
SIMPLICIAL AND HOMOTOPICAL 
COHOMOLOGY OF POLYHEDRA 

EMIL STAMM 

1. Introduction. It is well known that, on the category of finite polyhedra, 
any two cohomology theories, satisfying the Eilenberg-Steenrod axioms, are 
isomorphic. Examples of such theories are simplicial cohomology and homo-
topical cohomology (the latter is defined by means of homotopy classes of 
maps into Eilenberg-MacLane spaces). In the case of polyhedra, using triple 
sequences and spectral sequences, one obtains a deep insight into the relation­
ship between general cohomology theories (without the dimension axiom) 
and ordinary simplicial cohomology (1, p. 66). As a corollary the above-
mentioned uniqueness of cohomology theories satisfying the dimension axiom 
is obtained. 

Section 2 contains an entirely elementary proof of the isomorphism between 
simplicial and nomotopic cohomology in the case of an arbitrary, possibly 
infinite, polyhedron. We need, in fact, only the exact cohomology sequence of 
cofibrations and the homotopy sequence of a fibration. The theory given here 
may also serve as an introduction to the author's work on copolyhedra 
(6, pp. 215-254). 

In §3, we discuss incidence numbers in the framework of homotopy theory. 
We give this notion a new, purely homotopical interpretation, making use of 
homotopical transgression. 

In §4, the theory dual to the preceding one is developed. Duality is meant 
in the sense of Eckmann and Hilton (1, pp. 59-73). We consider here co­
polyhedra. These spaces have been investigated by the author (6, pp. 215-254). 
A polyhedron is a space Y for which a sequence of cofibrations 

exists (the inclusions of the ra-skeletons), such that all the cofibres are built 
up of Moore spaces (wedge products of spheres). Dual to polyhedra are co­
polyhedra. Roughly speaking, a copolyhedron is a space X, for which a 
sequence of fibre maps 

exists, such that all the fibres are Eilenberg-MacLane spaces. Some additional 
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properties are required; cf. §4. If the fibres are topological products of Eilen-
berg-MacLane spaces K(Z,n)y Z — infinite cyclic group, we call the co-
polyhedron a special copolyhedron. We develop a theory of incidence numbers 
for such special copolyhedra. The ordinary homotopy groups of those special 
copolyhedra whose fibres are the products of a finite number of spaces K(Z, n) 
are then determined by incidence matrices as are the cohomology groups of a 
finite polyhedron. 

2. Simplicial and homo topical cohomology of polyhedra. Consider 
a polyhedron X, denote by Xm its w-skeleton, by im : Xm_i —> Xm, j m : Xm_i —» X 
the natural inclusions and by Coker im and Coker j m the spaces Xm/Xm_i and 
X/Xm-i respectively. Given an abelian group G, a simplicial cochain f"1 with 
coefficients in G is a function on the oriented m-simplexes {am\ with values 
g = fm(<rm) in G. We can also represent this element g by an element of 
irm(K(G} m))j where K(G, m) is the Eilenberg-MacLane space corresponding 
to G and m. In other words, g is just a homotopy class of maps 

(o-m, \à<rm\) -> (K(G, m), *), 

which map the boundary sphere \dam\ of am into the base point * of K(G, m). 
Since the quotient space Xm/Xm-\ is just a wedge product of m-spheres, each 
w-sphere corresponding to exactly one w-simplex of Xm, we see that a simplicial 
cochain fm G Cm(X, G) determines a homotopy class 

F(f*) e n (Coker4 , iT(G,m)) . 

It is clear that we obtain an isomorphism between the two groups (^(X, G) 
and II(Coker im, K(G, m)) in this way. We have thus proved: 

PROPOSITION 2.1. The simplicial cochain group Cm(X, G) of a polyhedron X 
is isomorphic to the homotopical cochain group 

Cn
m{X, G) = n(Coker im, K(G, m)). 

We shall now build up a part of the homotopical cohomology theory of 
polyhedrons. The main task is to define a coboundary operator ôh and study 
its properties. Let us denote the group II(Coker j m , K(G, m)) by Zh

m(X,G). 
It will turn out that this is the group of m-cocycles. 

