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Abstract

We compute the Jantzen filtration of a D-module on the flag variety of SL2(C). At each step in the
computation, we illustrate the sl2(C)-module structure on global sections to give an algebraic picture of
this geometric computation. We conclude by showing that the Jantzen filtration on the D-module agrees
with the algebraic Jantzen filtration on its global sections, demonstrating a famous theorem of Beilinson
and Bernstein.
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1. Introduction

1.1. Overview. Jantzen filtrations arise in many situations in representation
theory. The Jantzen filtration of a Verma module over a semisimple Lie algebra
provides information on characters (the Jantzen sum formula) [Jan79], and gives
representation-theoretic significance to coefficients of Kazhdan–Lusztig polynomials
(the Jantzen conjectures) [BB93]. The Jantzen filtration of a Weyl module over a
reductive algebraic group of positive characteristic is a helpful tool in the notoriously
difficult problem of determining irreducible characters [Jan79]. Jantzen filtrations
also play a critical role in the unitary algorithm of [AvLTV20], which determines the
irreducible unitary representations of a real reductive group.

Though the utility of Jantzen filtrations in applications is primarily algebraic (pro-
viding information about characters or multiplicities of representations), establishing
deep properties of the Jantzen filtration usually requires a geometric incarnation due
to Beilinson and Bernstein. In [BB93], Beilinson and Bernstein introduce aD-module
version of the Jantzen filtration, which provides them with powerful geometric tools
to analyze its structure. The constructions in [BB93] require technical and deep
machinery in the theory of D-modules, and as such, may not be easily accessible
to a reader unfamiliar with this geometric approach to representation theory. However,
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the persistent utility of Beilinson and Bernstein’s results indicates that the geometric
Jantzen filtration is a critical tool.

In our experience, it is often enlightening, insightful, and nontrivial to describe a
difficult construction in a simple example. The purpose of this paper is to illustrate
the construction of Beilinson and Bernstein in the simplest nontrivial example. In
doing this, we include simplified proofs of Beilinson and Bernstein’s results for the
Lie algebra sl2(C) and detailed computations that do not appear in the original paper.

The main contribution of our example is to provide algebraic insight into a funda-
mental geometric construction. Beilinson–Bernstein localization is a powerful bridge
between representation theory and algebraic geometry, which has provided geometric
proofs of several important algebraic theorems. This strategy of using geometric tools
to approach algebraic problems is effective, but it has a drawback—without deep
knowledge of the geometry involved, the algebraist using these results is left without a
sense of what is happening under the hood and, as a result, geometric results are often
used as black boxes.

Our approach in this paper is to shine light into the black box by providing a
series of algebraic snapshots of a geometric computation. We do this by computing
the global sections of the D-modules that arise at each step in the computation and
illustrating the corresponding sl2(C)-representations. Here we mean ‘illustrate’ in the
most literal sense—we include eight figures in which we draw precise pictures of these
representations. Our hope is that by giving a concrete visual description, we are able
to provide readers with algebraic intuition for the general construction.

This paper is concerned with the example of SL2(C). However, some amount of
general theory is helpful to set the scene. We dedicate the remainder of the introduction
to orienting the reader with the necessary general theory.

1.2. The algebraic Jantzen filtration. Let g ⊃ b ⊃ h be a complex semisimple Lie
algebra, a Borel subalgebra, and a Cartan subalgebra, respectively. Denote by n = [b, b]
the nilradical of b and by b the opposite Borel subalgebra. Given a weight λ ∈ h∗, let
M(λ) = U(g) ⊗U(b) Cλ be the corresponding Verma module, I(λ) the corresponding
dual Verma module (defined to be the direct sum of the weight spaces in the g-module
HomU(b)(U(g),Cλ)), and

ψ : M(λ)→ I(λ),

the canonical g-module homomorphism from M(λ) to I(λ).
The algebraic Jantzen filtration of M(λ) involves a deformation of the above set-up

in a specified direction γ ∈ h∗. The deformation is constructed as follows. Given γ ∈ h∗,
let T = O(Cγ) be the ring of regular functions on the line Cγ ⊂ h∗. This can be
identified with a polynomial ring C[s]. Denote by A = T(s) the local ring of T at the
prime ideal (s).

