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Abstract

Objectives: Cost-effectiveness models fully informed by real-world epidemiological parameters
yield the best results, but they are costly to obtain. Model calibration using real-world data/
evidence (RWD/E) on routine health indicators can provide an alternative to improve the
validity and acceptability of the results.We calibrated the transition probabilities of the reference
chemotherapy treatment using RWE on patient overall survival (OS) to model the survival
benefit of adjuvant trastuzumab in Indonesia.
Methods: A Markov model comprising four health states was initially parameterized using the
reference-treatment transition probabilities, obtained from published international evidence.
We then calibrated these probabilities, targeting a 2-year OS of 86.11 percent from the RWE
sourced from hospital registries. We compared projected OS duration and life-years gained
(LYG) before and after calibration for the Nelder–Mead, Bound Optimization BY Quadratic
Approximation, and generalized reduced gradient (GRG) nonlinear optimization methods.
Results:The pre-calibrated transition probabilities overestimated the 2-year OS (92.25 percent).
GRG nonlinear performed best and had the smallest difference with the RWD/E OS. After
calibration, the projected OS duration was significantly lower than their pre-calibrated estimates
across all optimization methods for both standard chemotherapy (~7.50 vs. 11.00 years) and
adjuvant trastuzumab (~9.50 vs. 12.94 years). LYG measures were, however, similar (~2 years)
for the pre-calibrated and calibrated models.
Conclusions: RWD/E calibration resulted in realistically lower survival estimates. Despite the
little difference in LYG, calibration is useful to adapt external evidence commonly used to derive
transition probabilities to the policy context, thereby enhancing the validity and acceptability of
the modeling results.

Introduction

Breast cancer is the most commonmalignancy in Indonesia, with an estimated annual incidence
andmortality of 44.0 and 15.3 per 100,000, respectively (1). Reports suggest that 40–70 percent of
women with breast cancer in Indonesia had late clinical presentation and diagnosis (2;3), or
approximately three times as high in proportions compared to high-income countries (4). Claims
of National Health Insurance (NHI) for cancer rank the second after cardiovascular disease in the
catastrophic illness category (5), and these costs are projected to grow as the country is in the cusp
of an epidemiological transition in health burden to noncommunicable diseases (6;7).

Trastuzumab is a recombinant, humanized, monoclonal antibody with a demonstrated
efficacy as an adjuvant treatment to standard chemotherapy for early breast cancer, with durable
treatment effects observed for up to 10 years (8–10). The treatment suppresses abnormal
amplification of the human epidermal growth factor receptor 2 (HER2) gene or overexpression
of its protein, which is linked to faster disease progression, higher rates of relapse, and mortality
(11). The landmark joint analysis of the North Central Cancer Treatment Group and the
National Surgical Adjuvant Breast and Bowel Project trials demonstrated significant improve-
ments in disease-free survival (DFS) and overall survival (OS), with over one-third reduction in
disease progression (hazard ratio (HR) = 0.63; 95 percent confidence interval (CI) = 0.54, 0.73;
p < 0.001) and mortality (HR = 0.60; CI = 0.53, 0.68; p < 0.001) among patients who received
12-month adjuvant trastuzumab as compared to who received chemotherapy alone (9). An effect
size of similar magnitude and durability has been confirmed in a subsequent study (10).

Despite this favorable efficacy profile, the high cost of trastuzumab, at an estimated $20,000 in
global average for a 12-month treatment course (12), is unaffordable formany health systems and
is likely to exceed the eligible ceiling for public health funding to be included in the NHI coverage
(13). Published economic evaluations in low- and middle-income countries (LMICs) report that
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12-month adjuvant trastuzumab was cost-effective in China (14) or
Iran (15), but not in the Philippines (16) or Latin American
countries (17;18) by standard cost-effectiveness eligibility of being
not in excess of three times per capita gross domestic product in its
incremental cost per health gain. A previous economic evaluation
of trastuzumab for metastatic breast cancer in Indonesia reported
an incremental cost-effectiveness ratio (ICER) of USD 17,307 per
gain in quality-adjusted life-years (19). Although this figure
exceeded three times per capita gross domestic product, trastuzu-
mab for this indication received approval under NHI coverage
in 2023 (20).

