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Abstract

Background. Cognitive dysfunction and brain structural connectivity alterations have been
observed in major depressive disorder (MDD). However, little is known about their interrela-
tion. The present study follows a network approach to evaluate alterations in cognition-related
brain structural networks.
Methods. Cognitive performance of n = 805 healthy and n = 679 acutely depressed or remitted
individuals was assessed using 14 cognitive tests aggregated into cognitive factors. The struc-
tural connectome was reconstructed from structural and diffusion-weighted magnetic reson-
ance imaging. Associations between global connectivity strength and cognitive factors were
established using linear regressions. Network-based statistics were applied to identify subnet-
works of connections underlying these global-level associations. In exploratory analyses,
effects of depression were assessed by evaluating remission status-related group differences
in subnetwork-specific connectivity. Partial correlations were employed to directly test the
complete triad of cognitive factors, depressive symptom severity, and subnetwork-specific
connectivity strength.
Results. All cognitive factors were associated with global connectivity strength. For each
cognitive factor, network-based statistics identified a subnetwork of connections, revealing,
for example, a subnetwork positively associated with processing speed. Within that subnet-
work, acutely depressed patients showed significantly reduced connectivity strength compared
to healthy controls. Moreover, connectivity strength in that subnetwork was associated to
current depressive symptom severity independent of the previous disease course.
Conclusions. Our study is the first to identify cognition-related structural brain networks in
MDD patients, thereby revealing associations between cognitive deficits, depressive symptoms,
and reduced structural connectivity. This supports the hypothesis that structural connectome
alterations may mediate the association of cognitive deficits and depression severity.

Introduction

Major depressive disorder (MDD) is an affective disorder that has been considered one of the
most debilitating diseases for the past three decades (James et al., 2018). Cognitive deficits,
such as impaired concentration, attention, or decision-making contribute to this debilitation
and are prevalent among MDD patients: In studies, up to 90% of patients report cognitive
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deficits (Conradi, Ormel, & De Jonge, 2011), and up to 48% of
patients are diagnosed with cognitive deficits (Gualtieri &
Morgan, 2008; Schwert, Stohrer, Aschenbrenner, Weisbrod, &
Schröder, 2019). In acute depression, patients exhibit impair-
ments in the cognitive domains of executive functioning, process-
ing speed, memory, and attention (Baune, Fuhr, Air, & Hering,
2014; Rock, Roiser, Riedel, & Blackwell, 2014), which negatively
affect daily psychosocial functioning (Buist-Bouwman et al.,
2008; Fried & Nesse, 2014; McIntyre et al., 2013) and treatment
outcome (McLennan & Mathias, 2010). Even after remission,
moderate impairments in the domains of executive functioning
and attention persist (Baune et al., 2014; Rock et al., 2014), caus-
ing impairments, for example, in occupational contexts (Baune
et al., 2010; Jaeger, Berns, Uzelac, & Davis-Conway, 2006). Due
to these adverse effects, cognitive deficits represent a symptom of
outstanding importance within the symptom profile of MDD. It
is, thus, crucial to investigate the factors underlying their emergence.
Aiming to identify one of these factors, in the present study, we
investigated the relationship between neurobiological alterations
and cognitive deficits in MDD. More specifically, we explored the
association of alterations in structural connectivity, i.e. white matter
fiber tracts, and cognitive performance in a large sample of MDD
patients and healthy controls (HC).

Structural connectivity within the human brain can be inves-
tigated using neuroimaging techniques such as diffusion-weighted
imaging (DWI). DWI captures the diffusion of hydrogen mole-
cules (Basser, Mattiello, & LeBihan, 1994), allowing researchers
to reconstruct white matter fiber tracts. The entirety of these
fiber tracts, i.e. the brain’s connectome, can then be analyzed
using network analyses (van den Heuvel & Sporns, 2013). In
these analyses, white matter fiber tracts are considered edges that
connect nodes, i.e. gray matter brain regions. Moreover, researchers
can infer the connectome’s topology using graph metrics or identify
subnetworks of edges associated with a given effect.

