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ABSTRACT

There is growing interest in the design of pension annuities that insure against
idiosyncratic longevity risk while pooling and sharing systematic risk. This is
partially motivated by the desire to reduce capital and reserve requirements
while retaining the value of mortality credits; see for example, Piggott et al.
(2005) or Donnelly et al. (2014). In this paper, we generalize the natural re-
tirement income tontine introduced by Milevsky and Salisbury (2015) by com-
bining heterogeneous cohorts into one pool. We engineer this scheme by allo-
cating tontine shares at either a premium or a discount to par based on both
the age of the investor and the amount they invest. For example, a 55-year old
allocating $10, 000 to the tontine might be told to pay $200 per share and re-
ceive 50 shares, while a 75-year old allocating $8, 000 might pay $40 per share
and receive 200 shares. They would all be mixed together into the same tontine
pool and each tontine share would have equal income rights. The current paper
addresses existence and uniqueness issues and discusses the conditions under
which this scheme can be constructed equitably— which is distinct from fairly
— even though it isn’t optimal for any cohort. As such, this also gives us the
opportunity to compare and contrast various pooling schemes that have been
proposed in the literature and to differentiate between arrangements that are
socially equitable, vs. actuarially fair vs. economically optimal.
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1. INTRODUCTION

The tontine annuity — which was first promoted as a retirement income vehicle
by Lorenzo di Tonti in the year 1653 — hasn’t benefited from the best publicity
over the last three and a half centuries. Although at first tontines were used
by British and French governments to finance their wars (against each other),
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conventional fixed interest bonds ended up superseding them as the preferred
method of deficit financing. Private sector insurance companies in the 18th cen-
tury offered tontine-like products, but they too were superseded by more fa-
miliar guaranteed life annuities and pensions. In fact, by the early 19th century
regulators in the U.S. and the U.K. banned (a derivative product called) tontine
insurance, although there is some debate over whether the ban actually applies
to the tontines envisioned by Tonti. Legalities aside, in the words of the well-
known financial writer Edward Chancellor, tontines are “one of the most dis-
credited financial instruments in history”. We refer the interested reader to the
book by Milevsky (2015) in which a slice of the tontine’s colorful history is ad-
dressed. In this paper, our focus (and contribution) is actuarial as opposed to
political or historical.

In its purest financial form, a tontine annuity can be viewed as a perpet-
ual (i.e. infinite maturity) bond that is purchased from an issuer by a group
of investors who agree to share periodic coupons only amongst survivors. As
investors die and leave the tontine pool, the coupons or cash flows earned by
those who avoid death increase (super) exponentially over time. In theory, the
last remaining survivor receives all of the coupons until he or she finally dies
and the issuer’s obligations to make payments are terminated. One can alterna-
tively think of the tontine annuity as consisting of a portfolio of zero coupon
bonds (ZCBs) with staggered maturities or face values in which the final ZCB
matures at the maximum possible lifespan of the investors in the pool, e.g. age
125. Cash flows from maturing ZCBs are distributed equally among survivors.
From this perspective, the cash-flow pattern can be fined-tuned to any desired
profile as long as its present value is equal to the amount invested by the group.
The tontine pool retains longevity risk in the sense that if people live longer than
expected their payments are reduced relative to what they might have expected
at time zero. Like other pooled schemes, we will discuss — such as those de-
scribed in Piggott et al. (2005), Stamos (2008) or Donnelly et al. (2014) — with
a retirement income tontine there is no entity guaranteeing fixed payments for
life, thus eliminating capital requirements. We use the term retirement income
tontine to differentiate our scheme from a “winner take all” bet in which the
payoff is deferred to the last survivor and to remind the reader of the pension-
like structure.

1.1. Problems with tontines

Over the past few centuries, there has been quite a bit of popular and scholarly
criticism leveled against tontine schemes. Overall, these concerns can be placed
into three broad categories.

The first concern is that tontines themselves are amoral because one imme-
diately benefits from someone’s death. A more refined version of this concern
is that they create an incentive for fraud, murder and other criminal activity.
These critics contend that as the size of the tontine pool shrinks the surviving
members are incentivized to kill each other to gain a bigger share of the tontine

https://doi.org/10.1017/asb.2016.19 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2016.19


EQUITABLE RETIREMENT INCOME TONTINES 573

pool. This colorful perception of the tontine permeates literary fiction and is
the subject of many novels, but has no basis in reality. Most historical tontine
schemes capped or limited payouts once a small fraction (say 5 to 10 members)
remained in the pool. Despite all the fictional novels, there simply is no docu-
mented evidence that the last few survivors of a national tontine ever murdered
each other. In fact, with hundreds of people in the tontine pool, the economic
benefit from nefariously reducing the pool size is minimal. The ethical concern
that investors would benefit directly fromdeath can be dismissed outright within
the actuarial community since that is the foundation of all pension and annuity
pricing. As for the concern with fraud, this indeed was a problem in the 17th
and 18th century when documenting life and death was unreliable but can also
be dismissed in the 21st century with modern record-keeping systems.

The second concern with tontine annuities relates to economic optimality
and cash flow patterns. In Lorenzo Tonti’s (1654) scheme, the cash paid to the
group remained relatively constant (i.e. the numerator) but the number of sur-
vivors (i.e. the denominator) declined more-than exponentially fast over time,
resulting in a rapidly increasing payout to surviving members. This explosive
profile of income is at odds with the economic desire for (stable) consumption
smoothing. It is assumed that older retired investors would want a stable or per-
haps even declining real cash-flow over time, notwithstanding concerns about
health-care expenses and inflation for the elderly. According to these critics, the
tontine annuity isn’t an optimal economic contract. But this concern can also
be remedied with proper product design. There is no reason why the cash-flows
to the group should be structured to remain constant over time. As mentioned
above, the ZCBs payments to the pool could decline (faster than) exponentially
at the same rate as (expected) mortality. In fact, this is the essence of Milevsky
and Salisbury (2015). To sum up, we believe the second objection can be easily
overcome.1

The third concern is a more-subtle one and has to do with the pooling of
cohorts and the age profile of the tontine. That is the core focus on this paper.
If one allows anyone regardless of age to participate equally in the same tontine
annuity pool — which we do not — there would be an immediate transfer of
wealth from themembers who are expected to die early (i.e. the old) to those who
are expected to live the longest (i.e. the young). Historical tontines— such as the
one first issued by the English government in the late 17th century — discrim-
inated against the old in favor of the young. Thus, for example, in the earliest
English tontine schemes, the nominees on whose life the tontine was contingent
ranged in age from a few months to over the age of 50. In equilibrium, everyone
should nominate the healthiest possible age (females age 10, approximately),
but that leads to design problems when the nominee and annuitant are not the
same person. If indeed one requires homogenous mortality pools to run a non-
discriminating tontine scheme, then this limits the possible size of the pool and
the efficacy of large number diversification. The 18th century tontine schemes
in which investors were placed into small tailored classes — with different pay-
outs based on age — suffered from reduced pooling and risk diversification. A
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modern day pension fund trying to implement a tontine payout structure with
a predictable cash flow would face the same concern unless it had a very large
pool of willing retirees with identical ages and health profiles.

In some sense, we believe this is the most serious criticism against resurrect-
ing retirement income tontines in the context of modern pension schemes. One
would require hundreds of people of exactly the same age retiring on exactly
the same day, to reduce the variability of payouts. In fact, this is one reason
why authors such as Piggot et al. (2005) or Donnelly et al. (2014) have proposed
pooled annuitization schemes or overlays that allow for mixing of different co-
horts over multiple generations. Note that we will not wade into a debate over
which among the many pooling schemes is better. In fact, there is quite a bit of
overlap between them as we will soon demonstrate. Moreover, there will be a
tradeoff. A scheme that squeezes out the highest possible utility for the group
may also be more complex to analyze and harder to explain.

In sum, we choose to analyze tontines which offer a design that provides
“good” utility while remaining sufficiently simple that we can establish a range
of qualitative results. We understand and acknowledge that other designs have
their own appeal and role.

1.2. Making heterogeneous tontines equitable

As stated above, it is this third criticism leveled against (retirement income) ton-
tines that we address in the current paper. Our remedy to this concern is to allow
cohorts of different ages (and mortality) to mix in the same pool by allocating
different participation rates or shares based on their age at the time of purchase.
For example, a 55-year old allocating $10, 000 to the tontinemight be told to pay
$200 per share and receive 50 shares, while a 75-year old allocating $8, 000might
pay $40 per share and receive 200 shares. They would all be mixed together into
the same tontine pool and each tontine share would have equal income rights.2

Now, itmight seem rather trivial (actuarially) to allocate shares in the tontine
based on the age of the investor and the size of their investment. After all, with
an immediate annuity, $1 of lifetime income will cost a45 for a 45-year old and
a75 for a 75-year old. The relative prices of mortality-contingent claims are well
understood in the actuarial literature. But what may not be obvious is that in
fact there are situations (i.e. counter examples) in which this cannot be done in
a fair (or even equitable) manner, especially when the groups are small. In other
words, there are cases in which no mapping or share price will allow groups to
be mixed without discrimination. Our objective is to understand when this is (or
is not) possible. The need for large pools to diversify risk is linked to the issues
addressed in this paper and is a question that has recently been highlighted by
Donnelly (2015) as well. We return to this later.

As far as terminology is concerned, in this paper, we are careful to distinguish
between a scheme that is fair and a scheme that is equitable, which is a some-
what weaker requirement. A retirement income tontine scheme in which there
is a possibility of everyone in the pool dying before the maximum age and thus
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leaving left-overs can never be made fair, in the sense of Donnelly (2015) unless
it incorporates some form of payment to estates. By the word fair, we mean that
the expected present value of income will always be less than the amount con-
tributed or invested into the tontine. However, a heterogeneous tontine scheme
can often (though not always) be made equitable by ensuring that the present
value of income (although less than the amount contributed) is the same for all
participants in the scheme regardless of age. This scheme will not discriminate
against any one cohort although it won’t be fair. All of this will be addressed in
detail including an analysis of scenarios in which equity is impossible to achieve.

To recap then, in this paper, we investigate how to construct a multi-age ton-
tine scheme and determine the proper share prices to charge participants so that
it is equitable and doesn’t discriminate against any age or any group. The tontine
we propose is a closed pool that does not allow anyone to enter (or obviously
exit) after the initial set-up. This is one further place we differ from the designs
of Piggott et al. (2005), Donnelly et al. (2014) or (in the tontine context) Sabin
(2010). That is, we advocate closing the group to newcomers, but allow multi-
ple ages and contribution levels within the closed pool. Again, we refrain from
arguing that this is better or worse than any other design. That said, our model
requires and assumes little (if any) actuarial discretion as time evolves. The rules
are set at time zero and the cash-distribution algorithm is crystal clear. We be-
lieve this design has merit.