One critical input to a cost-effectiveness evaluation for health
technology assessment (HTA) is a set of transition probabilities.
In state-transition models that rely on a Markov process, a
synthetic cohort moves (or “transitions”) from one health state
to another with each passage of time (“cycle”) according to pre-
defined probabilities until the entire cohort dies (the ultimate
health state), from which no further transition is possible, or until
the total number of cycles in units of time is exhausted (21). In a
comparison of two (or more) treatment groups, transition prob-
abilities in the reference, standard of care (SoC) group, are of
paramount importance from which the transition probabilities
for the other group(s) are calculated by multiplication with the
corresponding relative treatment effects in HR or risk ratios.
Real-world evidence (RWE), obtained from multiyear longitu-
dinal real-world data (RWD) on local cohorts for whom coverage
or pricing decisions are to be made, is best positioned to inform
transition probabilities for its high contextualization with the
policy decision and its representation of typical consumers of
health technologies in the real-world setting (22;23). In many
settings, such RWE may be unavailable or only partially available,
for example, in shorter follow-up or incomplete (missing) obser-
vations, or for only a few segments of the patient population (24);
and utilizing external evidence from multiple studies is a practical
recourse to populate various transition probabilities and other
model parameters.

In this study, we apply model calibration as a way to con-
textualize transition probabilities from external evidence for our
Markov model of adjuvant trastuzumab. Model calibration com-
pares the model projections with a target quantity from the
observed RWE and iteratively calculates a new set of values
for transition probabilities within their plausible range to pro-
vide the best fit to the target (25). The best model fit seeks to
minimize the difference between the projected outcomes and
those observed in RWE at a specified time point (e.g., 5-year
survival), to which the initial transition probabilities are cali-
brated and the Markov model is adjusted to the new (calibrated)
values (25). We feel that model calibration presents a valuable
avenue to advance RWD/E utilization in HTA for its intuition,
availability in standard decision-modeling packages, and non-
exhaustive data requirements, all of which are features that
appeal to jurisdictions with significant challenges in health data
infrastructure, including ours.

The objective of the current study was therefore to: (a) calibrate
the transition probabilities of a Markov model of adjuvant
trastuzumab versus standard chemotherapy in HER2-positive,
early breast cancer and (b) compare the survival outcomes on
pre-calibrated and calibrated transition probabilities. The results
of our model calibration will provide adjustments to the tran-
sition probability parameters for use in a cost-effectiveness
evaluation of adjuvant trastuzumab for early breast cancer in
Indonesia.

Methods

This study provides a groundwork for a cost-effectiveness analysis
of adjuvant trastuzumab, which at the time of writingwas recruiting
participants for data collection on patient utilities (EQ-5D-5L) and
out-of-pocket outlays. The SoC treatment comprises approved
chemotherapies in the oncologic practice of Indonesia, typically
given every 21 days for up to eight cycles. Trastuzumab 8 mg/kg
loading dose and 6 mg/kg every 21 days for 18 cycles is adminis-
tered after the first four cycles of chemotherapy are completed for a
total treatment duration of 52 weeks.

Model structure

We developed a Markov cohort model comprising four health
states: DFS, Locoregional Recurrence, Distant Metastasis, and
Death for SoC and adjuvant trastuzumab (Figure 1). The cohort
assumed a representative female patient aged 50 years with HER2-
positive, early stage breast cancer (stages IA–IIIA) who initiated
treatment and were disease-free at the start of analysis. After
transitioning from DFS, a return to a less severe health state was
not possible. The model was evaluated over a 50-year time horizon
in annual cycles.Markovmodels were built using TreeAge Pro 2023
(Williamstown, MA) and Microsoft Excel®.