We use the ring A to construct the corresponding deformed Verma module, defined
to be the (g, A)-bimodule

MA(λ) := U(g) ⊗U(b) Aλ,
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where Aλ = A is the (h, A) bimodule given by

h · a = (λ(h) + γ(h)s)a (1-1)

for h ∈ h, a ∈ A, extended trivially to U(b). Equation (1-1) demonstrates that MA(λ) is
a ‘deformation of M(λ) in the direction γ’.

Similarly, the deformed dual Verma module IA(λ) is defined to be the sum of
deformed weight spaces (see (2-52)) in the (g, A)-bimodule

HomU(b)(U(g), Aλ).

There is a canonical (g, A)-module homomorphism

ψA : MA(λ)→ IA(λ). (1-2)

Setting s = 0 recovers the usual Verma and dual Verma modules, and the canonical
morphism ψ.

The A-submodules siMA(λ) and siIA(λ) are g-stable for all i, so both MA(λ) and
IA(λ) have (g, A)-module filtrations given by powers of s. The Jantzen filtration of
MA(λ) is the filtration obtained by pulling back the filtration of IA(λ) by powers
of s along the canonical homomorphism ψA (see (1-2)). Setting s = 0 recovers a
filtration of M(λ). This is the algebraic Jantzen filtration of the Verma module M(λ).
Analogous constructions yield Jantzen filtrations of the Weyl modules and principal
series representations mentioned in Section 1.1 [BB93, Jan79]. Because we focus
on Verma modules in our example, we do not define these other Jantzen filtrations
precisely.

REMARK 1.1 (Computability of Jantzen filtration). The algebraic Jantzen filtration is
traditionally formulated in terms of a contravariant form, which explicitly realizes the
canonical map between M(λ) and I(λ). See, for example, [Jan79, Sha72]. This explicit
realization makes the filtration directly computable, which is useful in applications.
In contrast, other important representation-theoretic filtrations, such as composition
series, are known to exist, but are much more difficult to compute algorithmically.

For g = sl2(C), the Jantzen filtration coincides with the composition series, as
our computations in Section 2 illustrate. However, for larger Lie algebras (already
starting at sl3(C)), the Jantzen filtration differs from the composition series, and carries
fundamental information about Verma modules and related representations. Jantzen
conjectured [Jan79, Section 5.17] that for γ = ρ (the half-sum of positive roots), the
Jantzen filtration satisfies the following properties.

(1) Embeddings of Verma modules M(μ) ↪→ M(λ) are strict for Jantzen filtrations.
(2) The Jantzen filtration coincides with the socle filtration. In particular, the

filtration layers are semisimple.

Subsequent work by Barbasch [Bar83], Gabber and Joseph [GJ81], and others
revealed that Jantzen’s conjectures have deep consequences. In particular, Jantzen’s
conjectures imply a stronger version of Kazhdan and Lusztig’s famous conjecture on
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composition series multiplicities of Verma modules [KL79]: multiplicities of simple
modules in layers of the Jantzen filtration are given by coefficients of a corresponding
Kazhdan–Lusztig polynomial.

Kazhdan and Lusztig’s original multiplicity conjecture was proven by Beilinson and
Bernstein in [BB81] usingD-module techniques. A proof of Jantzen’s conjectures did
not appear until 12 years later in [BB93], using a significant extension of the geometric
techniques used in [BB81]. In the following section, we outline their approach.

REMARK 1.2 (Algebraic proof of Jantzen’s conjectures). In [Wil16], Williamson
provided an alternate proof of Jantzen’s conjectures using Soergel bimodule tech-
niques, following previous work of Soergel and Kübel [Küb12a, Küb12b, Soe08].
Williamson’s proof holds for Verma modules, whereas Beilinson and Bernstein’s proof
also holds for more general Harish-Chandra modules.