1.3. Outline

The remainder of this paper is organized as follows. In Section 2, we summa-
rize the results of Milevsky and Salisbury (2015) and the economic optimality
of tontines in the context of a single homogeneous cohort of subscribers. Indeed,
there are many possible payout functions d(t) that one can use to construct a
tontine scheme — historically the d(t) curve was constant, for example, 8% per
year — and the optimal function depends (at a minimum) on the representa-
tive investor’s coefficient of risk aversion. A particularly natural payout function
arises as the d(t) that optimizes logarithmic utility preferences. In this section,
we also offer a brief comparison to other pooling schemes. Section 3moves from
a review of single cohorts to the introduction of multiple cohorts, which is the
contribution of the current paper. It describes in precise terms what is meant
by an equitable share price for all participants in a tontine scheme given a par-
ticular payout function d(t). In that section, we offer a more precise definition
of the notion of fairness and how it differs from equitable. Section 4 returns to
the matter of economic optimality. It is typically impossible to locate a payout
function d(t) that is optimal for all cohorts, as was possible in the case of a single
cohort, even if all participants have the same level of risk aversion. Indeed, the
best that one can hope for when mixing cohorts is an equitable scheme and not
a uniformly optimal one. In Section 5, we propose that a good selection from
among all the possible equitable schemes is one in which the payout function
d(t) is proportional to the expected number of shares outstanding at any point
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in the future. Alas, we can’t yet prove uniqueness for this scheme and leave this
as a conjecture.We do however discuss welfare gains and losses from the scheme
and provide some numerical examples. Section 6 makes comparisons with other
product designs that exist in the literature and discusses conditions under which
they overlap. Section 7 concludes and offers some suggestions and avenues for
further research. Proofs appear in the appendix (Section A).

2. ANNUITIES VS. OPTIMAL TONTINE PAYOUT FUNCTIONS

In this section, we briefly review the optimal tontine scheme proposed in
Milevsky and Salisbury (2015). We assume an objective survival function t px,
for an individual aged x to survive t years. One purpose of the tontine structure
is to insulate the issuer from the risk of a stochastic (or simply mis-specified)
survival function, but in this paper, we assume t px is given and applies to all
individuals.We intend to address the stochastic case in subsequent work.We as-
sume that the tontine pays out continuously as opposed to quarterly ormonthly.
For ease of exposition, we assume a constant risk-free interest rate r , though it
would be easy to incorporate a term structure. What makes the tontine a simple
and inexpensive product to build and manage is that the payouts are known
from the beginning and can be engineered (without active management) by a
simple portfolio of ZCBs.

2.1. Optimal annuities

The basic comparator for a tontine is an annuity inwhich annuitants each pay $1
to the insurer initially and receive in return an income stream of c(t) dt for life.
The constraint on these annuities is that they are fairly priced, in other words
that with a sufficiently large client base, the initial payments invested at the risk-
free ratewill fund the called-for payments in perpetuity. This implies a constraint
on the annuity payout function c(t), namely that∫ ∞

0
e−rt

t px c(t) dt = 1. (1)

Again, c(t) is the payout rate per survivor. The payout rate per initial dollar
invested is t px c(t). Letting U(c) denote the instantaneous utility of consump-
tion, a rational annuitant (with lifetime ζ ) having no bequest motive will choose
a life annuity payout function for which c(t) maximizes the discounted lifetime
utility:

E[
∫ ζ

0
e−rtU(c(t)) dt] =

∫ ∞

0
e−rt

t px U(c(t)) dt,

where r is (also) the subjective discount rate (SDR), all subject to the constraint
(1). Provided u is strictly concave, the following now follows from the Euler–
Lagrange theorem.
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Theorem 1 (Milevsky and Salisbury (2015)). Optimized life annuities have con-
stant c(t) ≡ 1

ax
, where ax = ∫ ∞

0 e−rt
t px dt.

This result can be traced back to Yaari (1965) who showed that the optimal
(retirement) consumption profile is constant (flat) and that 100% of wealth is
annuitized when there is no bequest motive, SDRs are equal to interest rates
and complete annuity markets (actuarial notes) are available.

2.2. Optimal tontine payouts

In practice, insurance companies funding the life annuity c(t) are exposed to
both systematic longevity risk (due to randomness or uncertainty in t px), model
risk (the risk that t px is mis-specified) as well as re-investment or interest rate
risk — a static bond portfolio can replicate the tontine payout over the medium
term, but not beyond 30 years. The latter is not our focus here sowewill continue
to assume that r is a given constant for most of what follows.

This brings us to the tontine structure introduced inMilevsky and Salisbury
(2015), in which a predetermined dollar amount is shared among survivors at
every t. Let d(t) be the rate at which funds are paid out per initial dollar invested,
a.k.a. the tontine payout function. There is no reason for the tontine payout
function to be a constant fixed percentage of the initial dollar invested (e.g. 4%
or 7%) as it was historically. Getting back to the issue of optimality, we can
pose the same question as considered above for annuities: what d(t) is best for
subscribers? The comparison is now between d(t) and t px c(t), where c(t) is the
optimal annuity payout found above.

Suppose there are initially n subscribers to the tontine scheme, each deposit-
ing a dollar with the tontine sponsor. Let N(t) be the random number of live
subscribers at time t. Consider one of these subscribers. Given that this indi-
vidual is alive, N(t) − 1 ∼ Bin(n − 1, t px). In other words, the number of
other (live) subscribers at any time t is binomially distributed with probability
parameter t px.

As in the Yaari (1965) model, this individual’s discounted lifetime utility is

E[
∫ ζ

0
e−rtu

(nd(t)
N(t)

)
dt] =

∫ ∞

0
e−rt

t px E[u
(nd(t)
N(t)

)
| ζ > t] dt

=
∫ ∞

0
e−rt

t px
n−1∑
k=0

(
n − 1
k

)
t pkx(1 − t px)n−1−ku

(nd(t)
k+ 1

)
dt.

The constraint on the tontine payout function d(t) is that the initial deposit of
n should be sufficient to sustain withdrawals in perpetuity. Of course, at some
point, all subscribers will have died. So in fact the tontine sponsorwill eventually
be able to cease making payments, leaving a small remainder or windfall. This
gets to the issue of fairness, which we revisit in the next section. But this final-
death time is not predetermined, so we treat that profit as an unavoidable feature
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of the tontine. Remember that we do not want to expose the sponsor to any
longevity risk. It is the pool that bears this risk entirely.

Our budget or pricing constraint is therefore that∫ ∞

0
e−rtd(t) dt = 1. (2)

So, for example, if d(t) = d0 is forced to be constant, i.e. a flat tontine as
was typical historically, then the tontine payout function (rate) is simply d0 = r
(or somewhat more if a cap on permissible ages is imposed, replacing the upper
bound of integration in (2) by a value less than infinity).

The optimal d(t) is in fact far from constant. Milevsky and Salisbury (2015)
find this optimum in some generality. The following summarizes the conclusion
in the case of CRRA utility U(c) = c1−γ

1−γ
for γ > 0, γ �= 1 (or U(c) = log c for

γ = 1). Set

βn,γ (p) = p
n−1∑
k=0

(
n − 1
k

)
pk(1 − p)n−1−k

( n
k+ 1

)1−γ

.

Theorem 2 (Corollary 2 of Milevsky and Salisbury (2015)). The optimal retire-
ment income tontine structure has d(t) = d(0)βn,γ (t px)1/γ , where d(0) is chosen
to make (2) hold.

For an illustration of the typical such d(t), see Figure 4 or Figure 5.

2.3. Comparing to others

Tontines are not the only alternative to annuities that have been investigated in
the actuarial literature. Two such product designs are the group self annuitization
scheme (GSA) of Piggott et al. (2005), and the optimal pooled annuity fund (PAF)
analyzed by Stamos (2008). We will describe these designs in Section 6. But for
those already familiar with them we make some comparisons now, that may
help set the context for our results.

First of all, there is some degree of overlap between the three designs. In fact,
for a homogeneous pool as described above, invested in risk-free assets, it turns
out that a GSA agrees with a tontine having payout d(t) = 1

ax t
px. Following

Milevsky and Salisbury (2015), we call this design a natural tontine for the age-
x cohort. That paper showed that this design is optimal for logarithmic utility
(γ = 1), since βn,1(p) = p. For heterogeneous pools, however, the GSA will not
be a tontine at all, since the total payout will be random (and path dependent),
rather than deterministic (which is the defining feature of a tontine). In the same
context, it turns out that the PAF which is optimal for logarithmic utility also
agrees with a natural tontine. For risk aversion γ �= 1 in contrast, the total PAF
payout will be path-dependent, so again it is not a tontine. Recall that the main
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TABLE 1

SHOWS THE AMOUNT INVESTED IN THREE PRODUCTS NEEDED TO YIELD THE SAME UTILITY AS $100
INVESTED IN A LIFE ANNUITY GUARANTEED BY AN INSURANCE COMPANY. PRODUCT DESIGNS ARE:

A = POOLED ANNUITY FUND, γ -OPTIMIZED; DONNELLY, GUILLEN AND NIELSEN (2013);
B = TONTINE, γ -OPTIMIZED; MILEVSKY AND SALISBURY (2015);

C = GROUP SELF ANNUITIZATION SCHEME; PIGGOTT et al. (2005).

Certainty Equivalents for $100

n 10 100 10 100

γ = 0.5 γ = 1
A 101.53 100.15 102.68 100.28
B 101.55 100.15 102.68 100.28
C 101.67 100.15 102.68 100.28

γ = 2 γ = 5
A 104.62 100.53 109.20 101.22
B 104.65 100.53 109.47 101.24

Assumes r = 4% and Gompertz Mortality
(m = 88.72, b = 10). Homogeneous Pool

of Size n, with Initial Age 65.

defining feature of the tontine is the predictability of cash-flows (numerator)
distributed to the pool.

We will make these claims precise in Section 6, but at this point, we will
simply content ourselves with Table 1.