Transition probabilities and treatment effects

The initial transition probabilities in the SoC group were informed
by literature (9;10;18;19), selected to represent a plausible range and
likely values (Table 1). Because 20 percent of the SoC participants in
the source trial received adjuvant trastuzumab after completion of
their primary chemotherapies (9), we applied adjustments in health
state transitions from DFS within the SoC group using the rate
difference by crossover status from another trial (10). Themortality
risk of cardiotoxicity was built into the transition probability from
DFS to death for each treatment group from a 10-year cumulative
incidence (1.1 percent and 5.4 percent for the SoC and trastuzumab
groups, respectively) from the same trial (10).

We pooled the treatment effects of adjuvant trastuzumab for
DFS (HRpooled = 0.67; CI = 0.52, 0.87; P = 0.016; I2 = 0.633) and OS
(HRpooled = 0.67; CI = 0.57, 0.79; P = 0.004; I2 = 0.203) from four
major trials (9;10;27;28). These pooled HRs were applied to the
transition probabilities of SoC for health state transitions fromDFS

Figure 1. Model structure.
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to obtain the corresponding transition probabilities of the trastu-
zumab treatment group. Therefore, adjuvant trastuzumab was
assumed to have no effect on prognosis once the cancer recurred
locoregionally or distantly. Because the magnitude of HRs for DFS
varied by trial follow-up duration, we applied time-varying treat-
ment effects specific to the first five cycles (years), corresponding to
the minimum follow-up duration in the trials, and to each subse-
quent cycle until 11 years.We assumed that treatment effects would
last for 11 years as per the longest follow-up during which between-
group differences persisted (10). From year 12 onward, mortality
and all other transitions from DFS for adjuvant trastuzumab ref-
erenced the SoC rates, as defined by a time-exponential function of
the baseline transition probabilities. SupplementaryMaterial 1 pro-
vides information on study eligibility and the meta-analysis meth-
odology used to pool study outcomes.

Outcome measures

We computed OS duration, measured in the number of years spent
in health states other than death, and the life-years gained (LYG)
from adjuvant trastuzumab, defined as the difference in OS dur-
ation between the treatment groups. Outcomes were projected over
the analysis time horizon of 50 years.

RWE of OS

We abstracted data from cancer registries at two major hospitals
in Jakarta and Yogyakarta on 1,007 female patients (51 years in

average age) diagnosed with stages IA–IIIA breast cancer during
2016–2019, who received chemotherapy without trastuzumab, with
follow-up through December 2022 (median: 24 months). The
Jakarta hospital is a national-referent hospital for cancer care and
has the largest volume of cancer patients in the country. The
Yogyakarta hospital is a regional-referent hospital for cancer care.
The ethics committees of Gadjah Mada University and the respect-
ive hospitals approved the use of the registry data for the study. One
hundred and twenty-two patients died (12 percent) over 84months,
with most deaths occurring within the first 24 months (n = 97),
including half (n = 60) during the second year alone. Over 60 per-
cent of the cohort were censored at the last visit date and no longer
contributed survival data beyond 36 months, thereby likely mis-
representing the low number of deaths in the later period of the
registry. Given this limitation, we computed RWE survival in the
chemotherapy group at 2 years of follow-up, which was 86.11
percent (CI = 83.21, 88.54). This time point corresponds to the
average follow-up period and falls within the period of peak mor-
tality (29;30). We set this survival proportion as the target OS to
calibrate the initial values of transition probabilities for the SoC
group. SupplementaryMaterial 2 shows the Kaplan–Meier curve of
RWE OS.

Calibration techniques

We compared the performances of three optimization methods in
calibration: (a) Nelder–Mead simplex; (b) Bound Optimization BY
Quadratic Approximation (BOBYQA); and (c) generalized reduced

Table 1. Initial transition probabilities of the chemotherapy group and treatment effects of adjuvant trastuzumab

Parameter
Mean

(Plausible range) Distribution Remarks, source

1. Transition probabilities

DFS to recurrence 0.0098 (0.0038; 0.0217) Beta Perez (9) with adjustment for treatment crossover from Cameron (10).

DFS to metastasis 0.0267 (0.0142; 0.0525) Beta Perez (9) with adjustment for treatment crossover from Cameron (10).