REMARK 1.3 (Deformation direction). The definition of the algebraic Jantzen filtra-
tion relies on a choice of deformation direction γ ∈ h∗, which also has a geometric
manifestation in Beilinson and Bernstein’s construction. It is clear from the definitions
that this direction should be nondegenerate; that is, that it should not lie on any root
hyperplanes. However, it was a long-standing problem (raised in [BB93]) as to whether
the deformation direction need be dominant. Williamson showed in [Wil16] that it
does, giving examples of nondominant deformation directions resulting in different
filtrations for Lie algebras as small as g = sl4(C).

1.3. The geometric Jantzen filtration. Beilinson and Bernstein’s approach to the
Jantzen conjectures is to relate the algebraic Jantzen filtration to a natural geometric
filtration on the corresponding D-module under Beilinson–Bernstein localization.
They then argue that this geometric Jantzen filtration coincides with the weight
filtration on the D-module, providing them access to powerful techniques in weight
theory. In this section, we outline Beilinson and Bernstein’s construction. More details
can be found in [BB93].

1.3.1. Monodromy filtrations. Geometric Jantzen filtrations are intimately related to
monodromy filtrations. Given an object A in an abelian category A and a nilpotent
endomorphism s ∈ EndA(A), the monodromy filtration of A is defined to be the unique
increasing exhaustive filtration μ• on A such that sμn ⊂ μn−2, and for k ∈ N, sk induces
an isomorphism grk

μA � gr−k
μ A.

The monodromy filtration of A induces a filtration J•! on ker s and a filtration J•+ on
coker s in the natural way. Moreover, on ker s and coker s, the monodromy filtration
can be described explicitly in terms of powers of s. Namely,

Ji
! = ker s ∩ im s−i and Ji

+ = (ker si+1 + im s)/ im s, (1-3)

where it is taken that im si = A for i ≤ 0 and ker si = 0 for i ≤ 0 [BB93, Section 4.1].
(See also [Del80, Section 1.6].)
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1.3.2. Geometric Jantzen filtrations. Certain D-modules come equipped with nilpo-
tent endomorphisms, and thus acquire monodromy filtrations. In particular, the max-
imal extension functor provides a recipe for constructing D-modules with nilpotent
endomorphisms fromD-modules on open subvarieties using a deformation procedure.
(See Section 2.4 for the precise definition of this functor.)

More precisely, if Y is a smooth algebraic variety with a fixed regular function
f : Y → A1, the maximal extension Ξ fMU of a holonomic DU-module MU on
U = f −1(A1 − {0}) is constructed by deformingMU by the ring C[s]/sn using the func-
tion f, then pushing forward the deformedMU along the inclusion map j : U ↪→ Y . The
resulting DY -module is an object in the abelian category of holonomic DY -modules,
which has a natural nilpotent endomorphism s arising from the deformation of MU .
Hence, it has a monodromy filtration.

The construction of the maximal extension functor guarantees that

ker(s : Ξ fMU → Ξ fMU) = j!MU

and

coker(s : Ξ fMU → Ξ fMU) = j+MU ,

so the (nondeformed) !-standard and +-standardDY -modules j!MU and j+MU appear
as sub and quotient modules of the maximal extension Ξ fMU [BB93, Lemma 4.2.1].
In this way, we obtain filtrations of the DY -modules j!MU and j+MU from the
monodromy filtration of Ξ fMU . These are the geometric Jantzen filtrations.

Note that analogously to the algebraic Jantzen filtration, the geometric Jantzen
filtration depends on a choice of deformation parameter, given by the regular function
f : Y → A1. Moreover, the explicit realization in equation (1-3) in terms of powers
of s means that like the algebraic Jantzen filtration, the geometric Jantzen filtration is
explicitly computable.

1.3.3. Geometric Jantzen filtrations on Harish-Chandra sheaves. The D-modules
corresponding to Verma modules and dual Verma modules under Beilinson–Bernstein
localization can be made to fit into the framework of Section 1.3.2, and thus acquire
geometric Jantzen filtrations. Such D-modules manifest as Harish-Chandra sheaves,
which are a class ofD-modules equivariant with respect to a certain group action. We
explain this connection below.

Let G be the simply connected semisimple Lie group associated to g, B ⊂ G the
Borel subgroup corresponding to b, and N ⊂ B its unipotent radical. Set H := B/N to
be the abstract maximal torus of G [CG97, Lemma 6.1.1], and identify h with Lie H.
Let X̃ := G/N be the base affine space and X := G/B the flag variety. The projection
π : X̃ → X is a principal G-equivariant H-bundle with respect to the right action of H
on X̃ by right multiplication.