Previous studies that applied network analyses on the struc-
tural connectome identified subnetworks of edges characterized
by reduced structural connectivity in MDD patients
(Korgaonkar et al., 2011; Myung et al., 2016; Repple et al.,
2020; Sacchet, Prasad, Foland-Ross, Thompson, & Gotlib, 2015).
These findings are supported by studies showing widespread
microstructural white matter alterations in MDD patients (Han
et al., 2014; Jiang et al., 2017; Murphy & Frodl, 2011; van
Velzen et al., 2020). Results from both network and microstruc-
tural analyses suggest that structural connectivity alterations are
especially pronounced in acute compared to remitted depression
(Repple et al., 2020, 2019).

Given all these findings, we hypothesize a link between cogni-
tive deficits and structural connectome alterations in MDD. This
hypothesis is based on the theory that cognitive functions emerge
from a network of interacting brain regions rather than from indi-
vidual brain regions alone (Lim & Helpern, 2002). Adopting this
theory, cognitive deficits would likely be associated with altera-
tions within cognition-related networks rather than alterations
in individual brain structures. Empirically, our hypothesis is sup-
ported by studies showing associations between structural con-
nectivity and cognitive performance in HC (Dhamala, Jamison,
Jaywant, Dennis, & Kuceyeski, 2021; Wiseman et al., 2018;
Zimmermann, Griffiths, & McIntosh, 2018) and patients suffer-
ing, for example, from multiple sclerosis, HIV, or traumatic
brain injury (Jolly, Scott, Sharp, & Hampshire, 2020; Yang
et al., 2021; Zhang, Cortese, De Stefano, & Giorgio, 2021).
Beyond results from network analyses, our hypothesis is

supported by results from analyses of white matter microstructure
in HC (Bolandzadeh, Davis, Tam, Handy, & Liu-Ambrose, 2012;
Grumbach et al., 2020) and neurological or psychiatric patients
(Eijlers et al., 2018; Karlsgodt, 2016; Mettenburg, Benzinger,
Shimony, Snyder, & Sheline, 2012; Mollison et al., 2017; Rizk
et al., 2017; Welton, Kent, Constantinescu, Auer, & Dineen,
2015; Yamada et al., 2015). However, to our knowledge, no
study utilized network analyses to investigate the association
between cognitive performance and the structural connectome
in MDD. Following our above hypothesis, network analyses
could provide valuable insights into this relationship by identify-
ing both the networks associated with cognitive performance and
MDD-related alterations within these networks. In the present
study, we, thus, compared the cognitive performance of MDD
patients and HC and employed network analysis to investigate
associations between cognitive performance and the structural
connectome. We expected (1) significantly reduced cognitive per-
formance in MDD patients compared to HC, especially in the
domains of processing speed and executive functioning, which
is particularly pronounced in acutely depressed patients; and (2)
significant associations between brain structural networks and
cognitive performance across the whole sample. In exploratory
analyses, we evaluated the effects of acute depressive symptoms
within these cognition-related subnetworks.

Materials and methods

Participants and behavioral measures

A total of N = 1484 participants were included in our analysis.
Details on participants’ demographic and clinical characteristics
can be found in Table 1. The sample was part of the Marburg–
Münster Affective Disorders Cohort Study [see Kircher et al.
(2019) for a general study protocol and Vogelbacher et al.
(2018) for an MRI quality assurance protocol]. Study procedures
were approved by the ethics committees of the medical faculties of
the universities of Marburg and Münster. Participants aged 18–65
were recruited in one of the two cities (Marburg or Münster,
Germany) via newspaper advertisements or local psychiatric hos-
pitals. All participants gave written informed consent before par-
ticipation. The Structured Clinical Interview for DSM-IV-TR
[Axis I: Mental Disorders, SCID-I (Wittchen, Wunderlich,
Gruschwitz, & Zaudig, 1997)] was used by trained personnel to
diagnose psychiatric disorders. Patients were included in our ana-
lysis if they were diagnosed with a current depressive episode
(MDDa) or a history of depressive episodes in partial or complete
remission (MDDr) according to SCID-I. HC were included if they
had no current or history of psychiatric or neurological diseases.
See our previous work (Repple et al., 2020) for details on exclu-
sion criteria and online Supplement S1 for information regarding
patients’ medication and comorbidities.

Scores from 14 cognitive tests (see Fig. 1a) were included to
assess the participants’ cognitive performance. Please refer to
online Supplement S2 for details on the cognitive tests. Current
depressive symptom severity was assessed in all participants
using the Hamilton Depression Rating Scale (Hamilton, 1986).