DFS to death 0.0358 (0.0199; 0.0667) Beta Perez (9) with adjustments for additional mortality from congestive heart
failure and treatment crossover from Cameron (10).

Recurrence to metastasis 0.0777 (0.0521; 0.1198) Beta Botelho (18)

Recurrence to death 0.0794 (0.0414; 0.1554) Beta Allen (26)

Metastasis to death 0.2905 (0.1811; 0.4137) Beta Kristin (19)

2. Treatment effects of trastuzumab

Pooled HR for DFS Log-normal Estimated from meta-analysisa

Up to year 5 0.43 (0.34; 0.54)

Year 6 0.47 (0.39; 0.57)

Year 7 0.52 (0.45; 0.60)

Year 8 0.57 (0.52; 0.63)

Year 9 0.63 (0.59; 0.67)

Year 10 0.69 (0.65; 0.73)

Year 11 0.76 (0.70; 0.82)

Pooled HR for OS

Overall 0.67 (0.57; 0.79) Log-normal Estimated from meta-analysisa

DFS: disease-free survival; HR: hazard ratio; OS: overall survival.
aSee Supplementary Material 1 for details on varying treatment effects by follow-up duration for DFS.
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gradient (GRG nonlinear). These methods were chosen because of
their availability in standard modeling packages and ease of imple-
mentation. The Nelder–Mead algorithm is a direct search method
that iteratively transforms the simplex using the plausible range of
transition probabilities to find the optimal solution that minimizes
the discrepancy between the projected 2-year OS and its observed
RWE rates (31). Similar to the Nelder–Mead method, BOBYQA
employs a derivative-free algorithm. In finding an optimal solution,
BOBYQA utilizes a trust region procedure to iteratively update the
values of the transition probabilities around neighboring values
within the region using quadratic approximations (32). By contrast,
the GRG nonlinear method uses partial derivatives in combination
with nonlinear programming to find the optimal solution (33). Of
the three optimization methods, BOBYQA and GRG nonlinear are
less sensitive to local minima than Nelder–Mead (32).

Data analysis

We implemented the Nelder–Mead and BOBYQA optimization in
TreeAge Pro 2023 using the calibration menu and set the optimiza-
tion thresholds to 1E-10 and 1E-13 in relative and absolute terms,
respectively. The GRG nonlinear was implemented using the Solver
add-in in Microsoft Excel®, with an equivalent relative threshold
and 200 sets of starting values of transition probabilities within their
plausible bounds. Satisfactory model fit was achieved if the pro-
jected 2-year OS falls within the CI coverage of the RWE OS (25).
The goodness of fit was judged by the difference in the 2-year OS
that each optimizationmethod projected relative to the RWE, with
a smaller value indicating a better fit to the RWE OS. Model
projections of OS duration and LYG with parameterization using
the pre-calibrated and calibrated transition probabilities were
compared. Bias-corrected CIs (CIbc) and P values (Pbc) were
calculated from a beta and log-normal distribution of 10,000

Monte Carlo draws for transition probabilities and treatment
effects, respectively. All outcomes were discounted at a 3 percent
rate per year.

Results

Calibration performance and results

The projected 2-year OS was 92.25 percent in contrast to the
observed RWE at 86.11 percent. All the optimization methods
produced a satisfactory fit. However, the GRG nonlinear had the
best goodness of fit with the smallest difference (1.64E-14) com-
pared to the Nelder–Mead (1.89E-07) or BOBYQA optimization
(6.18E-11) (Table 2). The calibrated transition probabilities from
DFS to death significantly increased from the initial, pre-calibrated
values, approaching the plausible upper bound for all three opti-
mization methods. Calibration also significantly increased the
transition probabilities leading to metastasis either from DFS or
from recurrence. All methods targeted these transitions because of
their role in terminating cohort membership from death or elevat-
ing its risk in the metastasis health state.