Since 7*m+i is a cofibration, the diagram 

Xm * Coker im 

Jm+l 

X 
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may be completed by the induced cofibration <t>m : 

Xm * Coker in 

J m+1 <t>m 

X' X/Xm-i 

It is known that the cofibre of <bm is the same as that of jm+i\ i»c equal to 

x/xm. 
Consider now the exact sequence of homotopical cohomology of the co­

fibration <j)m: 

(2.1) . . . -> iV(Coker j m + l f G) -^ Hh
m (Coker j m t G) -*Hh

m (Coker imj G) 
b' 

Hh
m+l(Coker j m + 1 , G) - • Hh

m+l (Coker j m , G) 

-^Hh
m+1 (Coker im, G) —> . . . . 

All spaces Coker j m , Coker im are CW-complexes in a natural way. Coker 
jm+i = X/Xm has no w-cells (if m > 0). It follows that Hh

m(Coker jm+i, G) = 0. 
Similarly Hh

m+1 (Coker im, G) = 0. Remembering the definitions of Ch
m(X, G) 

and Zh
m(X, G), we see that the sequence (2.1) becomes 

(2.2) 0 -> Zh
m(X, G) -> Ch

m(X, G) £ Zh
m+\X, G) ->Hh

m+1(Cokerjm, G) -> 0. 

The group Hh
m+1 (Coker j m , G) can be interpreted in a different manner. For 

this purpose, we look at the homotopical cohomology sequence of the co­
fibration j m : 

. . . -> HfiXn^u G) -> i ^ + 1 (Coker j m , G) -> ^ W + 1 ( X , G) 

The (ra — 1)-skeleton Xw_i of X has no simplexes of dimension >m — 1; 
hence the groups Hh

m(Xm-iy G) and Hh
m+1(Xm-i, G) consist of the zero element 

alone. Therefore the groups Hh
m+1 (Coker j m , G) and Hh

m+1 (X, G) are isomorphic. 
If we identify them under this isomorphism, the sequence (2.2) becomes 

(2.3) 0 -> Zh
m(X, G) - • Ch

mÇX, G) -£ Zh
m+1(X, G) -*Hh

m+1(X, G) -> 0. 

If we connect two such sequences of dimension m and dimension m + 1, we get : 

0 -^ Zh
m{X,G) ^ Ch

m{X,G) ^ Z, • m+1 (X,G)^Hh
m+l(X,G)^0 

Id 

0 -* Zn
m+\X, G) A Ch

m+1(X, G) m+1/ 
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We then define the homotopical coboundary operator by 6h = i o 8'. Because 
of the exactness of the sequences it is a trivial matter to verify 

PROPOSITION 2.2. (a) 8h o dh = 0, 

(b) Ker ôn^Zfr(X,G)} 

(c) Hh
m+i(X, G) ^ Zn^iX, G)/Im 8h. 

Once we have proved that the homotopically defined coboundary operator 
8h coincides with the ordinary simplicial coboundary <5, if we identify Ch

m(X, G) 
with Cm(X, G) (see Proposition 2.1), it follows that 

Zh
m(X, G) = Ker 8h = Ker 8 = Zm(X, G) 

and also that Im 8h = Im 8. Proposition 2.2 then gives the result 

HJT+^X, G) = Zh
m+1(X} G)/lm 8h = Zm^{X, G)/\m 8 = Hm+l(X, G), 

i.e. the isomorphism of the homotopical and the simplicial cohomology. 
A cochain [/] £ Ch

m(X, G) is a homotopy class of a map 

f:Xm/Xm^-^K(G,m). 

We identify the space K(G, m) with the loop space Q,K(G, m + 1). Instead of 
considering/, we may also look at the diagram 

XJXm^ Â QK(G, m + 1) -* EK(G, m + 1) 

* >* >K(G,m+ 1) 
Here p is the fibre map associated with the paths on K(G, m + 1), starting at 
the base point *; 8'f (see diagram 2.3) is obtained by augmentation of the 
above diagram so that we obtain the diagram 

XJX^MxjX^ X QK(Gt, m+l)^ EK(G, m + 1) 

J * , i' 
X/XM^ > * > * >K(G, m+1) 

followed by a deformation of the map i of into the trivial map. Since </>m is a 
cofibration, the deformation of p o i o / may be extended to X/Xm^\. There 
results a map / ' : X/Xm-i —> K(G,m + 1), which transforms Xm/Xm-\ into 
the base point. The corresponding element in U(X/Xmi K(G, m + 1)) is 
precisely 8'f. 8hf is obtained by restriction of 8'f to Xm+i/Xm C X/Xm. 