Acquisition and processing of MRI data

MRI data acquisition
Two MR scanners at the Universities of Münster and Marburg
were used for MRI data acquisition (see online Supplement S3

6612 Marius Gruber et al.

https://doi.org/10.1017/S0033291722004007 Published online by Cambridge University Press

https://doi.org/10.1017/S0033291722004007


and S4 for details on MRI data acquisition and preprocessing,
respectively). We included a scanner-site variable in all connec-
tome analyses to account for scanner differences (Vogelbacher
et al., 2018).

Anatomical connectome reconstruction
Details on the reconstruction and quality control of the anatom-
ical connectome are provided in online Supplements S5 and S6,
respectively. Briefly, white matter connectivity strength between
114 cortical brain regions [depicted by the Cammoun subdivision
of the Desikan-Killiany atlas (Cammoun et al., 2012; Desikan
et al., 2006)] was reconstructed using CATO (de Lange & van
den Heuvel, 2021). Each participant’s network was stored in a
connectivity matrix with rows and columns representing nodes,
i.e. brain regions, and matrix entries representing edges, i.e.
white matter fiber tracts. Edge connectivity strength was measured
as the number of reconstructed streamlines between two nodes.
Edges were included if they incorporated at least three recon-
structed streamlines to balance the sensitivity and specificity of
the resulting connectivity matrices (de Reus & van den Heuvel,
2013; Zalesky et al., 2016).

Estimation of global connectivity strength and connectome
topology
We calculated three measures to assess the connectome’s global
connectivity strength: (1) the number of edges present based on
the binarized connectivity matrix; (2) the mean connectivity
strength within the connectome as the mean number of stream-
lines per edge present (i.e. based on the weighted connectivity
matrix); (3) the total number of streamlines within a connectome.
In addition, we included seven standard measures describing the
topology of the unweighted connectome in our analysis, such as
shortest path length, global efficiency, clustering, or small-
worldness (Rubinov & Sporns, 2010). For details on these mea-
sures, we refer to online Supplement S7.

Statistical analysis

Python 3.7.9 (Van Rossum & Drake, 2019) was used to analyze
the data and create the figures (see online Supplement S8 for all
Python packages employed). Additionally, Matlab 2019b
(MATLAB, 2019) was used to apply network-based statistics
(NBS) (Zalesky, Fornito, & Bullmore, 2010). Network figures

were created using Brain Data Viewer (Dwyer et al., 2017). If
not stated otherwise, statistical tests were conducted at a two-sided
significance level of α = 0.05.

Analyses of cognitive performance
We calculated cognitive factors by applying an exploratory factor
analysis (EFA) on the test scores to abstract from cognitive tests to
cognitive domains. Details on the EFA can be found in online
Supplement S9. In short, the adequacy of the data for conducting
an EFA was evaluated using Bartlett’s test and the Kaiser–Meyer–
Olkin test. Then, the test scores of all participants were entered
into the EFA, and the number of factors to be extracted was deter-
mined according on their eigenvalues (Kaiser criterion, Scree plot)
and a parallel analysis (Horn, 1965). The cognitive factors were
interpreted according to the factor loadings of the test scores.
All subsequent analyses were conducted using these cognitive
factors.

Analyses of covariance (ANCOVA) were employed to test our
first hypothesis that there are cognitive deficits in MDD patients,
entering the respective cognitive factor as the dependent variable
and remission status (HC v. MDDr v. MDDa) as independent
variable. Further, age, sex, and years of education were included
as covariates of no interest as those are key variables for evaluating
an individual’s cognitive performance. In case of a significant
remission status effect, FDR (Benjamini & Hochberg, 1995) cor-
rected post-hoc t tests were applied to assess which of the groups
drove the effect.

Analyses of associations between cognitive performance and the
structural connectome
To test our second hypothesis that cognitive performance is asso-
ciated with structural brain networks across the whole sample, we
first conducted global-level analyses. To this end, we employed
linear regressions testing the bivariate association between a glo-
bal connectome measure and a given cognitive factor while cor-
recting for age, sex, and scanner-site. The p values assigned to
the cognitive factors were extracted and corrected for multiple
comparisons based on the FDR. To evaluate whether HC, acutely
depressed, and remitted MDD patients differed in these associa-
tions, in a second step, we additionally entered the remission sta-
tus and the remission status × cognitive factor interaction effects
into the above regressions. The respective p values were again cor-
rected based on the FDR.