By magnitude, when compared to the other optimization
methods, the calibrated transition probabilities in the DFS health
state under the GRG nonlinear were higher for transitions to death
(+87 percent change from initial values) and metastasis (+52 per-
cent change), but lower for transitions to recurrence (+20 percent
change) (Table 2). In finding the optimal solution, the Nelder–
Mead and BOBYQA, respectively, maximized the values of transi-
tion probabilities for transitions from DFS to recurrence and
metastasis, whereas the GRG nonlinear leveraged transitions from
DFS to death and from recurrence to metastasis. On average,
changes in the remaining transition probabilities after calibration
were appreciable (from recurrence to death) or minor (frommetas-
tasis to death) for all methods.

Table 2. Calibrated transition probabilities of the chemotherapy group

Transition probabilities

Initial, pre-calibrated

Calibrated values

Nelder–Mead BOBYQA GRG nonlinear

values (SE) Mean (SE) % change Mean (SE) % change Mean (SE) % change

DFS to recurrence 0.0098 0.0217* 121% 0.0125 28% 0.0118 20%

(0.0023) (0.0051) (0.0029) (0.0028)

DFS to metastasis 0.0267 0.0501* 88% 0.0524* 97% 0.0350 31%

(0.0044) (0.0083) (0.0087) (0.0058)

DFS to death 0.0358 0.0651* 82% 0.0655* 83% 0.0667** 87%

(0.0055) (0.0100) (0.0101) (0.0103)

Recurrence to metastasis 0.0777 0.1071* 38% 0.0782 1% 0.1182** 52%

(0.0084) (0.0116) (0.0084) (0.0128)

Recurrence to death 0.0794 0.1041 31% 0.0796 0% 0.1008 27%

(0.0135) (0.0176) (0.0135) (0.0171)

Metastasis to death 0.2905 0.3077 6% 0.2932 1% 0.3389 17%

(0.0596) (0.0631) (0.0602) (0.0695)

Diff. with target 2-year OS - 1.89E–07 6.18E–11 1.64E–14

BOBYQA: Bound Optimization BY Quadratic Approximation; DFS: disease-free survival; GRG: generalized reduced gradient; OS: overall survival; SE: standard error. Stars denote a statistically
significant difference between calibrated and pre-calibrated values at Pbc < 0.050 (*) or Pbc < 0.010 (**), computed fromnormally distributedMonte Carlo drawswith the expectedmean difference
and combined variance.
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Comparison of projected OS and LYG

The pre-calibrated OS duration was 11.00 years (CIbc = 9.56, 12.39)
for SoC and 12.94 years (CIbc = 11.50, 14.32) for adjuvant trastu-
zumab (Figure 2). The calibrated OS duration averaged ~7.50 years
for SoC and ~9.50 years for adjuvant trastuzumab across all opti-
mization methods. All calibrated estimates were significantly
shorter in both treatment groups (Pbc < 0.001), suggesting an
overestimation of the pre-calibrated survival projections. The cali-
brated survival curves display a steeper downward slope that more
realistically corresponds to the average life expectancy of the female
population.

Adjuvant trastuzumab prolonged OS duration by approxi-
mately 2 years in the pre-calibratedmodel (LYG = 1.94; CIbc = 1.54,
2.35;Pbc < 0.001) and calibratedmodel for all optimizationmethods
(LYG = ~2.00; Pbc < 0.001) (Figure 2). The difference with the pre-
calibrated LYG was small and statistically non-significant for the
Nelder–Mead (ΔLYG = 0.06; CIbc = �0.09, 0.22; Pbc = 0.445),
BOBYQA (ΔLYG = 0.04; CIbc = �0.09, 0.20; Pbc = 0.559), and
GRG nonlinear methods (ΔLYG = 0.03; CIbc = �0.11, 0.17;
Pbc = 0.717).

Discussion

Calibration was used in this study to adjust transition probabilities
and model projections against RWE survival. Survival projections
using pre-calibrated transition probabilities overestimated the
mean survival by around half as much as the calibrated values for
SoC (11.00 vs. ~7.50 years) and bymore than one-third asmuch for
adjuvant trastuzumab (12.94 vs. ~9.50 years). Calibration, as
applied in this study, shifted the initial survival curve downward
with a proportional change in survival rates. The survival benefits of
LYG were similar between the pre-calibrated and calibrated
models.