REMARK 1.4 (H-monodromic DX̃-modules). In [BB93], Beilinson and Bernstein
work with H-monodromic D-modules on the base affine space X̃ instead of modules
over sheaves of twisted differential operators (TDOs) on the flag variety X, as they do in
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[BB81]. Working over X̃ has several advantages: it allows one to study entire families
of representations at once (see Figures 1 and 2 in Section 2.3 for an illustration of
this phenomenon), and it allows one to study g-modules with generalized infinitesimal
characters. In contrast, modules over TDOs can only be used to study g-modules with
strict infinitesimal character. There is a precise relationship between H-monodromic
DX̃-modules and modules over TDOs; see Remark 2.5.

For an N-orbit (that is, a Bruhat cell) Q in X, denote by Q̃ = π−1(Q) the corre-
sponding union of N-orbits in X̃. A choice of dominant regular integral weight γ ∈ h∗

(the ‘deformation direction’) determines a regular function fγ : Q̃→ A1 on the closure
of Q̃ such that f −1

γ (A1 − {0}) = Q̃ [BB93, Lemma 3.5.1]. This function extends to a
regular function on X̃, which, by the process outlined in Section 1.3.2, determines a
maximal extension functor Ξ fγ :Mhol(DU)→Mhol(DX̃). Here, U is the preimage in
X̃ of A1 − {0} under the extension of fγ. Restricting Ξ fγ to the category of holonomic
DU-modules supported on Q̃ results in a functor

Ξ fγ :Mhol(DQ̃)→Mhol(DQ̃
).

Let OQ̃ be the structure sheaf on Q̃ and jQ̃ : Q̃ ↪→ Q̃ the inclusion of Q̃ into its
closure. Via the construction in Section 1.3.2, the modules jQ̃!OQ̃ and jQ̃+OQ̃ acquire

from Ξ fγOQ̃ geometric Jantzen filtrations. Because Q̃ is closed in X̃, a theorem of
Kashiwara [Mil, Theorem 12.6] allows one to lift these filtrations to filtrations of the
standard N-equivariantDX̃-modules iQ̃!OQ̃ and iQ̃+OQ̃, for iQ̃ : Q̃ ↪→ X̃ the inclusion.

There is a natural map

U(g)→ Γ(X̃,DX̃),

obtained by differentiating the G-action on X̃ that endows global sections of
DX̃-modules with the structure ofU(g)-modules. In Section 2.1, we explicitly compute
this map for sl2(C). As U(g)-modules, the global sections of iQ̃!OQ̃ and iQ̃+OQ̃ are
direct sums of all integral Verma modules and dual Verma modules, respectively. In
Section 2.3, we illustrate this structure in our example.

REMARK 1.5 (Other Harish-Chandra pairs). Note that this construction works for
many Harish-Chandra pairs (g, K), not just the pair (g, N). In [BB93, Section 3.4],
the specific conditions on K necessary for such a construction to hold are discussed.
In particular, these constructions can be applied to any symmetric pair [BB93, Lemma
3.5.2], so they can be used in the study of admissible representations of real reductive
groups.

REMARK 1.6 (Comparison with [Rom21]). It is interesting to contrast the compu-
tations of the current paper to those in Romanov’s previous paper [Rom21], whose
goal was to illustrate four families of D-modules corresponding to well-known
families of representations (finite-dimensional, Verma/dual Verma, principal series,
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and Whittaker). Our approach in the current paper is to study all integral Verma/dual
Verma modules simultaneously by working over base affine space, as explained above.
In contrast, [Rom21, Section 6] analyzes Verma/dual Verma modules one at a time
using modules over varying TDOs on the flag variety. (Compare Figures 1 and 2 to
[Rom21, Figures 2 and 3].) Our techniques in this paper are not specific to Verma
modules: by working over base affine space, we could recover each family of examples
in [Rom21] using a single H-monodromicD-module.