Table 1. Demographic and clinical characteristics of the sample

Variable HC (n = 805) MDDr (n = 372) MDDa (n = 307) Statistic p value Sig1

Sex (female:male) 519:286 (64:36%) 249:123 (67:33%) 196:111 (64:36%) 0.89 0.616

Age 33.77 ± 12.68 36.6 ± 12.98 36.42 ± 13.26 18.668 <0.001 A, B

Years of education 13.96 ± 2.54 13.59 ± 2.76 12.8 ± 2.58 24.177 <0.001 A, B, C

HAMD 1.41 ± 2.17 5.67 ± 5.23 14.1 ± 6.37 994.713 <0.001 A, B, C

Age of onset 25.64 ± 12.05 26.65 ± 13.28 2.078 0.15 A, B, C

Depressive episodes 3.42 ± 5.42 4.45 ± 7.19 4.352 0.037

Hospitalizations 1.28 ± 1.8 1.85 ± 2.09 15.192 <0.001

Medication load index 0.97 ± 1.21 1.75 ± 1.5 37.146 <0.001

Note. Except for sex, mean values and standard deviations are shown. Test statistics and p values were derived from ANCOVA or χ2 tests. HAMD, Hamilton Depression Rating Scale (total
score); HC, healthy controls; MDDa, patients with an acute episode of major depressive disorder; MDDr, MDD patients in symptomatic remission.
1Letters indicate significant (i.e. pFDR < 0.05) differences in post-hoc t tests between HC and MDDa (A), HC and MDDr (B), or MDDa and MDDr (C).
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Next, to identify the subnetworks of edges underlying the cog-
nition–connectome associations found at the global level, we
employed NBS analyses in the whole sample (see online
Supplement S10 for details). As for our global-level analyses, we

chose a two-step approach for these local-level analyses: First,
for each cognitive factor, an NBS analysis was conducted, which
used family-wise error (FWE) corrected linear models to test
the association between edge-wise connectivity strength (i.e.

Fig. 1. Results from analyses on cognitive performance. (a) Factor loadings of cognitive test scores resulting from exploratory factor analysis. According to this
analysis, three factors represent the variance within the cognitive performance of the sample: CF-PS, cognitive factor representing processing speed; CF-VLM, cog-
nitive factor representing verbal learning and memory; CF-VF, cognitive factor representing verbal fluency; VLMT 1–5, verbal learning; VLMT 6, immediate verbal
memory; VLMT 7, delayed verbal memory; VLMT 8, recognition; DSST, Digit Symbol Substitution Test; TMT, Trail Making Test; D2, D2 Test of attention; LNST,
Letter Number Sequencing Test; Corsi fwd., Crosi Block-Tapping Test forward; Crosi bw., Corsi Block-Tapping Test backwards; VF category, semantic verbal fluency;
VF letter, phenomic verbal fluency; VF altern., cognitive flexibility. (b) Differences in cognitive factors between healthy controls (HC) and patients with acute (MDDa)
or (partially) remitted (MDDr) episode of major depressive disorder. *pFDR≤ 0.05; **pFDR≤ 0.01; ***pFDR≤ 0.001. Boxes indicate the lower and upper quartile of the
CF. Black lines within the boxes indicate the mean of the CF. Whiskers indicate the 1.5 inter-quartile range of the CF’s lower and upper quartile. Diamonds indicate
observations that fall outside this range. (c) Effect sizes (Cohen’s d ) representing these between-group differences. See online version for colored figures.
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number of streamlines) and the respective cognitive factor while
correcting for age, sex, and scanner-site. The significance of an
identified subnetwork was assessed through permutation testing.
To correct for multiple testing, we set the significance level to
α = 0.05/number of NBS analyses = 0.05/3 cognitive factors =
0.0167 in these analyses. Second, to evaluate whether remission
status groups differed in these local-level associations, for each
cognitive factor, an additional NBS analysis was conducted, test-
ing the interaction effect of remission status and cognitive per-
formance while correcting for the main effects of remission
status, age, sex, and scanner-site. To correct for multiple testing,
the significance level was again set to α = 0.0167. Note that all
subnetworks were obtained when applying an NBS F-threshold
of F = 5.8. We chose this threshold because it is the highest at
which subnetworks could be identified for all cognitive factors,
allowing identification and comparison of the most specific sub-
networks. See online Supplement S11 for analyses based on a
more lenient threshold and online Supplement S12 for informa-
tion on how different F-thresholds result in differing subnetwork
sizes.