The GRG nonlinear method had the best fit, and the transition
probabilities thus calibrated can be used to inform a cost-
effectiveness analysis of adjuvant trastuzumab for HER2-positive
early breast cancer in the country. In comparison with other
studies, our calibrated estimates of OS duration for SoC
(7.80 years) and trastuzumab (9.78 years) are lower than the
estimates for China (14), Iran (15), and Thailand (34) where a wide
range of projected OS duration for standard chemotherapy (8.40–
15.30 years) and trastuzumab (15.82–18.20 years) was reported.
Our calibrated estimates of LYG broadly fall in the high range, but
were less than those reported for China (14) or Thailand (34).
Interestingly, studies reporting both greater OS duration and
LYG of adjuvant trastuzumab also assumed a shorter duration of
treatment effects than in this study (14;34), which would have led to
lower estimates in our model. This incongruity may be attributable
to variations in input parameters, model structures, and other
aspects of modeling that are specific for the decision context in
the respective study jurisdictions. The RWE OS in this study
mirrors the practice in service delivery where a shortfall in the
supply of health human resources negatively impacts on access to
and the quality of oncologic care (2;35;36). This health system
context was thus captured and represented in the survival projec-
tions by virtue of model calibration.

Our study is the first known official HTA evaluation in the
country to apply calibration to empirical RWE. We also compared
different optimization methods, all of which passed the standard fit
criteria in relation to the observed RWE and provided comparable
survival projections. However, some key limitations of this study

should be acknowledged. First, the limited scope of RWD encom-
passing twomajor hospitals may underrepresent patients with early
breast cancer at the national level, rendering the results less gener-
alizable to other settings of care providers, particularly those access-
ing care other than at high-caseload hospitals.

Second, we used only a single target, 2-yearOS, in the calibration
process. Both the follow-up duration and high attrition in the
registry-based RWD are major limitations. The decision to focus
on this early survival period in our calibration exercise was motiv-
ated by the need to anchor the model and its long-term calibrated
projections to a time interval for which robust data were available
and during which the risk of mortality is increasing (29;30). How-
ever, thismeans that the trajectory of OS projections would proceed
at a slope reflecting these high earlymortality rates in the remaining
time horizon, potentially underestimating survival in both treat-
ment groups, particularly if the truemortality rates rapidly declined
at subsequently nearby time points. Additional time points cover-
ing a meaningful portion of the model’s time horizon would help
reduce uncertainties in our calibrated projections. We anticipate
that the uncertainties surrounding the calibration targets, currently
undefined in this study, will have the largest impact on our cost-
effectiveness findings if they substantively influence the projected
survival gains (37).

Establishing registries that integrate and harmonize data across
key care providers is a crucial step toward ensuring the quality
generation of RWE for economic evaluations in the country. While
this process is ongoing and in the absence of empirical data to
inform uncertainties in long-term survival, structured expert elicit-
ation, which seeks to formally estimate uncertain quantities from
expert knowledge in a probability distribution (38), offers a valuable
avenue. This method is frequently applied to extrapolate long-term
treatment benefits or survival over periods of up to 20 years in
published studies (39) and frames uncertainties in the knowledge of
local experts, rather than relying on evidence fromdifferent country
contexts. Additionally, future evaluations may attempt calibrating
against more than one index of key transitional drivers and at
different time points concurrently, as more quality RWD becomes
available or by utilizing structured expert elicitation.