After this description of 8hf we are going to prove that 8hf attaches to an 
(m + l)-simplex am+i the value of/ on the boundary dam+i, in the same way 
as in the simplicial theory. To achieve this, we consider the restriction of 8hf 
to the (m + l)-simplex <rm+i. Here 8hf is considered as a map 

am+l/\dam+i\ —> X w + i /X m —» i^(C7, m + 1). 
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Let d : 7rm+i(K(G, m + 1)) —» Tm(iïK(G, m + 1)) be the isomorphism in the 
homotopy sequence of the fibration p. We identify these two groups under the 
isomorphism d. Then 5hf(crm+i) and d(ôh f (am+i)) are the same element of G. 
But looking a t the definition of d, one sees easily t ha t d(ôhf(o-m+i)) is nothing 
else bu t the homotopy class of the restriction of i of: Xm/Xm_i —> EK(G, m) 
to the w-skeleton of crm+i, i.e. to the boundary dam+i of crm+1. Applying the 
homotopy addition theorem (3, pp. 108-122), one sees t ha t because X m _i is 
mapped onto the base point, this element of 

n(d(rm+i/ i ts (m — l)-skeleton, K(G, m)) 
equals 

ra+1 

^2 Wm+l • <Tnt3][i O f\<Tm
3], 

j=0 

where [<rm+i : <7m
j] are the ordinary incidence numbers. So we have 

ra+1 

(àhf)(<Tm+l) — 2 ^ Wm+1 '• <7m3]f(<Tm3)' 

In the same way the simplicial coboundary ô is defined, so t h a t ôh = ô. 

We have proved 

PROPOSITION 2.3. The homotopical coboundary operator ôh coincides with the 
simplicial coboundary operator b. The value (8hf

m) (<rm+i) is obtained as the 
homotopy class of the restriction of fm to the boundary of <rm+i. 

COROLLARY. The homotopical cohomology groups 

Hh
m(X,G) = IL(X,K(G,m)) 

are isomorphic to the ordinary simplicial cohomology groups Hm(X, G). 

3. I n c i d e n c e n u m b e r s in t h e case of po lyhedra . Let X be a polyhedron, 
<7m an m-simplex of X. The boundary dam is a linear combination of (m — 1)-
simplexes: 

m 

This defines the incidence numbers [<rm : am-ij] in the ordinary way. Instead 
of using the boundary operator for chains, we may consider integral-valued 
simplicial cochains fm £ Cm(X, Z). Suppose the simplexes are indexed by 
some variable k. If we denote by fk

m the cochain taking the value + 1 on 
<jm

k and the value 0 on all <jm
k', k' ^ k, then /t

ro((7m*') = 5kk>. For the co-
boundary follows: 

(5/*TO)(owi) = / * \ ^ ^m+1 : °™ ^^ ) 

= Z_J Wm+1 : ° m ]'fkm(<Tm ) = Z ^ [ ° m + l ' G m ]^kk' = Wm+1 '• &m ]• 
: k' k' 

This proves 
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PROPOSITION 3.1. The incidence number [<rm+i : om
k] belonging to an (m + 1)-

simplex om+i and an m-simplex <rm
k is equal to the value of the coboundary of the 

characteristic cochain belonging to <rm
k on the simplex am+i. 

We now interpret this result by passing to the homotopical treatment of 
simplicial cohomology given in §2. Let Xm denote the ra-skeleton of X. A 
general integral-valued ra-cochain is represented by a homotopy class of a 
map / : Xm/Xm„i —* K(Z, m). The characteristic cochain fk

m is zero on each 
m-simplex different from <rm

k. This means that it may be represented by the 
homotopy class of a map fk

m, which transforms everything of Xm/Xm-i, with 
the exception of am

k into the base point of K(Z, m). The restriction of the map 
to âm

k represents 1 £ Z. Proposition 2.3 gives now the result: 

PROPOSITION 3.2. [<rm+i : am
k] is the homotopy class of the restriction of fk

m to 
the boundary of <rm+i. 