Analyses of effects of depression on identified subnetworks
Our analyses followed the hypothesis that comparable subnet-
works are associated with cognitive performance in healthy and
depressed individuals but that depressed individuals show altera-
tions within these subnetworks. After identifying these subnet-
works in our second analysis, in our third analysis, we assessed
the effects of depression within the identified subnetworks by
employing two complementary analyses that were based on the
subnetwork-specific connectivity strength, i.e. the total number
of streamlines in an identified subnetwork.

First, to evaluate whether depressed individuals show altered
connectivity patterns within the identified subnetworks compared
to HC, we entered the subnetwork-specific connectivity strength
as the dependent variable into an ANCOVA with remission status
(HC v.MDDr v.MDDa), age, sex, and scanner-site as independent
variables. In case of a significant remission status effect, we applied
post-hoc t tests to assess which of the groups drove the effect.

Second, we performed a correlation analysis to simultaneously
test all associations forming the triad of acute depressive symp-
toms, cognition-related networks, and cognitive performance
and to examine the influence of disease course characteristics
on this triad. More specifically, we calculated correlations between
(1) depressive symptom severity as measured by the Hamilton
Depression Rating Scale (HAM-D), (2) subnetwork-specific con-
nectivity strength, and (3) cognitive performance as measured by
the cognitive factor used to identify the respective subnetwork.
Correlations were calculated as partial correlations between two
variables while holding the third constant and correcting for
age, sex, and scanner-site. All p values were corrected for multiple
comparisons based on the FDR. Next, to assess the influence of
disease course characteristics on the triad, we repeated the correl-
ational analyses while adjusting for age of disease onset, the num-
ber of depressive episodes or hospitalizations, or medication load
(Opel et al., 2019; Redlich et al., 2014; Repple et al., 2020, 2017).
Note that we focused this analysis on the MDD subgroup since
most HC had no depressive symptoms (HAMD sum score ≦2
in 79% of HCs), resulting in a heavily skewed distribution of
HAMD sum scores in HC. Moreover, all HC would have been
excluded due to missing values in disease course characteristics.
We opted for this correlational approach instead of mediation
analysis as the assumption of causality necessary for mediation

analyses cannot be verified using cross-sectional data (for explora-
tory mediation analysis with results in line with our approach, see
online Supplement S13).

Results

Analyses of cognitive performance

Adequacy of the data for conducting an EFA was confirmed by
Bartlett’s test (χ2 = 10 567.97, p < 0.001) and Kaiser–Meyer–
Olkin test (KMO = 0.90). The EFA yielded three cognitive factors
(see Fig. 1a for factor loadings). The first factor captured process-
ing speed and lower executive functioning (CF-PS, explaining
41% of the variance), the second factor captured verbal learning
and memory (CF-VLM, 13%), and the third factor captured
higher executive functions, especially verbal fluency (CF-VF, 9%).

There were significant differences in cognitive performance
between HC, MDDr, and MDDa in all three cognitive factors
[CF-PS: F(2, 1478) = 79.09, pFDR < 0.001; CF-VLM: F(2, 1478) =
20.62, pFDR < 0.001; CF-VF: F(2, 1478) = 40.21, pFDR < 0.001].
Post-hoc t tests (see Fig. 1; see online Supplement S14 for test sta-
tistics) revealed that both MDDa and MDDr performed signifi-
cantly worse than HC in processing speed and verbal fluency
(all pFDR = 0.001, 0.277⩽ d⩽ 0.517). In addition, MDDa per-
formed significantly worse than HC in verbal learning and mem-
ory ( pFDR = 0.019, d = 0.203) and significantly worse than MDDr
in verbal fluency ( pFDR = 0.001, d = 0.277). The latter remained
significant when controlling for medication load, age of disease
onset, or the number of depressive episodes or hospitalizations
(see online Supplement S15). Besides, we tested for effects of
patients’ comorbidity on cognitive factors, which did not yield
any significant results (see online Supplement S16). When out-
liers in cognitive factors were excluded, all but the differences
between HC and MDDa in verbal learning and memory ( pFDR
= 0.067) remained significant (see online Supplement S17)