Our current approach is not merely stylistic—it is necessary for our goal. Because
the deformed Verma modules arising in the construction of the Jantzen filtration
do not have a strict infinitesimal character as Verma modules do, they cannot be
studied as modules over TDOs on the flag variety. However, deformed Verma modules
can be approximated by g-modules with generalized infinitesimal characters (see
Section 2.4.1, and, in particular, (2-43) and (2-42)), so a D-module approach to their
study must necessarily work over X̃ instead of X; see Remark 1.4.

1.3.4. Relationship between monodromy and weight filtrations. The geometric
Jantzen filtration of iQ̃!OQ̃ constructed in the previous section is computable via
(1-3), but it is not clear that it should satisfy the properties of Jantzen’s conjectures.
The key idea of Beilinson and Bernstein’s proof is to relate the monodromy filtration
on Ξ fγOQ̃ to the weight filtration on the corresponding perverse sheaf under the
Riemann–Hilbert correspondence, which has strong functoriality and semisimplicity
properties.

Weight filtrations on objects in derived categories of constructible Q�-sheaves
are a deep generalization of filtrations on cohomology rings of algebraic varieties.
Explicitly constructing weight filtrations is extremely difficult outside of the most basic
examples, but they can be shown to exist for complexes built from simple examples
via sheaf functors. In particular, the perverse sheaf corresponding to the maximal
extension Ξ fγOQ̃ admits a ‘mixed structure’, and hence a weight filtration, as it is the
quotient of a push-forward of aD-module of ‘geometric origin’.

REMARK 1.7. Beilinson and Bernstein’s results could also be formulated in the more
modern language of Saito’s mixed Hodge modules [Sai88, Sai90], but because the
initial draft of their paper was written in 1986 before Saito’s work was published, they
instead used the technology of mixed �-adic sheaves [Del80].

Beilinson and Bernstein’s strategy was to use a theorem of Gabber [BB93, Theorem
5.1.2], which establishes that on a perverse sheaf obtained by a nearby cycles functor
(of which the maximal extension functor is a special instance), the monodromy
filtration agrees with the weight filtration. Passing Gabber’s theorem toD-modules via
the Riemann–Hilbert correspondence lets them conclude that the geometric Jantzen
filtration on iQ̃!OQ̃ agrees with the weight filtration.

Weight filtrations have two important properties: (1) they are functorial with
respect to morphisms of mixed perverse sheaves; and (2) the associated graded
object is semisimple. These properties are exactly what is needed to prove Jantzen’s
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conjectures: the functoriality implies the strictness of the Jantzen filtration with respect
to embeddings of Verma modules, and the semisimplicity of the associated graded
object implies (with some additional pointwise purity arguments) the agreement of
the Jantzen filtration with the socle filtration.

The power of Beilinson and Bernstein’s proof comes from the connection between
two very different filtrations—the Jantzen filtration, which is explicitly computable but
has no obvious structure, and the weight filtration, which is very difficult to compute
but satisfies remarkable properties.

1.4. Relationship between algebraic and geometric Jantzen filtrations. Beilinson
and Bernstein’s proof of Jantzen’s conjectures relies on the fact that the geometric
and algebraic Jantzen filtrations align under the global sections functor. Though
both constructions involve similar ingredients, such as deformations and relationships
between standard and costandard objects, it is not immediately obvious from the
definitions that they should yield the same filtration on Verma modules. This crucial
relationship is given minimal justification in [BB93].

Because of the critical nature of this relationship, we dedicate Section 2.6 of our
paper to explicitly describing the relationship between the two filtrations for sl2(C),
and illustrating it for a fixed infinitesimal character in Figure 8. Our arguments easily
generalize to any Lie algebra.

1.5. Structure of the paper. The remainder of the paper is dedicated to the
computation of the geometric Jantzen filtration for the Lie algebra sl2(C). The
computation is structured as follows.

Section 2.1: We establish an algebra homomorphism from the extended universal
enveloping algebra to global differential operators on base affine space. This algebra
homomorphism is what allows us to view the global sections of DX̃-modules as
modules over the (extended) universal enveloping algebra.

Section 2.2: We give some background on H-monodromic DX-modules, and
explain their relationship to modules over twisted sheaves of differential operators.