It compares the certainty equivalent of investments in all three products
yielding the same utility as $100 in an annuity. As must be the case, an (fairly
priced) annuity provides the highest utility, followed by the PAF, then the ton-
tine and then the GSA.Moreover, the three agree when γ = 1. But the principal
conclusion is that the three designs yield utilities that are very similar, even with
a (very) small pool of investors. If the annuity is not fairly priced, e.g. if capi-
tal risk charges are imposed upon an annuity, in the form of a loading factor
that protects against systematic mortality risk, then any of the three designs can
easily provide higher utility to the consumer than the annuity.

Note that in Table 1, we do not include the GSA scheme for γ = 2 or 5,
because in fact it has mean utility = −∞ once γ > 2. This is an artifact of
taking an infinite horizon and in the context of a natural tontine is discussed at
greater length in Section A.3 of the Appendix ofMilevsky and Salisbury (2015).
As indicated there, the disproportionate influence of extreme ages could be cir-
cumvented by capping payments at some advanced age such as 110.

3. MIXING COHORTS: EQUITABLE SHARE PRICES WHEN d(t) IS GIVEN

Now, suppose a retirement income tontine pays out d(t) per initial dollar in-
vested, which may (or may not) be optimal for people of a given age. In other
words, an inhomogeneous group of individuals subscribe to purchase shares in
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the tontine. Each subscriber will be entitled to a share of the total funds dis-
bursed in proportion to the number of shares owned, with the sole caveat that
the subscriber must be alive at the time of disbursement. Once the list of sub-
scribers is known, together with the dollar value they will invest, they are each
quoted a price per share depending on their age and the size of their investment
(and more generally, the ages and investments of all subscribers). Of course, the
price then determines the number of shares they will receive in return for their
announced investment. The issue we wish to address is how to assign prices in
an equitable manner which we will take to mean that the expected present value
of funds received by the various subscribers (per initial dollar invested) are all
equal. The mathematical question becomes whether there exists a collection of
share prices that realize this and whether such prices are unique.

Let n be the number of subscribers. For computational purposes, it will
sometimes be convenient to group them into K homogeneous cohorts (i.e. with
the same age and contribution level), though this is not actually a restriction
since we could choose to take K = n and deem each cohort to consist of a sin-
gle individual. We will use notation that permits grouping, but in many proofs
will (without loss of generality) take cohorts to consist of single individuals. For
i = 1, . . . , K , let xi be the initial age of individuals in the i th cohort, and let wi
be the number of dollars each of them invests. Let ni be the size of the i th cohort,
so n = ∑

ni and the total initial investment is w = ∑
niwi . Therefore, the total

time-t payouts occur at rate wd(t). For notational convenience, we choose to
base prices on participation rates πi , in other words, 1/πi is the i th subscriber’s
price per share. Let ui = πiwi be the number of shares purchased by each in-
dividual in the i th cohort, and let u = ∑

niui be the total number of shares
purchased. Let Ni (t) be the number in the i th cohort who survive to time t. The
d(t) function satisfies the budget constraint

∫ ∞
0 e−rtd(t) dt = 1, where r is the

interest rate. An individual in the i th cohort who survives to time t will receive
payments at a rate of

ui × wd(t)∑
j u j Nj (t)

= wd(t)
πiwi∑

j π jw j Nj (t)
.

Summing this over all subscribers of course gives back a total payout
rate of wd(t), as long as at least one subscriber survives. In other words,∑

i wd(t)Ni (t)
πiwi∑

j π jw j Nj (t)
= wd(t), as long as

∑
j π jw j Nj (t) > 0.

Let ζ be the lifetime of an individual in the i th cohort. The present value of
their payments is

E

[∫ ζ

0
e−rtui

wd(t)∑
j u j Nj (t)

dt

]
=

∫ ∞

0
e−rt

t pxiπiwi E

[
wd(t)∑

j π jw j Nj (t)
| ζ > 0

]
dt

=
∫ ∞

0
e−rt

t pxiwd(t)Ei

[
πiwi∑

j π jw j Nj (t)

]
dt.
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We use the notation Ei to remind us that this is a conditional expectation, in
which Ni − 1 ∼ Bin(ni − 1, t pxi ), while the other Nj ∼ Bin(n j , t pxj ). Call the
above expression wi Fi (π1, . . . , πK), so if π = (π1, . . . , πK), then

Fi (π) =
∫ ∞

0
e−rt

t pxiwd(t)Ei

[
πi∑

j π jw j Nj (t)

]
dt

represents the present value of the returns per dollar invested by the i th cohort.
Subscribers in the i th cohort invest wi , so ideally, “fairness” would mean

that the present value of each person’s payments equals their initial fee, in other
words, that Fi (π) = 1 for each i . This is not possible, for the simple reason
that there is always a positive probability of money being left on the table once
everyone dies. Let Ai,k(t) be the event that the kth individual in the i th cohort
survives till time t. Then,

∑
niwi = w but

∑
niwi Fi (π) =

∫ ∞

0
e−rtwd(t)

∑
i

ni · t pxi Ei
[

πiwi∑
j π jw j Nj (t)

]
dt

=
∫ ∞

0
e−rtwd(t)E

[∑
i

ni∑
k=1

πiwi∑
j π jw j Nj (t)

1Ai,k(t)

]
dt

=
∫ ∞

0
e−rtwd(t)E

[∑
i

πiwi Ni (t)∑
j π jw j Nj (t)

1{Ni (t)>0}

]
dt

=
∫ ∞

0
e−rtwd(t)P

⎛
⎝∑

j

Nj (t) > 0

⎞
⎠dt <

∫ ∞

0
e−rtwd(t) dt = w.

In other words, we have proved that

Lemma 3. Regardless of π , at least one cohort must have its present value
Fi (π) < 1.

The closest we can come to being truly fair is to have all the Fi (π) equal. In
other words, each subscriber loses the same tiny percentage of their investment,
in present value terms. We say that π is equitable if

Fi (π) = Fj (π) ∀i, j.

Equivalently,

Fi (π) = 1 − ε for each i , where ε =
∫ ∞

0
e−rtd(t)P

⎛
⎝∑

j

Nj (t) = 0

⎞
⎠ dt.
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If we want to make the tontine fair in the absolute sense, we’d need to return
any monies remaining after the last death to the estates of the subscribers (as a
whole, or simply to the estate of the last survivor). This is precisely whyDonnelly
et al. (2014) and Donnelly (2015) include a death benefit in the products they
analyze, which ensures that no money is left-over and allows the designs to be
fair. Our approach is to focus exclusively on lifetime income. In other words, we
eliminate the death benefit but keep things equitable.

Since
∑ niwi

w
Fi (π) = 1 − ε by the above argument, it is clear that either the

tontine is equitable, or there are some indices for which Fi (π) > 1− ε and some
for which Fi (π) < 1 − ε. We call

θ(π) = maxi �= j |Fi (π) − Fj (π)|
the inequity of the tontine. We say that π is more equitable than π ′ if
θ(π) < θ(π ′).

There is an obstruction to equity, as the following example shows. Suppose
n = K = 2. The first subscriber will receive all the available income during the
period they outlive the second subscriber. Therefore, if w

w1
is sufficiently large,

F1(π) >
w

w1

∫ ∞

0
e−rtd(t)t px1 tqx2 dt >

∫ ∞

0
e−rtd(t)[1 − tqx1 tqx2 ] dt = 1 − ε.

For example, using reasonable ages and mortality rates, it is impossible to make
equitable a tontine in which one subscriber invests one dollar, and another in-
vests a million. The most equitable such a tontine could be is in the limiting
case π1 = 0, so that the first subscriber only starts receiving payments once
the second subscriber has died. We will address such contingent tontines in the
appendix (Section A).

The main theorem of this paper is as follows.

Theorem 4. Fix d(t) as well as the ni , xi and wi , i = 1, . . . , K.

a. If there exists an equitable choice of π = (π1, . . . , πK) such that 0 < πi < ∞
for each i , then this choice is unique up to an arbitrary multiplicative constant.

b. A necessary and sufficient condition for such a π to exist is the following:∫ ∞

0
e−rtd(t)(

∏
i /∈A

tqnixi )(1 −
∏
i∈A

tqnixi ) dt < αA(1 − ε) (3)

for every A⊂ {1, . . . , K} with 0 < |A| < K, where αA = 1
w

∑
k∈A nkwk.

We will prove this result in the appendix, where we also expand on the meaning
of condition (3). In heuristic terms: if there is a cohort who find the tontine
favorable even if they have to wait for income until all subscribers from other
cohorts have died, then equity is impossible. Note that our formulation tacitly
assumed that all members of a cohort share the same participation rate. If equi-
table rates exist, then this must in fact be the case. To see this, subdivide cohort i
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Equitable rates, single outlier with respect to age
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FIGURE 1: Shows the equitable participation rate π2 versus the size n1 of the cohort with age x1, in the
presence of a single outlier (n2 = 1) with age x2. Tontine is natural for the age x1 cohort, and each individual
invests $1 (w1 = w2 = 1). Normalized so π1 = 1. Assumes Gompertz Mortality (m = 88.72, b = 10) and

r = 4%.

into ni cohorts, each with a single member, and apply the uniqueness conclusion
of the above theorem.

In Section 5, we examine some plausible scenarios with utility included.
Here, we treat some extreme examples to illustrate how equitable rates may vary
as well as giving some cases in which they fail to exist. We exhibit values in the
two-cohort case (K = 2), using Gompertz hazard rates, i.e. λx = 1

b e
x−m
b at age

x. Parameters are m = 88.72, b = 10 and r = 4%. In Figure 1, we look at age
disparities, and in Figure 2, we look at disparities in investment levels.

These figures show the spread in π (ratio of the largest to the smallest) nar-
rowing as the population size increases. This is not a general rule however. If in
Figure 1 we had taken x1 = 90 and x2 = 65, the spread would narrow at first but
then widen. With x1 = 65, x2 = 85 and n1 = 1, there would be equitable rates
for small values of n2 but not for large ones. In Figure 2, the higher the outlier
investment w2, the larger the size n1 of the cohort investing w1 = $1 must be,
before equitable rates exist. For example, if w2 = $20, we require n1 ≥ 5 for
equity to be possible. But w2 = $100 requires n1 ≥ 23, and w2 = $500 requires
n1 ≥ 114.