Since Xm/Xm-.i is a wedge product of spheres, 

Xm/Xm^ = ®kK'k(m,Z), 

we may introduce for a fixed ko the projection pk0 of 

®kK'k(m,Z) 

onto the factor K'k0(m, Z). (This is the map that equals the identity on 
K'kQ(m, Z) and maps the rest onto the base point.) 

We may also consider the inclusion 

tk0 : K'k0(m, Z) -> 0 , K'k(m, Z). 

Let pm : Xm —» Xm/Xm^i be the canonical projection. Then we have the 
commutative diagram : 

Xm—>®kK'(my Z) -z—>K'k0(m, Z). 
Pm Pko 

The characteristic cochain of <jm
ko can then be represented by a composite map 

XJXm^ = ®kK'(m, Z) -&*-*K'k0(m, Z) -^^K(Z, m). 

The homotopy class of hk0 is determined by the equation hkH(l) = 1 G Z. Let 
Sm be the m-sphere. Since Tm(Sm) = Z = wm(K(Z, m)), to the map 

hk0 o pk0 : Xm/Xm^i -+ K(Z, m) 

considered above, corresponds a unique class of maps 

XJXm^ = ®kK'k(tn, Z) -J>*L-+K'k0(fn, Z) -?**-* ST. 

It is then clear that the incidence number [am+i : am
ko] is obtained by restricting 

the map rk% o pkQ to d<rm+\. We shall obtain a new interpretation of the incidence 
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numbers by applying a theorem about homotopical transgression (2, p. 622, 
Proposition 4) to the following situation: 

Xm-h^ ®kK'k(m, Z) JbL+K\,{m, Z) - 2 ï - S" 

(I) lm+1 

Xm+1-hl±*®iK'l{m + 1, Z) «-**—£',„(« + 1.Z)*1 ?m+l 

ïiQ is the natural inclusion map. If we suppose the polyhedron Xm to be simply 
connected, then we may apply (2, Proposition 4) to the cofibration im+1 since 
Z is free. Since 7ri(Xw) ~ wi(X) for m > 2 (3, p. 239, 6.3.3 corollary), we shall 
assume henceforth that m > 2 and wi(X) = 0. The map h mentioned in 
(2, p. 622) is in our case 

Xm 

%H-1 

- > * 

and the proposition states that 

->®lK'l(ni + 1,Z) 

h* : TTW +I(4+I) —> 7Tm+i(0 , K'i{m + 1, Z)) 

is an isomorphism. Noting that d leads from Tm+i(im+i) to 7rm(Xm), we thus 
obtain the diagram 

ai) 

Tm(Xm) JtX wm(@kK'k(m, Z)) ™ i xm(X',0(m, Z)) ^ 

c = d o h*~ 

*"m(Sm) 

7rm+i(® iK\(m + 1, Z)) £— wm+1(K
f
l0(m + 1, Z)) <—^ 7rm+1(S**+1) 

Consider the element 1 £ Z = 7rm+i(5m+1). Its image in 7rw+i(© Z Kf i(m + 1,Z)) 
(see diagram II) may be represented by 

Sm. -»* 

as™- ->e iX ; , ( i » + i , z ) 

and hence the corresponding element ft*"1^* ° r?o*—1(l)) by the inclusion map 

*0 / 2 

d<r, m+l 

C5m 
0"m+l X, rn+1 
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/ i and / 2 are the natural inclusions. The transgression being a = d o &*-1, we 
see that a(itH o rZ05H

_1(l)) is represented by Sm —> do-w+i*o —» Xw. If we compose 
this map with rfc0 o pkQ o pm : Xw —> Smj corresponding to the characteristic 
co-chain of am

ko, we obtain: 

S'" . d<rm+1'° -lUxm-?!U ®kK\(m, Z) h^K\,{m, Z) - ^ ST. 