Section 2.3: We introduce the DX̃-modules whose global sections contain Verma
modules and dual Verma modules—these are the DX̃-modules that we endow with
geometric Jantzen filtrations. We illustrate the sl2(C)-module structure on their global
sections in Figures 1 and 2.

Section 2.4: We introduce the maximal extension functor, which gives the defor-
mation necessary for the Jantzen filtration. We compute the maximal extension of the
structure sheaf on an open subset of X̃, and illustrate in Figures 3 and 4 how deformed
Verma modules and deformed dual Verma modules arise geometrically. We illustrate
in Figures 5 and 6 the global sections of the maximal extension, identifying them with
the big projective in category O.

Section 2.5: We define the geometric Jantzen filtration using monodromy filtrations.
We compute the monodromy filtration of the maximal extension, and illustrate its
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global sections in Figure 7. This specializes to the geometric Jantzen filtration on
certain sub- and quotient sheaves.

Section 2.6: We introduce the algebraic Jantzen filtration on a Verma module in
Section 2.6.1, then explain why the global sections of the geometric Jantzen filtration
align with the algebraic Jantzen filtration in Section 2.6.2. Figure 8 illustrates this
relationship in our example.

2. Example

Now we proceed with our example. For the remainder of this paper, set G = SL2(C),
and fix subgroups

B =
{ (

a b
0 a−1

) ∣∣∣∣∣∣ a ∈ C∗, b ∈ C
}
, N =

{ (
1 b
0 1

) ∣∣∣∣∣∣ b ∈ C
}

and

H =
{ (

a 0
0 a−1

) ∣∣∣∣∣∣ a ∈ C∗
}
.

Let g, b, n, and h be the corresponding Lie algebras, and n̄ the opposite nilpotent
subalgebra to n. Denote by

e =
(
0 1
0 0

)
, f =

(
0 0
1 0

)
and h =

(
1 0
0 −1

)
(2-1)

the standard basis elements of g, so n = Ce, h = Ch, and n̄ = C f . Denote by Z(g) the
center of the universal enveloping algebraU(g). The algebraZ(g) is generated by the
Casimir element

Ω = h2 + 2e f + 2 f e. (2-2)

Let

γHC : U(g)→U(h) (2-3)

be the projection onto the first coordinate of the direct sum decomposition

U(g) = U(h) ⊕ (n̄U(g) +U(g)n).

The restriction of γHC toZ(g) is an algebra homomorphism.
Set X = G/B and X̃ = G/N. Then, X is the flag variety of g, and we refer to X̃ as

base affine space. We identify X with the complex projective line CP1 via(
x1 ∗
x2 ∗

)
B �→ (x1 : x2), (2-4)
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and X̃ with C2\{(0, 0)} via (
x1 ∗
x2 ∗

)
N �→ (x1, x2). (2-5)

There are left actions of G on X and X̃ by left multiplication. Under the identifica-
tions (2-4) and (2-5), these actions are given by(

a b
c d

)
· (x1 : x2) = (ax1 + bx2 : cx1 + dx2)

and (
a b
c d

)
· (x1, x2) = (ax1 + bx2, cx1 + dx2). (2-6)

Because H normalizes N, there is also a right action of H on G/N by right
multiplication. Under the identification (2-5), this action is given by

(x1, x2) ·
(
a 0
0 a−1

)
= (ax1, ax2). (2-7)

The natural G-equivariant quotient map

π : X̃ → X (2-8)

is an H-torsor over X. In the language of [BB93, Section 2.5], this provides an
‘H-monodromic structure’ on X.

For an algebraic variety Y, we denote by OY the structure sheaf on Y, and by
O(Y) = Γ(Y ,OY ) the algebra of global regular functions. We denote by DY the
sheaf of differential operators on Y, and D(Y) = Γ(Y ,DY ) the global differential
operators.

Base affine space X̃ is a quasi-affine variety, with affine closure X̃ = A2. Throughout
this text, we make use the following facts about quasi-affine varieties. Let Y be an
irreducible quasi-affine variety, openly embedded in an affine variety Y .