Note that equity being infeasible is not purely a phenomenon of small pop-
ulations. A poorly designed tontine can also produce this effect. For example,
suppose we have two cohorts of size n1 = n2 = 100 with ages x1 = 65 and x2 to
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Equitable rates, single outlier with respect to $ invested
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FIGURE 2: Shows the equitable participation rate π2 versus the size n1 of the cohort who invest 1 dollar
(w1 = 1) each, in the presence of a single outlier who invests w2 dollars. All subscribers are the same age

(x1 = x2 = 65), and the tontine is natural for that age. Normalized so π1 = 1. Assumes Gompertz Mortality
(m = 88.72, b = 10) and r = 4%.

be specified. If each member of the second cohort contributesw2 = 1, then for a
large enough value of w1, the tontine must be inequitable. With a well-designed
tontine, it typically takes a large value of w1 to destroy equity. But if we take a
flatter tontine than is desirable — say a tontine whose d(t) would be natural for
a population of age 50 — then quite modest values of w2 will produce inequity,
especially once there is a disparity in cohort ages. For example, if x2 = 80 (resp.
75/70/65), then even w2 = 7 (resp. 14/37/209) will accomplish this, according to
the Theorem 4 criterion.3

4. UTILITY, ASYMPTOTICS AND OPTIMALITY

4.1. Utility and loading factors

For an arbitrary tontine payout d(t) (satisfying (2) but not necessarily optimal)
and arbitrary participation rates πi (not necessarily equitable), we may consider
the utility of the cash flow received by an individual from the i th cohort.Namely,

∫ ∞

0
e−rt

t pxi Ei
[
U(

wd(t)∑
w jπ j Nj (t)

πiwi )
]
dt.
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We are interested in the effect of inhomogeneity in the subscriber population. In
particular, we would like to understand whether adding individuals to a tontine
raises or lowers utility (and by how much), when the added individuals differ
from the rest (in homogeneous populations, adding individuals always increases
utility). In particular, for a cohort of size ni in a heterogeneous tontine with pay-
out d(t), the natural comparison will contrast their utility with that of an opti-
mized tontine d̂(t) in which only those ni homogeneous individuals participate.
Thus, we define a loading factor δi , which (when applied to the homogeneous
tontine) makes the two utilities equal. In other words,∫ ∞

0
e−rt

t pxi Ei

[
u

(
wd(t)∑

w jπ j Nj (t)
πiwi

)]
dt

=
∫ ∞

0
e−rt

t pxi Ei

[
u

(
ni d̂(t)
Ni (t)

(1 − δi )wi

)]
dt.

If δi > 0, this means that the cohort loses utility from the addition of heteroge-
neous individuals to the pool. If δi < 0, then the cohort gains utility from the
addition of these individuals. For a different comparison, between tontines and
annuities, see Milevsky and Salisbury (2015), where a different loading factor is
used. See also the related work by Hanewald et al. (2013) which examines how
product loadings might affect the choice between different mortality-contingent
claims.

In Section 5, we will give numerical calculations of loadings for various
choices of d(t), and we will see that in a well-designed tontine, adding partic-
ipants increases utility (i.e. loadings are negative). We will work with γ = 1
so U(c) = log c, and the above formula simplifies considerably. By results of
Milevsky and Salisbury (2015), the optimal d̂(t) is the tontine that is natural for
the age-xi cohort, in other words, d̂(t) = 1

axi
t pxi .

4.2. Asymptotics and the proportional tontine

We fix K , the xi , and the wi and consider the limit of the πi when the total
number of subscribers n = ∑

ni → ∞. Let αi > 0 and
∑K

i=1 αi = 1. Assume
that the ni → ∞ in such a way that niwi

w
→ αi , so αi represents the fraction of

the initial investment attributable to the i th cohort. Then,

Fi (π) =
∫ ∞

0
e−rt

t pxiwd(t)Ei
[ πi∑

π jw j Nj (t)

]
dt.

→
∫ ∞

0
e−rtd(t)

πi · t pxi∑K
j=1 π jα j · t pxj

dt.

Aparticular case of this requires particular attention. Let ax = ∫ ∞
0 e−rt

t px dt be
the standard annuity price of $1 for life for age x individuals. Consider d(t) =
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∑
j

α j

axj
t pxj (which clearly satisfies the condition that

∫ ∞
0 e−rtd(t) = 1). In this

case, Fi (π) → axiπi , so the equitable participation rates asymptotically become
πi = 1

axi
. We call a tontine with d(t) = ∑ n jw j

w
× t pxj

axj
and πi = 1

axi
a proportional

tontine, and emphasize that it is equitable only in the limit as n → ∞. In the
case of a homogeneous population (i.e. K = 1), the proportional tontine agrees
with what we have earlier called the natural tontine for this cohort.

Onemotivation for this particular design is that the payout rate to a surviving
individual from the i th group, at time t, is asymptotically

d(t)∑
π jα j · t pxj

πi = πi = 1
axi

per unit. In other words, the rate of payment to a surviving individual remains
constant in time, and is simply the standard annuity factor of 1

axi
per dollar of

initial premium. In this sense, a proportional tontine reproduces (in the limit)
the payment structure and cost of a standard fixed annuity for each subscriber.
We will shortly see a further motivation, when we show that it is asymptotically
optimal. In Section 6, we will connect this design to the GSA.

How do our utility loadings behave when n → ∞ as above? The above equa-
tion becomes that∫ ∞

0
e−rt

t pxi u
( d(t)∑

π jα j · t pxj
πiwi

)
dt =

∫ ∞

0
e−rt

t pxi u
( d̂(t)

t pxi
(1 − δi )wi

)
dt.

Take d(t) to be the proportional tontine, so in the limit, so π j = 1
axj

is equitable

in the limit. As above, take u to be logarithmic, and d̂(t) to be natural for the
age-xi cohort. We obtain that∫ ∞

0
e−rt

t pxi u
(wi

axi

)
dt =

∫ ∞

0
e−rt

t pxi u
(wi

axi
(1 − δi )

)
dt,

from which we immediately get the following:

Lemma 5. Asymptotically, the proportional tontine has utility loadings δi = 0.

4.3. Can a tontine be optimal for multiple cohorts?

A natural question is whether it is possible to design a tontine to be optimal
for multiple age cohorts. This turns out not to be possible, except in the limit as
n → ∞. To formulate the question, we include equity as an additional set of
constraints in the optimization problem. In particular, we wish to choose d(t)
and the π j to maximize the utility of the i th cohort∫ ∞

0
e−rt

t pxi Ei
[
U(

wd(t)∑
w jπ j Nj (t)

πiwi )
]
dt
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over d(t) ≥ 0, subject to the budget constraint
∫ ∞
0 e−rtd(t) dt = 1 and the equity

constraints ∫ ∞

0
e−rt

t pxiwd(t)Ei

[
πi∑K

j=1 π jw j Nj (t)

]
dt

=
∫ ∞

0
e−rt

t px�
nd(t)E�

[
π�∑k

j=1 Kπ jw j Nj (t)

]
dt

for � �= i .
In the limit as n → ∞, we wish to maximize∫ ∞

0
e−rt

t pxiU(
d(t)∑

α jπ j · t pxj
πiwi ) dt

over d(t) ≥ 0, subject to the budget constraint
∫ ∞
0 e−rtd(t) dt = 1 and the equity

constraints∫ ∞

0
e−rt

t pxi d(t)
πi∑K

j=1 α jπ j · t pxj
dt =

∫ ∞

0
e−rt

t px�
d(t)

π�∑K
j=1 α jπ j · t pxj

dt

for � �= i . This version of the problem simplifies if reformulated in terms of
�(t) = d(t)∑k

j=1 α jπ j ·t pxj
. Now, we seek to maximize

∫ ∞
0 e−rt

t pxiU(πiwi�(t)) dt over

�(t) ≥ 0, subject to the budget constraint
∫ ∞
0 e−rt�(t)

∑
α jπ j t pxj dt = 1 and

the equity constraints
∫ ∞
0 e−rt�(t)πi t pxi dt = ∫ ∞

0 e−rt�(t)π� t px�
dt for � �= i .

The equity constraints become merely that

π� = πi

∫ ∞
0 e−rt�(t) t pxi dt∫ ∞
0 e−rt�(t) t px�

dt

and substituting back, the budget constraint becomes that πi
∫ ∞
0 e−rt�(t) t pxi =

1. This puts us back in the context of optimizing the simple annuity of The-
orem 1, which implies that the optimal �(t) is constant. If we normalize so
πi = 1

axi
then the π� = 1

ax�
, and we get �(t) = 1.

In particular, optimizing the utility of the i th cohort, in the presence of
equity constraints, asymptotically gives precisely the proportional tontine de-
scribed in the last section, i.e. d(t) = ∑

j
α j

axj
t pxj . Therefore, this optimal tontine

(in this case, really a type of annuity) has the same design, regardless of which i
one chooses to optimize for. We have shown that

Proposition 6. Assume a strictly concave utility function. In the limit as n → ∞,
the proportional tontine optimizes the utility of each cohort simultaneously.

The original optimization problem (i.e. in the setting of finite n) can also be
solved, though not so cleanly. We do not present this here, except to note that
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when we optimize even the logarithmic utility of the i th cohort, the results turn
out to no longer be consistent when we vary i . In other words, it is typically
impossible to make everyone happy simultaneously. This is one reason we feel
it is reasonable to first fix a tontine structure d(t) (as we have done above), and
then allow people participate at equitable rates if they so wish. Naturally, this
means one of the questions we will need to answer is how significant their utility
loss is, when doing so.

5. OUR SUGGESTED d(t): THE NATURAL AND EQUITABLE TONTINE

In the context of a homogeneous population of age x, all investing equal
amounts, the design proposed in Milevsky and Salisbury (2015) had d(t) =
1
ax t

px, i.e. the natural tontine for age x. In this context, the design is optimal in
the case of logarithmic utility, and near-optimal otherwise. In this section, we
wish to propose a suitable generalization in the heterogeneous setting.

For heterogeneous tontines, we have seen that overall optimality is not fea-
sible (except asymptotically). In that context, we propose adopting the follow-
ing design, which performs well in numerical experiments we have conducted,
reduces to the above design in the case of a homogeneous population, and
agrees with the proportional tontine in the limit as n → ∞ (so is optimal
asymptotically).

Fix the xi , wi and ni . We say that a tontine is natural if d(t) is at all times
proportional to the mean number of surviving tontine shares. In other words,
d(t) = c

∑
u jn j · t pxj = c

∑
π jw j n j · t pxj . Integrating, we see that

d(t) =
∑
i

[
πi niwi∑

j axjπ jw j n j

]
t pxi .

Note that once the πi are given, the natural tontine is fully determined by the
budget constraint. But to construct a tontine that is both natural and equitable,
we must compute the πi and d(t) simultaneously. In practice, this is more com-
plicated than (as above) simply fixing a d(t) and computing equitable π ’s, but
not unduly so (at least when the number K of types is small).