Associations between cognitive performance and the
structural connectome

Linear regression models revealed six significant associations
between cognitive factors and global connectome measures.
More specifically, all three cognitive factors were associated with
the mean number of streamlines per edge (CF-PS: t = 3.925,
pFDR = 0.001, partial η2 = 0.010; CF-VLM: t =−3.925, pFDR =
0.003, partial η2 = 0.009; CF-VF: t = 3.047, pFDR = 0.012, partial
η2 = 0.006). Further, processing speed and verbal learning and
memory were significantly associated with the total number of
streamlines (t = 4.102, pFDR = 0.001, partial η2 = 0.011 and t =
−3.389, pFDR = 0.008, partial η2 = 0.004) and verbal learning and
memory was significantly associated with the non-normalized
clustering coefficient (t =−3.620, pFDR = 0.003, partial η2 =
0.009). HC, acutely depressed, and remitted MDD patients did
not differ in these associations as indicated by non-significant
remission status × cognitive factor interaction effects (all psFDR
⩾ 0.755, see online Supplement S18).

NBS analyses conducted to identify the subnetworks under-
lying the global-level associations yielded the following results:
For each cognitive factor, NBS identified a subnetwork of connec-
tions related to the respective factor (NBS F-threshold = 5.8, all
pFWE⩽ 0.014, i.e. all pFWE⩽ α = 0.0167, see Figs 2–4). These sub-
networks comprised between 65 and 105 edges, which corre-
sponds to 1.0% and 1.6% of the connectome. Connectivity
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strength within the subnetworks identified for processing speed
and verbal fluency was positively associated with the respective
factor (t = 8.939, pFDR < 0.001, partial η2 = 0.051 and t = 2.654,
pFDR = 0.008, partial η2 = 0.005, respectively). In contrast, con-
nectivity strength within the subnetwork identified for verbal
learning and memory was negatively associated with the factor
(t =−10.254, pFDR < 0.001, partial η2 = 0.066). Notably, the pat-
tern of structural connectivity differed across the subnetworks,
as reflected by a low overlap of subnetwork edges (6–20%, see
online Supplement S19). This is further supported by differences
in the number of edges connecting frontal, temporal, parietal, and
occipital brain regions: For example, the CF-PS network com-
prised a large proportion of fronto-frontal edges (26%). In con-
trast, the CF-VLM network was characterized by a core of
temporo-parietal edges (25%). All subnetworks were equally dis-
tributed across left and right hemispheres, indicating comparable
involvement of both hemispheres in the cognitive processes cap-
tured in the cognitive factors. See online Supplement S19 for fur-
ther details.

In line with our global-level results, we did not identify any sig-
nificant subnetworks associated with remission status × cognitive
factor interaction effects (all pFWE⩾ 0.070, i.e. all pFWE > α =
0.0167, see online Supplement S18), suggesting that healthy and
depressed individuals did not differ in the association of cognitive
performance and local connectivity strength.

Robustness checks of our NBS analyses revealed no significant
associations between identified subnetworks and participants’
years of education or head motion during MRI acquisition (all
ps≥ 0.162). Moreover, neither the exclusion of outliers in cogni-
tive factors nor the use of non-thresholded connectivity matrices
for NBS analyses changed the overall pattern of our results (see
online Supplement S20).

Effects of depression on identified subnetworks

ANCOVAs conducted to evaluate differences in structural con-
nectivity patterns in acutely depressed and remitted MDD
patients compared to HC yielded a significant remission status

Fig. 2. Network of white matter tracts related to CF-PS performance. The figure shows the subnetwork of edges associated with the cognitive factor representing
processing speed performance (CF-PS). The subnetwork was derived from network-based statistics (F-threshold = 5.8). Edges were positively (red) or negatively
(blue) related to the cognitive factor (see online version for colored figures).
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effect for the connectivity strength within the processing
speed-related subnetwork [F(2, 1477) = 4.592, pFDR = 0.031].
Post-hoc t tests revealed a significantly reduced connectivity strength
in MDDa compared to HC (t =−3.032, pFDR = 0.008, d =−0.200).