The degree of this map is the incidence number [<rm+i : am
ko]. This proves: 

PROPOSITION 3.3. In a simply connected polyhedron X the incidence number 
[<rm+il° • 0"mM is for m > 2 the image of 1 G 7rm+i(5w+1) iw 7rm(5m) under the 
map indicated by diagram (II). 

4. Incidence numbers in the theory of copolyhedra. We first recall 
the definition of a copolyhedron (6, p. 222). A copolyhedron is a space X, 
fibred by a sequence of fibre maps 

satisfying the following conditions: 
(a) Each fibre Ker pm is an Eilenberg-MacLane space K(Qm, m). 
(iô) 7rm_i(Xm) = 0 for each m > 1. 
(7) For all abelian groups G, we have Ext(G, Qm) = 0, i.e. the groups Qm 

are divisible (5, pp. 92-93). 
We also recall that the homotopy groups 7rm(G; X) of a copolyhedron X with 

coefficients in an abelian group G may be calculated in the following way: 
Put 

C*(G;X) = Tm(G;Kerpm). 

Then there exists a differential operator 

dm:Cm(G1X)-^Cm-'(G,X) 

and we have 

irm(G; X) = Ker dm/Im dm+1; 

i.e. the homotopy groups are calculated as the homology groups of the chain 
complex (C(G, X), d), see (6, p. 222, Satz 1.4'). 

We shall be interested in spaces X for which only the conditions (a), (/?) 
of a copolyhedron are fulfilled. The groups Qm will be direct products of infinite 
cyclic groups. We call such spaces special copolyhedra. As for the coefficient 
group G, we shall consider only the case G = Z. The remark following (6, p. 
222, Satz 1.4') shows that the homotopy groups irn(X) = irn(Z;X) can still 
be computed as the homology groups of the above-mentioned chain complex. 

In the previous section we assigned incidence numbers [am+ilo : am
fco] to pairs 

of simplexes o-m+ilo and am \ or equivalently to their images K'Io(m + 1, Z) 
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and K'kQ(in,Z) in the cofibres Xm+i/Xm and Xm/Xm-i. Since the notion of 
a copolyhedron is dual to that of a polyhedron, to a cofibre 

Xm/Xm^ = ®k Kf
k(mfZ) 

of the polyhedron X corresponds dually a fibre 

Ker pm =Y[kKk(Ztm) 

of the copolyhedron; Z is the additive group of integers. Each factor KkQ(Z, m) 
of lift Kk(Z, m) is said to correspond to a cosimplex of X. 

We now develop the theory dual to the one expounded in §3, i.e. we shall 
define incidence numbers between a factor 

o»+\ = Kl0(Z, m + 1) C Ker pm+1 

and a factor 

<Ao = KkQ (Z, m) C Ker pm 

and then prove some theorems corresponding to theorems of §3. First we prove 
that any element [/] G Cm(G,X) defines a function on the cosimplexes 
Kk(Z, m) with values in Hom(G, Z). 

f is a map 

/ : X'(m, G) -* Ker Pm = 17* #*(£> ™). 

Let ^o denote the projection 

17* Kk(Z, m) -> X*0(Z, m). 

Then the value <j>(Kk0(Z, m)) is defined to be the homotopy class of the map 

K'(m, G)-l^Kerpm = Y\kKk{Z, m) -hl+Kk0{Z, m). 

By the universal coefficient theorem for homotopy groups, this is an element 
of irm(G; Kk0(Z, m)) = Hom(G, Z). Conversely, suppose we are given for each 
cosimplex <rm

k = Kk(Z, m) a value 

gk* € Hom(G, Z) = irm(G, Kk0(Z, m)). 

Each gk* determines a homotopy class 

te*) e n(x'(«,G),/i:*(z,m)) 
and the product yields a homotopy class 

II* fe*) e n(x'(«,G),n*^*(z,«)) = cr(G,x). 
This readily implies 

PROPOSITION 4.1. The group G"(G, X) defined homotopically as 

U(K'(m,G), Ker pm) 
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is isomorphic to the group of infinite chains of cosimplexes with values in 
Horn (G,Z). 

