8(155-7)
168-8(161-5)

1721 (166-7)

Table 4. Rates of inbreeding ( x 100) predicted from
long-term contributions (A^c) and observed from
simulation (A^Hm) for populations with M= 20

Predicted (simulated)

= 40 F=100 F=200

00
01
0-2
0-4
0-6
71, = 6
00
01
0-2
0-4
0-6

1-04(107)
1-19(1-23)
1-30(1-33)
1-42(1-42)
1-47 (1-50)

1-15(1-13)
1-46 (1-44)
1-68 (1-61)
1-91 (1-92)
202 (1-98)

0-83 (0-83)
0-99 (0-98)
110(110)
1-20 (118)
1-21 (1-23)

0-89 (0-88)
1-17 (1-17)
1-35 (1-30)
1-52 (1-50)
1-52(1-50)

0-71 (0-71)
0-89 (0-82)
0-99 (0-94)
107 (1-05)
105 (1-02)

0-73 (0-73)
0-99 (0-95)
113(1-10)
1-24 (1-24)
1-21 (1-23)

0-67 (0-66)
0-87 (0-82)
0-99 (0-86)
106(100)
102 (0-99)

0-68 (0-68)
0-97 (0-87)
114(103)
1-24 (117)
118(119)

stant, and the mean of the long-term contributions is
therefore fir = 1. However, the variance increases to
twice its initial value and a2 = a2/2 = 1, and from
(31), Ne = N. The increase in the contribution variance
is attributed to the covariance induced between males
and females when more than one generation is
considered.

In table 5 AlFe is compared to predictions from
Burrows (1984 a) (AJ^) and from Robertson (1961)
for populations with a full-sib family structure. A!FX R

is from equation (2) using Q2 = 1 and the corrected
P = (h2/2)(\-kh2)/(\-khy2), and is directly com-
parable to A # B (which used the same p). A!FR is from
(2) using Q2 = 4 and the incorrect p = (h2/2)(l -kh2)
and A^Q is from (2) using the correct Q and p; Q is
also tabulated and was calculated as the increase in
regression coefficients as discussed in section 3. A&B

gives better and higher predictions than A3FX R because
it accounts for higher order terms, but both are
underpredictors of AlF,im. AiFR is a great over-
estimator of A!Ftlm but A3FQ is a very good predictor
and is similar to the AtFt predictions. The values of Q
(Table 5) illustrate how the relative selective advantage

Table 5. Rates of inbreeding (x 100) observed from
simulation (AlFsim), predicted from long term
contributions (A?FC) and by the methods of Burrows
(1984 a) and Robertson (1961) for populations with
full-sib families

M = 20,F= 20, /I, = 3
01 1-23 119 113 1-09
0-2 1-33 1-30 117 113
0-4 1-42 1-42 1-27 119
0-6 1-50 1-47 1-30 1-24

M = 20, F=20, n{ = 6
0-1 1-44 1-46 1-27 1-25
0-2 1-61 1-68 1-38 1-35
0-4 1-92 1-91 1-57 1-49
0-6 1-98 202 1-68 1-57

1-23
•38
•61
•72

•58
•93

2-42

1-20
1-31
1-43
1-46

1-52
1-76
1-99
201

1-87
1-77
1-60
1-46

1-86
1-75
1-57
1-42

from equation (2), with Q—\ and p = \

from equation (2), with Q = 2 and p = |/i2(l -kh2).
from equation (2), with Q as listed and

\h\\-khi)/(\-khi/2).

asymptotes to a limiting value of much less than the 2
which Robertson (1961) expected. Two important
facets of the recursion prediction presented here are
that account is taken of reduction in genetic variance
due to selection and also of the increasing com-
petitiveness of contemporaries as selection proceeds.

An approximate relationship between the recursion
equation (27) and Robertson's equation (2) can be
shown. Consider the recursion (27) to be,

, (M<u.M_l.. .M(( I . ) ,3

), 2 ' ). 3• • •

'733)
where the elements of n,'_3 M^. , , are the accumu-
lation of the regression coefficients. In populations
with M = /"equation (33) reduces to a scalar equation
in which I I ^ g M ^ . ^ is equivalent to Q. Even in

4-2
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populations with M < Fan approximation to (27) can
be made,

(34)= A J^ + Q2(A^r
1 —

where Q is the mean of the four ratios bxy Jbxy 2,
A^o is the rate of inbreeding expected under random
mating and A!FX is the rate of inbreeding following a
single generation of selection predicted, for example
via the equation of Latter (1959) and Hill (1979) using
estimated variances of family size under selection
(Wray, 1989). The term (AJ^-AJ^) is the difference
in rate of inbreeding due to a single round of selection
which is scaled by the Q2 to predict the total inbreeding
accumulated; A^x is of course a larger term than the
corresponding quantity implied in Sx>2. Predicted A#"
using the approximation for the same examples as
before are found in Table 6. In general, the predictions
are not as good as those from the recursion (Table 4).
However, these predictions may be more easily
attainable and may be sufficient to ensure correct
ranking of alternative breeding schemes with respect
to AJ5".