The following two tables (Table 2 for K = 2 cohorts, Table 3 for K = 3)
display such natural and equitable tontines, and compare them to “natural”
tontines that would have been chosen if the population had been homogeneous
(but with equitable participation rates). We also compare with the correspond-
ing proportional tontines, though those are not equitable. Though the theoret-
ical basis of proportional tontines is not as appealing as that of natural ones,
they are simpler to compute, and they do appear to perform reasonably in prac-
tice. We view them as an acceptable alternative if computational resources are
not available to work out equitable πi ’s and natural d(t)’s. Note that since these
tables normalize π to make πi = 1 for some i , this means that the proportional
tontine has π j = axi /axj .
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TABLE 2

SHOWS THE PARTICIPATION RATES π2 (= INVERSE OF THE SHARE PRICE) AND CORRESPONDING UTILITY
LOADINGS δ1, δ2 WHEN THERE ARE TWO COHORTS OF SUBSCRIBERS IN THE POOL: AGES x1 = 65 AND

x2 = 75. UTILITY IS LOGARITHMIC. EVERYONE INVESTS 1 DOLLAR (w1 = w2 = 1). TONTINE DESIGNS ARE:
A = NATURAL TONTINE BASED ON AGE 65 COHORT ALONE, EQUITABLE RATES;
B = NATURAL TONTINE BASED ON THE RANGE OF AGES, EQUITABLE RATES;

C = PROPORTIONAL TONTINE;
D = NATURAL TONTINE BASED ON AGE 75 COHORT ALONE, EQUITABLE RATES.

Equitable Rates and Loadings in Pools
with K = 2 Cohorts: n1 = n2

Age 75 Age 75
Age 65 Age 65

δ1 δ2 π2 δ1 δ2 π2

n1 = 1 = n2 n1 = 50 = n2
A −235.4 −2604.4 1.829 239.4 30.0 1.501
B −495.0 −2819.3 1.631 −3.7 −69.8 1.375
C −1266.7 −2012.0 1.370 −20.6 −52.9 1.370
D 277.7 −2759.3 1.506 696.1 74.3 1.265

n1 = 5 = n2 n1 = 500 = n2
A 177.7 −496.8 1.550 240.0 92.8 1.495
B −69.7 −612.3 1.413 −0.22 −7.7 1.371
C −219.9 −458.7 1.370 −2.0 −5.9 1.370
D 646.5 −485.6 1.302 700.2 135.7 1.262

n1 = 10 = n2 n1 = n2 → ∞
A 218.4 −213.3 1.523 239.7 100.7 1.494
B −28.9 −317.9 1.392 0 0 1.370
C −106.3 −239.5 1.370 0 0 1.370
D 676.4 −179.5 1.281 700.7 143.2 1.261

Assumes r = 4%, Gompertz Mortality (m = 88.72, b = 10);
δi are Given in b.p.; Rates are Normalized so π2 = 1

First, consider Table 2. Rows labeled “A” and “D” use tontine designs that
would be natural for homogeneous populations, of age 65 and 75, respectively.
Equitable π ’s are then computed. In row A, both δ1 and δ2 start negative
(n1 = 1 = n2), meaning that the benefit of the extra participant outweighs
the impact of heterogeneity. As the common value of n1 = n2 rises, the δi be-
come positive and defects in the design become more relevant. In particular,
loadings remain strictly positive asymptotically — while the product becomes
essentially an annuity, it is not an optimal one. Note that the loadings are not
actually monotone. Adding participants is more beneficial for older (age 75)
participants than for younger (age 65) ones. Surprisingly, in the presence of age
65 participants, even the age 75 ones get more benefit from an age-65 design
over an age-75 one.

Rows labeled “B” correspond to a truly natural and equitable design. Rows
labeled “C” are proportional designs. In most cases, either performs better for
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TABLE 3

SHOWS THE PARTICIPATION RATES π1, π2, π3 (WHICH ARE THE INVERSE OF THE SHARE PRICES) AND
CORRESPONDING UTILITY LOADINGS δ1, δ2, δ3 WHEN THERE ARE THREE COHORTS OF SUBSCRIBERS IN THE

POOL: AGES x1 = 60, x2 = 65, AND x3 = 70. UTILITY IS LOGARITHMIC. EVERYONE INVESTS 1 DOLLAR
(w1 = w2 = w3 = 1). TONTINE DESIGNS ARE:

A = NATURAL TONTINE BASED ON AGE 65 COHORT ALONE, EQUITABLE RATES;
B = NATURAL TONTINE BASED ON THE RANGE OF AGES, EQUITABLE RATES;

C = PROPORTIONAL TONTINE.

Participation Rates and Utility Loadings in Pools
with Three Cohorts: 2n1 = n2 = 2n3

Age 60 Age 65 Age 70 Age 60 Age 65 Age 70
π1 π2 π3 δ1 δ2 δ3

n1 = 5 n2 = 10 n3 = 5 n1 = 5 n2 = 10 n3 = 5
A 0.886 1 1.161 −186.9 −136.1 −594.3
B 0.884 1 1.161 −216.0 −136.6 −586.8
C 0.889 1 1.153 −275.0 −138.7 −586.8

n1 = 10 n2 = 20 n3 = 10 n1 = 10 n2 = 20 n3 = 10
A 0.889 1 1.157 −79.4 −68.9 −301.0
B 0.887 1 1.157 −102.9 −70.4 −297.2
C 0.889 1 1.153 −133.3 −71.3 −264.5

n1 = 20 n2 = 40 n3 = 20 n1 = 20 n2 = 40 n3 = 20
A 0.890 1 1.155 −29.8 −20.8 −153.3
B 0.888 1 1.155 −49.7 −23.0 −151.8
C 0.889 1 1.153 −65.4 −23.4 −135.1

Assumes r = 4% and Gompertz Mortality (m = 88.72, b = 10);
δi are Given in b.p.; Rates are Normalized so π2 = 1

both cohorts than the homogeneous designs do. The problem with the A design
is now clear — to be equitable, it requires a higher participation rate π2, which
dilutes the benefit of adding individuals to the tontine, and produces utility loss.
In contrast, rows B and C typically show a negative loading (i.e. a utility gain),
though with different choices of parameters (not shown) this can in fact some-
times not be the case.

Comparing B and C, it is generally the case that the older cohort prefers a
natural design, whereas the younger cohort prefers a proportional design. The
proportional design comes closer to equalizing the utility gains between the co-
horts. The two designs perform similarly asymptotically. The factor contribut-
ing most to their difference is the equitability of π rather than the choice of
d(t) —using the proportional d(t) but equitable π ’s would turn out to give very
similar utilities to the fully natural design.

Table 3 treats the three-cohort case, comparing the natural and proportional
designs with a design that would be natural for the age-65 cohort alone. Now, all
three designs have very similar effects on utility. Otherwise, the table is consistent
with empirical observations made above: adding people to the tontine is gener-
ally favorable (despite heterogeneity); and the utility improvement is greater for
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FIGURE 3: One path of simulated individual payout rates for a natural and equitable tontine with two
cohorts. First cohort has n1 = 200 individuals of age x1 = 65 and second cohort has n2 = 50 individuals of
age x2 = 85. All individuals invest 1 dollar (w1 = w2 = 1) but receive an income depending on their group.

Simulation assumes Gompertz Mortality (m = 88.72, b = 10) and r = 4%.

the older participants. Note that the good performance of these designs may in
part be a consequence of a balance between ages 60 and 70— asymetric designs
(not shown) are less consistent.

Figure 3 shows a simulation of the payouts from a two-cohort natural and
equitable design with n1 = 200 members and n2 = 50 members. Note that
at moderate ages, it comes close to achieving a constant and steady payout to
each survivor. There is higher volatility in payments at advanced ages, once the
number of survivors in the pool is small. Mitigating that volatility would be a
requirement for a practical tontine design. In fact, we believe this is not hard to
achieve, for the following reason: our tontines are designed to be optimal when
individuals have no exogenous income. In reality, there is typically some exoge-
nous pension income (eg. Social Security). Unpublished work by Ashraf (2015)
suggests that in the presence of exogenous income, optimal tontines should be
designed to taper off and cease payments at advanced ages (e.g. by age 100). If
this is done, then by the time the survivor pool is very small, any variability in
its size will no longer matter.

Natural and equitable tontines appear to exist for a broad range of pa-
rameter values (though not universally — the obstruction raised in Section 3
still remains valid). But we have not yet succeeded in finding necessary and
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sufficient conditions for existence, or in establishing uniqueness, as in Theorem
4. Therefore, resolving the following remains a topic for further research.

Conjecture 7. Fix the xi , ni , and wi , i = 1, . . . , K. Under broad conditions, there
will exist a choice of π = (π1, . . . , πK) such that the corresponding natural ton-
tine is equitable. Up to an arbitrary multiplicative constant, there is at most one
such π .

6. OTHER PRODUCT DESIGNS

As indicated earlier, there are a number of other product designs in the actuarial
literature that hedge the idiosyncratic component of longevity risk but not the
systematic component. In this section, we discuss some of those alternatives.

6.1. Pooled annuity fund (PAF)

In the homogeneous setting, the optimal PAFwas derived in Stamos (2008), and
its utility (or loading in our terminology) compared to a (variable) life annuity
was investigated in Donnelly et al. (2013). See Qiao and Sherris (2013), Valdez
et al. (2006) and Cannon and Tonks (2008) for additional references that are
relevant to the sharing of mortality and longevity risk. We are not aware of
work on such optimal PAF’s in the heterogeneous setting, though an approach
like that of this paper (i.e. fix a payout mechanism and then allocate shares eq-
uitably) could probably be carried out in this context. PAF’s in general allow a
diversified investment portfolio, but we will consider only risk-free portfolios. In
other words, this section treats PAF’s invested purely in bonds (at rate r ) with a
homogeneous pool of subscribers.

A PAF allows the rate e(t, k, w) at which each individual is paid to vary
with t, but also with the number of survivors k = Nt and with the individual’s
share w = Wt of total assets under management w = Wt (so Wt = NtWt
and w = kw). For a given risk-aversion coefficient γ �= 1, Stamos (2008) ob-
tains the utility-optimizing payout rates e, and shows that they take the form
e(t, k, w) = η(t, k)w for some function η(t, k). The extra flexibility means this
provides higher utility than a tontine (where dependence on k and w is not al-
lowed, other than indirectly via the initial number n of subscribers). Table 1
indeed shows a modest improvement.