From now on we restrict our attention to the case of special copolyhedra 
(G = Z). Since Hom(Z, Z) = Z, there exists a map 

/ : K'{m + 1, Z) —>]TIz Kl(ZJ m + 1) 

whose components equal the constant map for / ^ l0 and whose loth com­
ponent is in the homotopy class 1 G Tm+i(K(Z, m + 1)). The homotopy class 

is the characteristic chain of the cosimplex KiQ(Z, m + 1). The map / may 
be represented as 

S™+1 = K\m + 1, Z) 2±!UKl0(Z, m + 1) - i i ° - n i # * ( ^ m + 1), 

i.e. f = hho ll01 [hlQ] = 1 6 7rm+i(i£(Z, m + 1)). 

Definition. Let o-/w+1, o-/* be cosimplexes of the special copolyhedron X. 
Let 

[f] e cw+i(£,^) 

be the characteristic chain of aim+1. The incidence number [am+1
1 : <jmJ is 

defined to be the value of dm+i[f] on the cosimplex am
k. 

Remark. Since the value of dm+i[f] on am
k is the homotopy class of a map 

K'(m, Z) —> X(Z, m), it is an element of Tm(K(Zy m))y i.e. an integer. 

We now give an explicit description of [o-m+1
z : crm

k]. Consider the diagram 

Sm h - Kk0 (Z, m) i î i - Ker pm _ - />-x (Ker £m+1) 

(I) 

5 . + i A°_i^ o (Z, m + 1) — 1 5 -.Ker £w+i 

rm is the restriction of the fibre map pm to the subspace pm~l (Ker pm+1) C -X'm-i» 
[̂ fcol = 1 f /^m(Kk0(ZJ m)) and £*„ the canonical projection. Since rm is a fibre 
map with fibre Ker rm = Ker pm, we obtain the homomorphism of homotopy 
groups described in diagram 11 : 

Z = Tm(Sm) 1^1 Tn(KkQ(Z,m)) J«^ 7rn(Kerpm) 

( I I ) j d 

Z = 7rm+i(5w+1) — * Tm+i(Kl0(Z,m + 1)) — > wm+i(Ker pm+1) 
ftlQ* ^ 0 * 

PROPOSITION 4.2. The incidence number [am+1
iQ : am

kQ] is the image of 
1 G 7rm+i(,Sw+1) under the map indicated in diagram (II). 
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Proof. The proposition follows immediately from the definition of [/], 
dm+i[f]> a n d the incidence number. 

Now, because of Hurewicz's theorem, it is also clear that diagram (II) may 
be interpreted as a sequence of homomorphisms of homology groups: 

Z = Hm(Sm) 1 ^ - Hm(Kk0(Z, m)) J ^ - Hm(Ker pm) 

(II') J d 
Z = i/OT+i(Sm+1) — - Hm+1(Kh(Z, m + 1)) — Hm+1(Ker pm+1). 

M Z o * ^ Z o * 

Clearly, Proposition 4.2 remains valid; but now 1 G Hm+i(Sm+1). This suggests 
that cohomology should give us the incidence number [o"̂ -^1 i0 i (Tmjc0] as 
homology and homotopy do. This is indeed true. Since the fibre Ker rm is equal 
to Ker pm and is therefore (m — l)-connected, and because the base Ker pm+i 
is certainly simply connected, we may apply (2, p. 622, 5.c). Thus diagram 
(I) leads to diagram (III): 

lT\Sm) ( - ^ - 2 TT{KU{Z, m)) - i * U iTQKerPn) 

(HI) T = h*~1oJ 

7T+1(5W+1) — - Hm+\K(Z,m + 1)) -r— Hm+\Ker pm+1) 

T is the cohomological transgression. The following proposition is dual to 
Proposition 3.2. 

PROPOSITION 4.3. The incidence number [o-m+1
l0 : o

m
k0] is the image of 

1 £ iJw(5w) under the homomorphism indicated in diagram III . 

Proof, The proposition is a consequence of the invariance of the Kronecker 
index and the explicit homotopical representation of the homomorphisms 
occurring in diagram III ; see (2, p. 622, 5.c). 
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