Finally, the full implications of our calibrated model for costs
and cost-effectiveness remain to be explored, as data collection on
costs and health utilities was still ongoing at the time of writing this
manuscript. However, we surmise that while the downward cor-
rections in LYG will lower cost estimates in both treatment groups,
the change is likely to be less pronounced for the trastuzumab group
compared to SoC due to its high drug cost, which could result in
larger incremental costs and ICER than pre-calibrated estimates.
For instance, by parameterizing themodel with direct medical costs
from a trastuzumab study in the Philippines (16), our calibrated
model using GRG nonlinear optimization shows a borderline stat-
istical difference, with a modest 8.22 percent increase in incremen-
tal costs (CIbc = 3.57, 16.43; Pbc = 0.004) and a similar 6.56 percent
increase in ICER per LYG (CIbc = �0.43, 15.37; Pbc = 0.065). We
anticipate corrections of similar magnitude to ICER in our upcom-
ing cost-effectiveness analysis results.

Our study illustrates the realities of incorporating RWD/E for
cost-effective assessments of health technologies within the con-
straints of the country’s fragmented health system (40). The regu-
latory framework for population-based cancer registries has been in
place since 2016 involving 15 regional and national referral hos-
pitals (20). However, its current unavailability suggests the need for
greater investments in realizing this objective. Although our data
acquisition was somewhat partial and ad hoc, it is preferable to
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Figure 2. Projected overall survival and life-years gained. BOBYQA: Bound Optimization BY Quadratic Approximation; GRG: generalized reduced gradient; LY: life-years; LYG: life-years gained. Stars denote the statistical comparison of life-
years with pre-calibrated values within a treatment group (*Pbc < 0.050; **Pbc < 0.010; ***Pbc < 0.001). All statistical tests and the 95% confidence intervals were based on the Monte Carlo empirical distribution with bias corrections.
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forgoing HTA due to a perceived lack of viable RWE or capacity to
conduct HTA, which are listed among the common reasons to
avoid HTA (41).

The RWD/E application in HTA has gained traction globally
and in Asia to strengthen the conduct of cost-effectiveness assess-
ments to fill the evidence gap from randomized trials in a local
setting or boost the applicability of such an assessment to the setting
where coverage or pricing decisions are to be made (42). With
regard to input parameters, the use of RWD/E is imperative to
derive disease background parameters such as mortality or preva-
lence (43), essential to inform key parameters that cannot be
generalized from external settings such as costs and health utilities
(35;43), and strategic to validate experimental evidence in the
practice setting (44;45). Transition probabilities of the reference
treatment are a product of incidence rates of various health events
in the natural course of a disease, which extended longitudinal
observations are best to inform (46). However, acquiring such rich
RWD to construct a full set of RWE-informed transition probabil-
ities is infeasible or highly costly within the remit of the surveillance
system of many LMICs (47). Model calibration can therefore be a
pragmatic solution to compromise this gap between the high
demand for quality, extensive RWD/E and its short supply.

In this view of pragmatism, model calibration works to align
transition probabilities extracted from multiple studies, which may
inadequately represent the practice setting of a new health technol-
ogy, with the existing RWE at the local level. We believe that
advocating the utilization of existing RWD/E with a fair assessment
of its inherent bias should be pursued for better informed policy
decisions. The annual number of HTA submissions processed by the
Indonesia’s Health Technology Assessment Committee and the
National Formulary can reach hundreds and is expected to grow
steadily (Personal Communication). In this setting, RWE calibration
can lend more credence to assessment results in a more accessible
way by utilizing one or more RWE data points to target in model
projections, which also enhances the face validity of the results to
policymakers (25). Noticeable differences between the pre-calibrated
and calibrated results should, at minimum, lead to a discussion for
more informed decision making or be presented as a form of
sensitivity analysis to enhance the credibility of the modeling results.

Conclusions

Our calibrated transition probabilities produced survival projec-
tions that were more congruent with the observed RWE for the
treatment of early breast cancer in Indonesia. The pre-calibrated
transition probabilities overestimated OS duration, which could
potentially confound the results when interacting with cost param-
eters in a cost-effectiveness analysis. Ourmodel calibration had low
data burden and provides an example of howmodel refinements for
more credible decision making in HTA can be performed within
the constraints of the existing health data infrastructure for RWE in
LMICs. Model calibration can be applied with relative ease in other
disease areas, and its applications can encourage the validation of
model parameters and promote RWD/E utilization toward advan-
cing the health data infrastructure.
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