Correlational analyses performed to examine the triad of (1)
acute depressive symptoms, (2) cognitive performance, and (3)
subnetwork-specific connectivity strength within MDD patients
revealed that when considering all three variables simultaneously,
all partial correlations remained significant only within the pro-
cessing speed-related triad (see online Supplement S21 for all
results). According to these correlations, higher processing
speed was associated with higher subnetwork-specific connectiv-
ity strength independent of depression severity (rCF−PS,NOS =
0.201, pFDR < 0.001), while increased depressive symptoms were
associated with reductions in both variables (rHAMD,CF−PS =
−0.126, pFDR = 0.002, and rHAMD,NOS = −0.105, pFDR = 0.006,
respectively). When controlling for current medication load, the
correlation between processing speed and acute depressive symp-
tom severity did not remain significant, which might be due to a

substantial correlation between acute depressive symptoms and
current medication load (r = 0.390, p < 0.001, see online
Supplement S23). In contrast, controlling for measures of the pre-
vious disease course, such as the age of disease onset or number of
hospitalizations or depressive episodes, did not change the signifi-
cance of the association. Post-hoc analyses did not reveal signifi-
cant associations to specific symptoms (see online Supplement
S22), indicating that the association is driven more by cumulative
symptom severity rather than a specific set of symptoms.

Discussion

The present study investigated the association between cognitive
performance and the structural connectome of the brain in a sam-
ple of acutely depressed or (partially) remitted MDD patients and
HC. Our analyses yielded three main results: First, we replicate
findings demonstrating substantial cognitive deficits across vari-
ous cognitive domains in MDD. Second, based on network ana-
lyses, we show a link between cognitive performance and the

Fig. 3. Network of white matter tracts related to CF-VLM performance. The figure shows the subnetwork of edges associated with the cognitive factor representing
verbal learning and memory (CF-VLM). The subnetwork was derived from network-based statistics (F-threshold = 5.8). Edges were positively (red) or negatively
(blue) related to the cognitive factor (see online version for colored figures).
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structural connectome and present evidence for domain-specific
properties of that link. Notably, we found no evidence for differ-
ential cognition–connectome associations in healthy and
depressed individuals. Instead, our analyses demonstrate struc-
tural connectome alterations within cognition-related subnet-
works that may be a neurobiological factor underlying cognitive
deficits in MDD.

We found widespread cognitive deficits in both MDDa and
MDDr. The most pronounced effects were found in processing
speed and verbal fluency. These results confirm our first hypoth-
esis and align with previous meta-analytic findings (Rock et al.,
2014). While our analyses are cross-sectional, they nevertheless
support findings showing residual cognitive deficits in remitted
MDD (Baune et al., 2014; Rock et al., 2014; Semkovska et al.,
2019). Given the adverse effects of persistent cognitive deficits
(Baune et al., 2014; Jaeger et al., 2006), their treatment should
be of high priority. Although available drugs and remediation
programs tend to improve cognitive deficits, meta-analyses also

criticize the small number of primary studies (Motter et al.,
2016; Prado, Watt, & Crowe, 2018; Rosenblat, Kakar, &
McIntyre, 2015; Thérond et al., 2021). Therefore, future treatment
research should consider the reduction of cognitive deficits as one
of its primary goals.

Our analyses revealed associations between all three cognitive
factors and the structural connectome, thus confirming our
second hypothesis. Although we note the small effect sizes of
the global-level associations, we also stress the more pronounced
effects evident within the identified subnetworks. In our opinion,
the fact that these effects are detectable even at the global level,
albeit with small effect sizes, underscores the strength of the local-
level effects rather than reducing the significance of our results.
While few studies have analyzed the relationship between cogni-
tive performance and the structural connectome (Jolly et al.,
2020; Ponsoda et al., 2017; Zimmermann et al., 2018), our
study extends their findings in several ways. First, our study is
based on the largest sample to date, as it doubles the sample

Fig. 4. Network of white matter tracts related to CF-VF performance. The figure shows the subnetwork of edges associated with the cognitive factor representing
verbal fluency performance (CF-VF). The subnetwork was derived from network-based statistics (F-threshold = 5.8). Edges were positively (red) or negatively (blue)
related to the cognitive factor (see online version for colored figures).
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sizes of previous studies. Second, while previous studies identified
several edges associated with cognitive performance, our study is
the first to identify complete networks, which is more consistent
with the hypothesis that cognitive functions emerge from a net-
work of interacting brain regions (Lim & Helpern, 2002). In
addition, to our knowledge, this is the first study to identify
domain-specific networks of white matter fiber tracts. While we
acknowledge that our cognitive factors might not fully generalize
to other datasets, our analysis may nevertheless provide preliminary
evidence for the domain specificity of the cognition–connectome
link and elicit future studies on this issue.