It comes at the expense of dealing with a more complex product. For ex-
ample, a prospectus would have to provide the full table of η(t, k)’s and that
complexity may make it harder for subscribers to understand (and then man-
age) the risks associated with the product. The payout to an individual will no
longer be predictable in terms of the current number Nt of survivors, i.e. it will
be path-dependent. A general PAF will also require the fund manager to ad-
just the portfolio in response to the observed mortality experience of the pool,
rather than relying on a static bond portfolio. So there are both advantages and
disadvantages to each design.
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FIGURE 4: Shows simulated total (left) and individual (right) payout rates for a homogeneous population
consisting of 10 individuals age 65. Tontine and PAF are both optimal for risk aversion γ = 5. Total planned
tontine payout is shown through age 110; other plots cease upon last death. Assumes Gompertz Mortality

(m = 88.72, b = 10) and r = 4%.

To compare with our tontines’ payout d(t), we let e(t, k, w) denote the total
payout rate, per initial dollar invested. We assume that each individual invests
$1 initially, so e(t, k, w) = η(t, k)w/n.

An observation, that we have not seen recorded in the literature, is that when
γ = 1 (in the setting described above), the total withdrawals from the optimal
PAF become deterministic. In other words, this PAF is a tontine (and therefore
must be the natural tontine):

Proposition 8. Assume a homogeneous pool, with assets invested risk-free at rate
r . Assume logarithmic utility. Then, the optimal PAF has e(t, Nt,Wt) = 1

ax t
px.

We give the proof in the appendix. To give a sense of the differences, Figure
4 simulates both total payouts d(t) and e(t, Nt,Wt), and individual payouts
d(t)/Nt and e(t, Nt,Wt), for γ = 5, x = 65 and a small pool of size n = 10. The
utility improvement from the PAF appears to derive from a modest reduction
in the volatility of individual payouts. With a larger pool of size n = 100, the
difference in either total or individual payouts (not shown) become negligible,
except at quite advanced ages.

6.2. Group self annuitization (GSA)

The GSA scheme was proposed in Piggott et al. (2005). It provides a rule for
managing payments from a pool of assets, so does not depend on risk aversion,
nor does it attempt to optimize utility. On the other hand, it allows for a het-
erogeneous pool, and variable asset returns, though as in other sections of this
paper, we will focus here on the case of a fixed rate of return r .

The general GSA scheme also allows new individuals to join over at times
t > 0, by valuing each survivor’s share of current assets, and then allowing new
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individuals to buy in at an actuarially fair price. A similar approach could be
used to add this feature to the tontines considered in the current paper, but we
do not pursue this idea here. We will therefore treat only GSAs in which all
investors buy-in at time 0.

A GSA scheme works as follows, in discrete time: members of the i th cohort
each contribute wi at time 0. This entitles them to an initial payment matching
that an annuity would provide. At later times tk, everyone’s payment is adjusted
up or down by a common annuity factor Mk chosen so that if realized mortality
were to match expected mortality thereafter, no further adjustment would be
required. In symbols, survivors from the i th cohort receive gi,k at time tk = k�t.
Initially, gi,0 = wi/ȧxi , where ȧx is the discrete annuity price for $1 each period
�t, i.e. ȧx = ∑∞

k=0 e
−rtk

tk px. Later, gi,k = Mkgi,0, where
∑

i gi,kNi (tk)ȧxi+tk = Wk
and Wk is the wealth at time tk. The latter is determined recursively as Wk+1 =
(Wk − gk)er�t, where gk = ∑

i gi,kNi (tk) is the total disbursed at time tk.
Suppose first that all cohorts have the same age x1, but possibly different

initial contributions wi . Then, gk = Wk
ȧx1+tk

so the above recurrence implies that
gk and Wk are both deterministic (i.e. tontine-like). We have not seen this con-
clusion recorded in the literature. Moreover, gk+1 = Wk+1

ȧx1+tk+1
= Wk−gk

ȧx1+tk+1
er�t =

gk
ȧx1+tk−1
ȧx1+tk+1

er�t. From a standard actuarial recursion, this implies that gk+1 =
gk �t px1+tk , from which we obtain

Proposition 9. Assume a pool whose cohorts have the same initial age x1 and con-
tribute wi at time 0. Assume that assets are invested risk-free at rate r . Then,
the total GSA payout is gk =

∑
n jw j

ȧx1
tk px1 , while individual payouts are gi,k =

gkwi∑
j w j Nj (tk)

.

If we now take limits as �t ↓ 0, we obtain a natural tontine (for age x1) that
pays out continuously at rate

∑
n jw j

ax1
t px1 . In the language we introduced earlier,

the participation rates for this tontine are all πi = 1, so it is not equitable
(except in the homogeneous case of a single cohort). This is consistent with
the results of Donnelly (2015) who shows that a GSA scheme is only fair
in the homogeneous case. As noted earlier, to achieve fairness, she has to
include payments to estates. In this case, during the final period when anyone is
alive, all who die are deemed to receive the remaining assets distributed in the
proportions set by the GSA rules.

In the fully heterogeneous case (variability in both initial ages and initial
investments), there is no reason that either wealth or total withdrawals should
be deterministic. In other words, the GSA is no longer tontine-like. It turns out
that the appropriate tontine to compare with in this case is what we have called
a proportional tontine. To start with, the GSA payouts (resp. proportional ton-
tine payout rates) are always proportional to the initial payout gi,0 = wi

ȧxi
(resp.

initial payout rate wi
axi
). In fact, any deviation between theGSA and proportional

tontine payouts derives either from the discrete-time formulation of the GSA,
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FIGURE 5: Shows simulated total payout rate for a proportional tontine and a GSA (with monthly payouts).
Represents two cohorts, ages x1 = 65 and x2 = 75, sizes n1 = n2 = 5, with all individuals investing 1 dollar

(w1 = w2 = 1). Assumes Gompertz Mortality (m = 88.72, b = 10) and r = 4%.

or from deviations of the survival counts Ni (t) from their means — it can be
shown (though we will not give details) that if each Ni (tk) agreed with ni × tk pxi ,
then in the limit as �t ↓ 0, the two cash flow streams would agree precisely.
More concretely, as Figure 5 shows, the actual payment streams are quite close
even for small n.

6.3. Other designs

Donnelly et al. (2014) formulate another design, known as an annuity over-
lay fund (AOF), as a way of pooling individual investment accounts in or-
der to capture mortality credits. The overlay pays out the assets of individu-
als who die in a period, in proportion to all who belong to the pool at the be-
ginning of the period (including those who die). It does so in proportion to
both the individual’s assets at risk in the pool, and to the individual’s hazard
rate.

TheAOF is designed toworkwith arbitrary investment andwithdrawal deci-
sions by participants, so it seeks to achieve actuarial fairness over every period,
as opposed to simply over the lifecycle. This is a very different objective than
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that of a tontine or annuity, whose goal is providing stable lifetime income. We
should therefore not expect the two designs to behave similarly.

Another design is the fair transfer plan (FTP) of Sabin (2010). Only living
participants receive payments. So (as in the current paper) Sabin’s goal is not
actuarial fairness, but rather to ensure that no individual has an advantage over
another (i.e. what we call equitability). On the other hand, he requires this to be
achieved over every period (as in Donnelly et al. (2014)), rather than once over
the lifecycle, which means that his design is not comparable to ours. We note
that he does obtain necessary and sufficient conditions for the existence of an
equitable FTP, in his context.

7. CONCLUSION

There is a growing interest among practitioners and academics in the optimal
design of retirement de-accumulation products that insure against idiosyncratic
longevity risk while sharing aggregate exposure within a group. In this paper, we
investigated the design of a retirement income tontine scheme that allows indi-
viduals with different mortality rates to participate in the same pool. And while
this scheme might not be actuarially fair, in the sense of Donnelly (2015), this
scheme is equitable in that the scheme does not discriminate against any particu-
lar sub-group and all participants receive the exact same expected present value
of benefits. And although alternative designs can sometimes provide somewhat
greater utility than a tontine, the retirement income tontine has the advantage
of transparency, simplicity and requiring little if any actuarial expertise to op-
erate. It pays a reasonably steady and predictable cash flow to a declining group
of survivors. It is also simpler to analyze qualitatively, and leads to interesting
mathematical properties and insights.

The structure we introduce in this paper—which is an extension ofMilevsky
and Salisbury (2015) — allows anyone of any age to participate in the scheme
by adjusting the price of a tontine share to be a function of (i) the number of
investors, (ii) their ages and (iii) the capital they have invested. InLorenzoTonti’s
original scheme, as well as the structure proposed in Milevsky and Salisbury
(2015), all investors (in the same pooling class) were assumed to be of the same
age and paid the same price. When smaller groups were segmented into age
bands, they lost the benefit of large numbers. In this paper, we have proved that
it is possible to mix cohorts without discriminating provided the diversity of the
pool satisfies certain dispersion conditions and we propose a specific design that
appears to work well in practice.

Finally, this paper provides a detailed comparison of the various mortality
pooling schemes that have been proposed in the literature as well as the con-
ditions under which they all collapse into a tontine-like structure. Indeed, re-
gardless of what they are called in practice they all do seem to share a common
ancestor.
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NOTES

1. This argument was recently made by Professor William Sharpe in a presentation to the
French Finance Association, quoted in Milevsky (2015, pg. 164).

2. On a historical note, this proposal to “fix” tontines was actually made almost 200 years ago
by Mr. Charles Compton (1833), who was the Accountant General of the Royal Mail in the UK.
He wrote: “HisMajesty’s Government should create a Tontine Stock bearing interest at a certain rate
per annum and to permit persons of a certain age to purchase such stock at par, those younger or older
to purchase the same stock above or below par according to their several ages”. He argued that this
was preferable to forming the contributors into classes which ends-up creating very small groups
with few benefits from pooling. He claimed that: “Younger purchasers would give more money for
$100 stock than the elder and would give up part of their income for the benefit of elder members, who
in turn would bequeath their annuities to the younger as compensation”. Compton (1833) goes on to
list a table of values mapping ages into share prices, which is quite similar (in spirit, at least) to our
numbers, which we present later on in the paper.