• If Y is normal with codimY (Y\Y) ≥ 2, then O(Y) = O(Y) andD(Y) = D(Y) [LS06,
Section 2]. (In particular, for Y = X̃, this implies that global differential operators
are nothing more than the Weyl algebra in two variables.)

• Because the variety Y is affine, it is also D-affine, meaning that the global
sections functor induces an equivalence of categories between the category of
quasi-coherentDY -modules and the category of modules overD(Y).

• Since the inclusion i : Y → Y is an open immersion, the restriction functor i+

on the corresponding categories of D-modules is exact, and commutes with
pushforwards from open affine subvarieties [Mil, Remark 3.1].

The facts listed above allow us to move freely between DX̃-modules and
D(A2)-modules. We do this periodically in computations.
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REMARK 2.1. Outside of sl2(C), the global differential operators on base affine space
are no longer given by the Weyl algebra. For a Lie algebra g � sl2(C)m, the affine
closure of the corresponding base affine space is singular, and the ring of global
differential operators can be quite complicated; see, for example, [LS06].

2.1. The map U(g) ⊗Z(g) U(h) → Γ(˜X,D
˜X). Our strategy for gaining intuition

about the DX̃-modules arising in the construction of the Jantzen filtration is to
illustrate the g-module structure on their global sections. This gives us an algebraic
snapshot as to what is happening at each step in the construction sketched in
Section 1.3. The first step is to differentiate the actions (2-6) and (2-7) to obtain a
map U(g) ⊗Z(g) U(h)→ Γ(X̃,DX̃). This map provides the g-module structure on the
global sections of DX̃-modules. We dedicate this section to the computation of this
map.

By differentiating the left action of G in (2-6), we obtain an algebra homomorphism

L : U(g)→ Γ(X̃,DX̃), g �→ Lg (2-9)

given by the formula

Lg f (x) =
d
dt

∣∣∣∣∣
t=0

f (exp(tg)−1x)

for g ∈ G, f ∈ Γ(X̃,OX̃), x ∈ X̃. Computing the image of the basis (2-1) under the
homomorphism (2-9) is straightforward. For example, the image of e is given by the
following computation using (2-6):

e · f (x1, x2) =
d
dt

∣∣∣∣∣
t=0

f

((
1 −t
0 1

)
· (x1, x2)

)

=
d
dt

∣∣∣∣∣
t=0

f (x1 − tx2, x2)

= −x2∂1 f (x1, x2).

Similar computations determine the images of f and h:

Le = −x2∂1, L f = −x1∂2, Lh = −x1∂1 + x2∂2. (2-10)

It is also useful to compute the image of the Casimir element (2-2) under the
homomorphism L:

LΩ = x2
1∂

2
1 + 3x1∂1 + 3x2∂2 + x2

2∂
2
2 + 2x1x2∂1∂2. (2-11)

Similarly, the right action of H determines an algebra homomorphism

R : U(h)→ Γ(X̃,DX̃), g �→ Rg. (2-12)

Under this homomorphism, h is sent to the Euler operator

Rh = x1∂1 + x2∂2. (2-13)
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Combining the homomorphisms L in (2-9) and R in (2-12), we obtain an algebra
homomorphism

U(g) ⊗C U(h)→ Γ(X̃,DX̃); g ⊗ g′ �→ LgRg′ . (2-14)

LEMMA 2.2. The homomorphism (2-14) factors through the quotient

Ũ := U(g) ⊗Z(g) U(h), (2-15)

whereZ(g) acts onU(h) via the Harish-Chandra projection γHC in (2-3).

PROOF. Direct computation shows that the images of Ω ⊗ 1 and 1 ⊗ γHC(Ω) agree.
Indeed,

1 ⊗ γHC(Ω) = 1 ⊗ (h2 + 2h) �→R2
h + 2Rh

= (x1∂1 + x2∂2)2 + 2(x1∂1 + x2∂2)

= x2
1∂

2
1 + 3x1∂1 + 2x1x2∂1∂2 + x2

2∂
2
x + 3x2∂x

= LΩ. �

We refer to the algebra Ũ as the extended universal enveloping algebra. By
Lemma 2.2, we have an algebra homomorphism

α : Ũ → Γ(X̃,DX̃); g ⊗ g′ �→ LgRg′ . (2-16)

Global sections ofDX̃-modules have the structure of Ũ-modules via α.