In the examples presented in Table 3, A^c tends to
overpredict slightly for populations which have both
high mating ratios and are selected on traits with high
heritabilities. This overprediction is found to be
reduced when total population size is increased (Wray,
1989) and is attributed to the normal distribution,
large population assumptions (/, v and k values) in the
derivation. For this reason, the prediction is not good
for very small populations (M < 15). In addition, the
effect of inbreeding itself on heritability is ignored
which in very small populations may be important.
Finally, the derivation assumed AJ*" to be
approximately constant each generation, an assump-
tion which is more likely to be violated in very small
populations.

Extension of the recursion to consider index
selection should be straightforward, affecting only
bXy,t,fsxy,t &n&fsxmxSt, although the recursion is likely
to overpredict if there is a very high intra-class
correlation of sibs. The assumption of fixed family size

Table 6. Predicted A& (x 100) using the
approximation of equation (34), M = 20

Predicted (simulated)

A2 F=20 F=40 F=100 F=200

nf =
01
0-2
0-4
0-6

o'l
0-2
0-4
0-6

= 3
1-23(1-23)
1-35(1-33)
1-46(1-42)
1-48(1-50)

1-54(1-44)
1-78(1-61)
2-00(1-92)
201 (1-98)

1-02
113
1-23
1-24

1-21
1-40
1-57
1-57

(0-98)
(110)
(118)
(1-23)

(117)
(1-30)
(1-50)
(1-50)

0-90
101
112
112

101
1-17
1-32
1-32

(0-82)
(0-94)
(105)
(102)

(0-95)
(110)
(1-24)
(1-23)

0-88 (0-82)
100(0-86)
112 (100)
1-12(0-99)

0-95 (0-87)
112(1-03)
1-27 (117)
1-27 (119)

available for selection is considered reasonable for the
types of livestock populations in which prediction of
inbreeding might be important; extension to variable
family size requires further consideration as do
populations with non-hierarchical mating schemes. In
general, other mating schemes are likely to introduce
a situation of overlapping generations. Hill (1979)
demonstrated that a discrete generation derivation of
effective population size at equilibrium holds for
overlapping generations when averaged over gen-
eration interval. A similar approximation is likely to
be applicable to the prediction method presented here.

We would like to thank Professor W. G. Hill and Mr. John
Woolliams for many useful discussions and for constructive
comments on manuscripts of this paper.
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Appendix I

Summary of symbols used in the text.
This summary should be used in conjunction with the
notation defined in section 4.
The matrices defined in equation (27) are not included.

1
A

diag{}

Vector with all elements unity,
relationship matrix, Atl is a sub-matrix of A
representing relationships between indi-
viduals in generations i and j .
deviation of the true breeding value of
individual i, A'( from the mean breeding
value of its contemporaries; for con-
venience Af is referred to simply as the
breeding value of;.
additive genetic relationship between indi-
viduals p and q; the (p,q) element of A.
regression of total number of descendants
of sex y in generation t selected from
ancestors (in generation 1) of sex x.
regression as bxy t above but via descen-
dants of sex w in generation t — 1 (the i
parents of the descendants of sex y in
generation i).
regression as bxuly , above but conditioned
on the selection in generations 1 to t — 1.
matrix of contributions to the relation-
ship matrix matrix from the Mendelian
sampling of genes which took place in
generation k.
a submatrix of Ck which contains the
partial relationships between individuals in
generations i and j which are attributable
to the Mendelian sampling of genes which
took place in their ancestors of generation
k.
cross products of relationships of male and
female descendants in generation / from
ancestor i of sex x, CPxt = E[CP((X) J of all
ancestors of sex x.
diagonal matrix of Mendelian sampling
effects of generation t defined in equation
(5).
the mean of the diagonal elements of the
matrix within {}.
rate of inbreeding, may have subscripts,
B= Burrows (1984 a), c = contribution
method presented in this paper, Q =
equation (2) using correct Q,R= Robert-
son (1961) (equation (2), Q = 2), \,R =
Robertson (1961) (equation (2) Q = 1), sim
= observed from simulation, 0 = random
mating population, 1 = single generation
selection approach e.g. Hill (1979).
mean inbreeding coefficient of individuals
in generation /.
total number of females each generation
(may be represented by X or Y).
inbreeding coefficient of sire or dam.