3. What this all means practically speaking is that Compton’s (1833) scheme to charge different
share prices for tontine stock might not work for all ages and investment amounts. The equitable
price is most definitely not linear in the amount invested, which is in contrast to a tontine scheme
with homogenous ages. And, while one certainly can’t fault Compton (1833) for not realizing this
fact, we believe it is an interesting aspect of his rather-clever proposal.
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APPENDIX A. PROOFS AND
COMPUTATIONS

A.1. Proof of Theorem 4

We will assume, for now, that each cohort consists of a single individual, i.e. n = K , each
ni = 1, and the Ni (t) are Bernoulli. There will be no loss of generality in doing so, as far as
the proof of uniqueness goes. To see this, simply split the cohorts up. For existence however,
an additional argument will then be needed to establish the sufficiency of (3). In fact, a short
proof of necessity could be extracted from the proof of Lemma 13 below (see formula (7)).
The more complex structure we develop below is needed principally for sufficiency.

Let P = {(π1, . . . , πn) : 0 < πi ≤ 1 for each i , and maxi πi = 1}. Scaling π does not af-
fect the Fi , so every value of F = (F1, . . . , Fn) can be realized with some π ∈ P . We start
with the uniqueness question.
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Proof of (a) of Theorem 4. Suppose π �= π̃ are both equitable, and not multiples of each
other. Interpolate between them using π(s) = sπ + (1 − s)π̃ . Then,

d
ds

Fi (π(s)) =
∫ ∞

0
e−rt

t pxi wd(t)Ei
[ d
ds

πi (s)∑
j π j (s)w j Nj (t)

]
dt

=
∫ ∞

0
e−rt

t pxi wd(t)Ei
[∑

j [π
′
i (s)π j (s) − πi (s)π ′

j (s)]w j Nj (t)

(
∑

j π j (s)w j Nj (t))2

]
dt. (4)

Moreover,

π ′
i (s)π j (s) − πi (s)π ′

j (s) = (πi − π̃i )
[
s(π j − π̃ j ) + π̃ j

]
−

[
(s(πi − π̃i ) + π̃i

]
(π j − π̃ j )

= (πi − π̃i )π̃ j − (π j − π̃ j )π̃i = πi π̃ j − π j π̃i = πiπ j

( π̃ j

π j
− π̃i

πi

)

for each s ∈ [0, 1]. In particular, if we choose i to minimize π̃i
πi
, it follows that this expression

is ≥ 0 for every j , and > 0 for some j (since π̃ is not a multiple of π ). Therefore, for this
choice of i , we have that d

ds Fi (π(s)) > 0. Thus, Fi (π̃) > Fi (π), which is a contradiction. It
follows that uniqueness holds.

To prove existence, and in particular to understand (3), we need to dig deeper into the
structure of the optimal π . In particular, to consider limiting cases when some of the πi → 0.
To do that, we borrow an idea from the theory of Martin boundaries (see for example, Doob
(1984)) and embed P in a compact set P0.

Set η = {1, . . . , n}. For non-empty A⊂ η and π ∈ P , let πA = (
πi

max j∈Aπ j
)i∈A. Set g(π) =

(πA)∅ �=A⊂η, so g : P → [0, 1]m, where m = ∑
∅ �=A⊂η |A| = ∑n

k=1 k
(n
k

) = ∑n−1
j=0 n

(n−1
j

) = n2n−1.
Let P0 be the closure of g(P) in [0, 1]m, so g is a continuous embedding of P in P0. We will
think ofP as a subset ofP0, so to some extent, we will use notation that identifies π ∈ P with
g(π) ∈ P0. In particular, we will freely use π to denote either an element of P or an element
of P0, and in both cases will use the same notation πA for its components, as defined above.

Let π ∈ P0. Then, πη ∈ [0, 1]n may have some (but not all) of its components= 0.Writing
πη = (πη,1, . . . , πη,n), we let A0 = {i | πη,i �= 0}. If A0 �= η, then πη\A0 may in turn have some
(but not all) of its components = 0. Let A1 = {i ∈ η \ A0 | πη\A0,i �= 0}. Continuing this way
with πη\A0∪A1 etc., we partition η into a finite number of non-empty subsets A0, A1, . . . , AJ

such that the components of each πAj are all non-zero. Of course, if π actually ∈ P , then
A0 = η. In fact, π may be recovered from these Aj and πAj , as the following Lemma shows.

Lemma 10. Let A ⊂ η be non-empty, and let π ∈ P0. Define the Aj as above, and let i =
min{ j |A∩ Aj �= ∅}. Then, for k ∈ A,

πA,k =
{ πAi ,k

max j∈A∩Ai πAi , j
, k ∈ A∩ Ai

0, k ∈ A\ Ai .

Proof. To see this, choose π(m) ∈ P such that g(π(m)) → π . Set B = ∪ j≥i Aj , so A⊂ B.
For k ∈ B, we have

πB,k = lim
m→∞

π
(m)

B,k = lim
m→∞

π
(m)

k

max j∈B π
(m)

j

.
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By definition of πB,k, this is non-zero precisely for k ∈ Ai , so if j ∈ Ai and k ∈ B \ Ai , then
π

(m)
k

π
(m)
j

→ 0. Therefore, max j∈Aπ
(m)

j = max j∈A∩Ai π
(m)

j for sufficiently large m, and if k ∈ A,

then

πA,k = lim
m→∞

π
(m)

A,k = lim
m→∞

π
(m)

k

max j∈Aπ
(m)

j

= lim
m→∞

π
(m)

k

max j∈A∩Ai π
(m)

j

.

By the above, this = 0 if k ∈ A\ Ai . If k ∈ A∩ Ai , we may divide numerator and denominator
by max j∈Ai π

(m)

j to see that it

= lim
m→∞

π
(m)

Ai ,k

max j∈A∩Ai π
(m)

Ai , j

= πAi ,k

max j∈A∩Ai πAi , j
,

as required.

What is going on in this argument is that for π ∈ P0 and A0, A1, . . . , AJ as above, having
a sequence π(n) ∈ P converge to π in the topology of P0 means that the π

(m)

j converge to
non-zero values for j ∈ A0, they converge to 0 at a common rate for j ∈ A1 (with πA1 giving
a suitably renormalized limit), they converge to 0 at a faster rate for j ∈ A2, etc.

For a given payout function d(t), we defined a tontine above, corresponding to anyπ ∈ P .
We can generalize this to any π ∈ P0. It pays only to individuals in A0, as long as any of them
survive, using participation rates πi . As soon as the last of these individuals dies, it starts
paying out to individuals in A1, using participation rates πA1,i . Once they all die, it starts
paying out to individuals in A2, using rates πA2,i , etc. Since payments are contingent on the
extinction of an earlier group, we call this generalization a contingent tontine.

If there is a contingent tontine that is favorable to the last group to start collecting, it is
quite plausible that no π can achieve equity. The content of Theorem 4 is that these two state-
ments are in fact equivalent. Moreover, we shall see in the course of the proof that equation
(3) precisely captures the failure of the first statement.

We may now generalize the definition of the present value functions Fi (π). Let π ∈ P0,
and suppose that i ∈ Ak. Let T0 = 0, and for 1 ≤ j ≤ J+1 let Tk be the time the last survivor
from A0 ∪ · · · ∪ Ak−1 dies. Let ζi be the lifetime of individual i . Define

Fi (π) =
∫ ∞

0
e−rtwd(t)E

[ πAk,i∑
j∈Ak πAk, jw j Nj (t)

1{Tk<t<ζi }
]
dt. (5)

The point of passing to the more complicated index set P0 is the following:

Lemma 11. Each Fi : P0 → R is continuous.

Proof. Let π ∈ P0. Suppose that π(m) → π . Assume to start with that each π(m) ∈
P . Define A0, . . . , AJ as above (using π ), and likewise T0, . . . ,TJ+1, and let i ∈ A�. Set
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Bk = Ak ∪ · · · ∪ AJ . Then,

Fi (π(m)) =
∫ ∞

0
e−rtwd(t)E

[ π
(m)

i∑
j∈η π

(m)

j w j Nj (t)
1{t<ζi }

]
dt

=
∑
k

∫ ∞

0
e−rtwd(t)E

[ π
(m)

i∑
j∈η π

(m)

j w j Nj (t)
1{Tk<t<ζi∧Tk+1}

]
dt

=
∑
k≤�

∫ ∞

0
e−rtwd(t)E

[ π
(m)

i∑
j∈Bk π

(m)

j w j Nj (t)
1{Tk<t<ζi∧Tk+1}

]
dt

=
∑
k≤�

∫ ∞

0
e−rtwd(t)E

[ π̃
(m)

i,k∑
j∈Bk π̃

(m)

j,k w j Nj (t)
1{Tk<t<ζi∧Tk+1}

]
dt,

where π̃
(m)

q,k = π
(m)
q

max j∈Ak π
(m)
j

. Now, sendm → ∞. If j ∈ Ak, then π̃
(m)

j,k → πAk, j , while if j ∈ Bk+1,

then π̃
(m)

j,k → 0. In particular, dominated convergence implies that the terms with k < � vanish
in the limit, while the k = � term converges to Fi (π).

The general case now follows. If π(m) → π , but we no longer assume π(m) ∈ P , simply
choose π̃ (m) ∈ P such that |Fi (π(m))−Fi (π̃ (m))| → 0 and ‖π(m) − π̃ (m)‖ → 0. Then, π̃ (m) → π

so lim Fi (π(m)) = lim Fi (π̃ (m)) = Fi (π).

Define a very equitable participation rate to be any π ∈ P0 that minimizes θ0(π) =
maxi,k |Fi (π) − Fk(π)| over π ∈ P0. By Lemma 11 and compactness of P0, such a π exists.
Of course, π is equitable if and only if θ0(π) = 0 and π ∈ P .

Lemma 12. Let π be very equitable. Let a0 = mini∈η Fi (π), and aJ = maxi∈η Fi (π). Then,
Fi (π) = a0 for every i ∈ A0, and Fi (π) = aJ for every i ∈ AJ.

Proof. Let π be very equitable. As in the proof of uniqueness, we will perturb π to im-
prove equity. Fix j . Let Ã consist of the i ∈ Aj which minimize Fi (π) over Aj , and set

πAj ,i (s) =
{

πAj ,i (1 + s), i ∈ Ã

πAj ,i , i ∈ Aj \ Ã.

We do not perturb πAk,q for any k �= j , so there is no impact on Fq for q /∈ Aj . Note that
this π(s) may not lie ∈ P0, as maxi∈Aj πAj ,i (s) may now be �= 1. This will not turn out to
matter, and could in any case be remedied by rescaling at a suitable point in the argument. A
calculation as in (4) shows that for i ∈ Aj ,

d
ds

Fi (π(s)) =
∫ ∞

0
e−rt

t pxi wd(t)E
[∑

k∈Aj [π
′
Aj ,i

(s)πAj ,k(s) − πAj ,i (s)π
′
Aj ,k

(s)]wkNk(t)

(
∑

k∈Aj πAj ,k(s)wkNk(t))2
1{Tk<t<ζi∧Tk+1}

]
dt.