All subnetworks comprised edges that are positively or nega-
tively associated with cognitive performance, which aligns with
previous findings (Zimmermann et al., 2018). However, while
mean connectivity strength within the respective subnetworks
was positively associated with processing speed and verbal flu-
ency, verbal learning and memory was negatively associated
with both global and subnetwork-specific connectivity strength.
An explanation might be found in the cognitive processes repre-
sented by our cognitive factors: The cognitive tests related to the
first two factors require quick information processing and
responses, whereas the tests related to the verbal learning and
memory factor mainly require retrieval of stored information.
While processing of new information relies on white matter, as
reflected by reduced processing speed in individuals with white
matter damage (Chiaravalloti & DeLuca, 2008; Filley & Fields,
2016), retrieval of stored information rather depends on the
gray matter (Hoffman et al., 2017), as evidenced by memory def-
icits in individuals with gray matter atrophy (Filley & Fields,
2016). Although both gray and white matter are essential for cog-
nition in general, the divergence in the association of structural
connectivity and cognition may, thus, reflect the differential con-
tribution of white and gray matter to individual cognitive
processes.

Our analyses provide evidence for substantial alterations
within the processing speed-related subnetwork in depressed indi-
viduals. First, they reveal reduced connectivity strength in acutely
depressed MDD patients compared to HC. This finding is com-
plemented by analyses conducted within the MDD subgroup
that demonstrate associations between structural connectivity,
processing speed, and acute depressive symptom severity, inde-
pendent of previous disease course characteristics. Of note, this
relationship was not driven by a specific set of symptoms, but
by the cumulative severity of all current depressive symptoms.
To our knowledge, this is the first study to demonstrate these
reciprocal associations based on a network approach. While we
acknowledge that this pattern was found only for one of our
three cognitive factors, we note that this factor captured by far
the largest proportion of variance of the cognitive tests and was
associated with the most severe cognitive deficits in MDD
patients. Although the cross-sectional study design limits causal
inferences, our results suggest that altered brain network commu-
nication may underlie the link between depression severity and
cognitive deficits. This would support our hypothesis that cogni-
tive deficits emerge from alterations in cognition-related networks
rather than from alterations of individual brain structures. While
we cannot address the neurobiological mechanisms underlying
these alterations in our study, previous research might support
speculation about the implication of inflammatory or stress-
related processes. For instance, a possible mechanism of this
interplay might be found in increased cortisol levels that have
been related to depression, cognitive performance, and white

matter alterations (Gomez et al., 2006; Keller et al., 2017; Li,
Ruan, Chen, & Fang, 2021; Liu et al., 2016). It could be hypothe-
sized that increased cortisol levels during progressing depressive
symptoms lead to alterations in brain networks responsible for
cognitive functioning, which in turn results in cognitive deficits.

Our study has several strengths and limitations. The main
strengths are the variety of cognitive tests and the large sample
covering a broad spectrum of MDD patients. The main limitation
is the cross-sectional study design: Although our sample includes
various remission states and thus provides an approximation of
the impact of disease progression, longitudinal studies are needed
to draw definitive conclusions on this question. Besides, cognitive
factor labels might be subjective in that other researchers may
have chosen different labels for the factors. However, it is crucial
to separate the subjectivity of the factor labels from the subjectiv-
ity of the factor scores. Since their calculation was purely data-
driven, we consider the scores largely objective.

To conclude, our findings emphasize the importance of cogni-
tive deficits in depression. Moreover, our study substantially
extends previous findings of a relationship between cognitive per-
formance and the structural connectome by performing network
analyses in the largest sample to date. By including MDD patients
in these network analyses for the first time, our study provides
preliminary evidence for an association between cognitive deficits,
reduced connectivity in cognition-related subnetworks, and
depressive symptoms, supporting the hypothesis that cognitive
deficits in depression are associated with structural connectome
alterations. Future research should verify this relationship in lon-
gitudinal studies and investigate possible neurobiological mechan-
isms underlying this association.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291722004007
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