h2

k
M

m

M-r

Ne

((IK).l

SS,f(zy).<

subscript, representing sex of ancestor or
descendant is female (may be represented
by w, x or y).
relationship between full-sibs of sex y in
generation t given that their relationship
due to their parent of sex x in generation
/ — 1 has already been accounted for.
relationship between male and female full-
sibs in generation / given that the re-
lationship due to their parent of sex w in
generation t — 1 has already been accounted
for.
Mendelian sampling additive genetic effect
unique to individual /'.
heritability, with subscript / represents
heritability in generation /, h\ = h2.
relationship matrix between individuals in
the base population, identity matrix,
selection intensity (may have subscript x
for selection of sex x).
k = i(i-v) and kx = ix(ix-vx).
total number of males in population each
generation (may be represented by XOT Y).
subscript, representing sex of ancestor or
descendant is male (may be represented by
w, x or y).
mean of stabilised long-term contributions
from ancestors to descendants,
mean of long-term contributions of an-
cestor / (with known breeding value AJ of
sex x to descendants of sex y in generation
t.
as fiUxy),t but via descendants of sex w in
generation t — 1 and conditioned on the
selection in generations 1 to f — 1.
total number of males and females in
population each generation, N — M+F.
effective population size,
number of offspring of each sex available
for selection in a full-sib family
number of offspring of each sex available
for selection from parents of sex x, nf = n.
phenotype (selection criterion in mass
selection) of descendants in generation /.
proportion of individuals selected, prob-
ability of selection (may have subscript x
for selection of sex x).
measure of relative selective advantage used
in Robertson (1961), can be interpreted as
the mean bxy m/bxy 2 over all combinations
of x = w,/and y = m,f.
vector of long-term contributions of an-
cestors to descendants in generation t, of
length the number of ancestors. Without
the subscript, stabilisation of the contri-
butions is implied.
total long-term relationship or contribution
of ancestor i to descendants in generation /.
total long-term relationship or contribution
of ancestor;' of sex x to descendants of sex
y in generation /.
intra-class correlation of selection criteria
of sibs.
selection score of descendants in generation
t, St = 1 if selected and 0 otherwise,
sums of squares of contributions from
ancestor ; of sex x to descendants of sex y
in generation /. SSxy , = E[SS(lxy) J over all
ancestors of sex x.
additive genetic variance,
environmental and error variance.
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°f(*u;,/->.<

«x«,m,*«,/•),«

TSSt

phenotypic variance, ap phenotypic vari-
ance of descendants born in generation /,
crp* as op but conditioned on the selection
of ancestors from generation 1 to / — 1.
variance of stabilized long-term contri-
butions from ancestors to descendants,
variance of long-term contributions
of ancestor i (with known breeding value
A() of sex x to descendants of sex y in
generation /.
a s °«xio.« D u t v i a descendants of sex w in
generation t — 1 and conditioned on the
selection in generations 1 to / — 1.
covariance of long-term contributions of
ancestor i (with known breeding value A()
of sex x between male and female descen-
dants generation t.
a s V , . / M b u t v i a descendants of sex w in
generation t — 1 and conditioned on the
selection in generations 1 to / — 1.
total sum of squares of long-term
contributions from ancestors of genera-
tion 1 to descendants in generation /,
T55, = £[Srf_J; TSSzl as TSS. but
refers to ancestors of sex x only,

variance of breeding values of ancestors of
sex x in generation 1.
truncation deviate of normal distribution
corresponding to a proportion p selected,
vx truncation deviates for sex x.
truncation ordinate of normal distribution,
corresponding to a proportion p selected,
zx truncation ordinate for sex x.
matrix with elements 0 or | which relates
individuals in generation /+1 to indi-
viduals in generation /.

Appendix II

Relationship between the stabilized contribution
matrices and

Firstly,

i+i (

= 2! d i ag{C w + l i ( + 1 ) } - £ diag{Ct(M)},
* - 0 fc-0

and as t^-co, diag{C0(, 0} = diag{Cw ()} so it follows
that,

t+i _ « _

+ M + 1 > } - S diag{(:„,,„}.

The base generation is eliminated since it is the only
generation derived from unselected parents,

2 di

and using (6),

diag{Cw.o},

and so,

Appendix III

Alternative derivation for the regression coefficient

Definitions:
PP3 A. is the regression coefficient of phenotype of

grandoffspring (generation 3) on the breeding value of
its grandparent (ancestor from generation 1) given
that its grandparent and parent (ancestor in generation
2) were both selected.

PP A is the regression coefficient of phenotype of
grandoffspring on the breeding value of its grand-
parent given that the grandparent was selected on its
phenotype, and fiP A = \.

P*—AJ2 is the deviation of the phenotype of the
selected parent from the breeding value of the
grandparent.

The expression flP A. A( can expressed as the sum of
two independent regressions,

0Pt.A-At = fiPl.AAt + fiP3,Pt-Al/2(Pt-At/2) (A 1)

If the grandparent is of sex x, the parent of sex w and
the grandoffspring of sex w, then

From equation (A 1) the only unknown is the value of
P* which is predicted as,

d(iJd(xw)aP

- zw

<Tp

It follows that,

If no account had been taken of the parents being a
selected group, then fip A. A( would simply be \A{, this
is the assumption made by Robertson (1961). In
addition, bxwl/. 3 can be approximated as,

By using similar arguments to those presented above,
the general regression coefficient bxwv., for t > 3 can
be predicted as,
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