Assume that Ã �= Aj , i.e. that Fi (π) is not constant on Aj . I claim that

d
ds

Fi (π(s)) is

{
> 0, i ∈ Ã

< 0, i ∈ Aj \ Ã.
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In other words, this perturbation brings the lowest Fi ’s up, and the other Fi ’s down.
Suppose i ∈ Ã. If k ∈ Ã, then π ′

Aj ,i
(s)πAj ,k(s) − πAj ,i (s)π

′
Aj ,k

(s) = πAj ,iπAj ,k −
πAj ,iπAj ,k = 0. If k ∈ Aj \ Ã, then π ′

Aj ,i
(s)πAj ,k(s) − πAj ,i (s)π

′
Aj ,k

(s) = πAj ,iπAj ,k > 0.

Therefore, the sum is > 0 so d
ds Fi (π(s)) > 0 too.

Now, suppose i ∈ Aj\ Ã. If k ∈ Ã, thenπ ′
Aj ,i

(s)πAj ,k(s)−πAj ,i (s)π
′
Aj ,k

(s) = −πAj ,iπAj ,k <

0. If k /∈ A, then π ′
Aj ,i

(s)πAj ,k(s) − πAj ,i (s)π
′
Aj ,k

(s) = 0. Therefore, the sum is < 0 so
d
ds Fi (π(s)) < 0 too.

The result of this calculation is that for small s, our perturbation reduces the variation of
Fi (π) on Aj , unless i �→ Fi (π) is already constant on Aj .

Turning to the statement of the lemma, there must be a j such that Fi (π) = a0 for every
i ∈ Aj , otherwise we could perturb so as to raise every Fi (π) which equals a0, while lowering
or not changing the other Fk(π). (If necessary, rescale to keep π ∈ P0.) This would reduce
θ0(π) which is impossible. By the same perturbation, we may also assume that for any j ,
either Fi (π) = a0 for every i ∈ Aj , or Fi (π) > a0 for every i ∈ Aj . Let J0 be the set of j of
the former type. Our goal is to show that 0 ∈ J0.

Suppose that j ≥ 1 belongs to J0, but j−1 does not. Consider the following perturbation.
Combine Aj−1 and Aj , by setting

πAj−1∪Aj ,i (s) =
{

πAj−1,i , i ∈ Aj−1

sπAj ,i , i ∈ Aj

for s > 0. This will not impact Fi (π(s)) for i other than j−1 or j . For i ∈ Aj this has no effect
on the expectation in (5) representing payments after time Tj , but with positive probability it
adds a non-zero contribution from the integral over [Tj−1,Tj ). Therefore, Fi (π(s)) increases
for each i ∈ Aj . A derivative calculation similar to that given above shows that the Fi (π(s))
decrease for i ∈ Aj−1.

This perturbation may or may not decrease θ0(π). But if 0 /∈ J0, then we may apply it in
turn to the first j in J0, then the second j in J0, etc., until eventually θ0(π) will decrease. This
would be a contradiction, so it follows that 0 ∈ J0.

We may apply a similar argument to aJ to prove the remaining conclusions.

We are now ready to prove the existence portion of Theorem 4, under our additional
restriction that n = K . For A ⊂ η, let αA = 1

w

∑
i∈Awi be the percentage of the total initial

investment contributed by members of A.

Lemma 13. Fix d(t) as well as the xi and wi , and assume that each cohort consists of a single
individual. For there to exist a choice of π ∈ P with Fi (π) = 1 − ε for each i , it is necessary
and sufficient that for every A⊂ η with ∅ �= A �= η, we have

∫ ∞

0
e−rtd(t)(

∏
i /∈A

tqxi )(1 −
∏
i∈A

tqxi ) dt < αA(1 − ε). (6)

We may think of (6) failing for one of two reasons — the presence of particularly elderly
individuals, or of individuals who contribute a disproportionately large fraction of the initial
investment. In either case, we let A consist of the remaining people (younger, or investing
less). Condition (6) will fail if either

∏
i /∈A tqxi is large (i.e. the A

c individuals all die early into
the tontine), or if αA is small (i.e. the Ac individuals over-invest). A well-designed d(t) will
attempt to mitigate these possibilities, though we have seen that this is not always possible.
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In particular, if we fix a choice of d(t) but allow the wi to vary, there will always be a choice
for the wi that makes one of the αA small enough to force (6) to fail.

Proof. Assume (6), and let π ∈ P0 be very equitable. Let the aJ be as in Lemma 12. By
Lemma 12, we have aJ ≥ 1 − ε, since a suitably weighted average of the Fi (π) equals 1 − ε.
Suppose that there is no equitable π , or that the equitable π belongs to P0 \P . Then, J > 0,
so 0 < |AJ | < n. Moreover,

(1 − ε)αAJ ≤
∑
i∈AJ

wi

w
Fi (π) =

∫ ∞

0
e−rtd(t)

∑
i∈AJ

E
[ πAJ ,iwi∑

k∈AJ πAJ ,kwkNk(t)
1{TAJ ≤t<ζi }

]
dt

=
∫ ∞

0
e−rtd(t)E

[ ∑
i∈AJ

πAJ ,iwi Ni (t)∑
k∈AJ πAJ ,kwkNk(t)

1{Ni (t) �=0,TAJ ≤t}
]
dt

=
∫ ∞

0
e−rtd(t)P

(∑
i

Ni (t) > 0,TAJ ≤ t
)
dt

=
∫ ∞

0
e−rtd(t)(

∏
i /∈AJ

tqxi )(1 −
∏
i∈AJ

tqxi ) dt,

which violates (6).
Conversely, suppose π ∈ P is equitable, and let A⊂ η be non-empty and �= η. Then, as

above,

(1 − ε)αA =
∑
i∈A

wi

w
Fi (π) =

∫ ∞

0
e−rtd(t)E

[∑
i∈A

πiwi Ni (t)∑
k∈η πkwkNk(t)

1{Ni (t) �=0}
]
dt

>

∫ ∞

0
e−rtd(t)P

(∑
i∈A

Ni (t) > 0,
∑
i∈η\A

Ni (t) = 0
)
dt, (7)

which shows (6).

The problemwith condition (6) of Lemma 13 is that it involves checking 2n−2 conditions.
Condition (3) brings this down to a manageable number, provided we have a modest number
of cohorts. We therefore now abandon the assumption that n = K , in which case recall that
αA once more denotes 1

w

∑
i∈A niwi .

Proof of (b) of Theorem 4. Assume condition (3), which we may restate as∫ ∞

0
e−rtd(t)

∏
i /∈A

tqnixi dt < αA(1 − ε) + ε. (8)

Condition (6) involves a general collection of subscribers, which we will take to consist of
0 ≤ ki ≤ ni individuals from the i th group, i = 1, . . . , K . Stated in this way it becomes that

∫ ∞

0
e−rtd(t)

K∏
i=1

tqni−kixi
dt < (1 − ε)

K∑
i=1

kiwi

w
+ ε (9)

for every choice of 0 ≤ ki ≤ ni (other than (0, . . . , 0) and (n1, . . . , nK)). Observe that the
left hand side of (9) is a concave function of each ki (when the others are fixed), while the
right-hand side varies in an affine way. Observe also that (8) is precisely (9) for the extreme
points of I = [0, n1]× · · ·× [0, nK ] other than (0, . . . , 0) and (n1, . . . , nK). It is easily verified
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that the same inequality holds at the last two points as well, but with = rather than <. This is
enough to conclude that the strict inequality (9) holds at all points of I other than (0, . . . , 0)
and (n1, . . . , n2), so Lemma 13 applies to give an equitable π ∈ P .

Necessity also follows from Lemma 13, since (3) is a special case of (6).

A.2. Computational details

Motivated by the proof of Theorem 4, we calculate equitable participation rates by succes-
sively raising those πi for which Fi (π) < 1 − ε. We choose a relaxation rate η < 1, and
cycle through the i , raising πi by η as often as possible while preserving the above criterion.
Then, repeat the process this time raising by η2, then repeat again raising by η3, etc. For
K = 3, this appears to converge to five digits accuracy, using fewer than 100 evaluations of the
vector F(π).

Each equitable (20, 40, 20) entry of Table 3 took approximately 4 hours running under
R, and involved 100 evaluations of the vector F(π). Each evaluation required computing two
integrals, using Simpson’s rule with 400 time steps. Each time step in turn called for a binomial
sumof n1n2n3 terms.With K = 2, the computations are faster (25 integrations, with each time
step calling for summing n1n2 terms); for example, the equitable (500, 500) entries in Table 2
each ran in just over 3 hours, despite accounting for an order of magnitudemore people. Note
that our code could easily be optimized to run faster, e.g. by using a more efficient integration
method, or by starting with coarser time steps and refining them as the iteration proceeds.
For utility computations, we do seem to need the level of accuracy provided by 400 time steps,
but the π ’s are less sensitive and could have been found quicker.

A.3. Proof of Proposition 8

Let v(t, k, w) denote the utility an individual derives from a PAF. Scale invariance shows
that e(t, k, w) = η(t, k)w for some function η. When γ = 1, it also shows that v(t, k, w) =
ax+t logw + v(t, k, 1). In the case γ �= 1, Stamos (2008) derives an HJB equation for an
individual’s utility v(t, k, w). The same argument applies when γ = 1 and shows (in our
notation) that

vt(t, k, w) + λx+t(k− 1)[v(t, k− 1, w
k

k− 1
) − v(t, k, w)] − (r + λx+t)v(t, k, w)

+ sup
η

[
log(ηw) + wvw(t, k, w)(r − η)

]
= 0

for k ≥ 2 (with a similar equation when k = 1, except without the second term). Optimizing
over η, and substituting our expression for v gives that ax+t = wvw(t, k, w) = 1/η. There-
fore, e(t, k, w) = w

nax+t , which is independent of k. Therefore, Wt evolves according to the
differential equation

dWt =
[
r − 1

ax+t

]
Wt dt.

It is easily checked that the solution (with initial condition W0 = n) is Wt = nax+t ·t px
ax

, from

which we conclude that e(t, Nt,Wt) = 1
ax t

px, as required.
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