2.2. MonodromicDX-modules. The D-modules that play a role in our story have
an additional structure: they are ‘H-monodromic’. It is necessary for our purposes
to work with H-monodromic D-modules on base affine space instead of D-modules
on the flag variety. This is due to the fact that the g-modules in the construction of
the Jantzen filtration have generalized infinitesimal characters, so they do not arise as
global sections of modules over twisted sheaves of differential operators on the flag
variety.

The machinery of H-monodromicD-modules is rather technical, and the details of
the construction are not strictly necessary for our computation of the Jantzen filtration
below. However, we thought that it would be useful to describe this construction in
a specific example to illustrate that the equivalences established in [BB93, Section
2.5] are quite clear for sl2(C). In this section, we describe the construction of
H-monodromic D-modules for sl2(C) and explain how it relates to representations of
Lie algebras. More details on the general construction can be found in [BB93, BG99].

A weakly H-equivariant DX̃-module is an H-equivariant sheaf V equipped with a
DX̃-module structure so that the isomorphism act∗V → p∗V given by the equivariant
sheaf structure on V is a morphism of DX̃ � OH-modules. Here, act : X̃ × H → X̃ is
the action map and p : X̃ × H → X̃ is the projection map. For a reference on weakly
equivariantD-modules, see [MP98, Section 4].
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DEFINITION 2.3. An H-monodromic DX-module is a weakly H-equivariant
DX̃-module.

There is an equivalent characterization of H-monodromic DX-modules in terms of
H-invariant differential operators, which is established in [BB93, Section 2.5.2]. This
perspective makes the structures of our examples more transparent, so we take this
approach to monodromicity. Below we describe the construction for g = sl2(C).

The right H-action in (2-7) induces a left H-action on OX̃ andDX̃ . The H-action on
DX̃ satisfies the following relation: for g ∈ H, θ ∈ DX̃ , and f ∈ OX̃ ,

(g · θ)(g · f ) = g · (θ( f )). (2-17)

The H-action onDX̃ induces an H-action on the sheaf π∗(DX̃) by algebra automor-
phisms, where π : X̃ → X is the quotient map (2-8). Here, π∗ is the O-module direct
image. Denote the sheaf of H-invariant sections of π∗DX̃ by

D̃ := [π∗DX̃]H . (2-18)

This is a sheaf of algebras on X. Explicitly, on an open set U ⊆ X,

D̃(U) = DX̃(π−1(U))H . (2-19)

Note that because π is an H-torsor, π−1(U) is H-stable for any set U, so this construction
is well defined.

Let M(DX̃ , H)weak be the category of weakly H-equivariant DX̃-modules, and
M(D̃) be the category of D̃-modules. By [BB93, Sections 1.8.9, 2.5.2], there is an
equivalence of categories

M(DX̃ , H)weak � M(D̃). (2-20)

Hence, we can study monodromic DX-modules by instead considering D̃-modules.
For the remainder of the paper, we take this to be our definition of monodromicity.

DEFINITION 2.4. An H-monodromic DX-module is a D̃-module, where D̃ is as in
(2-18).

REMARK 2.5 (Relationship to twisted differential operators). The sheaf D̃ is a sheaf of
S(h)-algebras. In our example, the S(h)-action is given by multiplication by the operator
Rh in (2-13). In particular, we can consider S(h) as a subsheaf of D̃. In fact, it is
the center [BB93, Section 2.5]. For λ ∈ h∗, denote by mλ ⊂ S(h) the corresponding
maximal ideal. The sheaf Dλ := D̃/mλD̃ is a twisted sheaf of differential operators
(TDOs) on X. Hence, D̃-modules on which Rh acts by eigenvalue λ can be naturally
identified with modules over the TDODλ.

Modules over D̃ are directly related to modules over the extended universal
enveloping algebra (2-15) via the global sections functor. The relationship is as follows.
Because the left G-action and right H-action commute, the differential operators
Le, L f , and Lh in (2-10) are H-invariant. This can also be shown via direct computation
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using (2-10) and (2-13). Hence, the image of the homomorphism (2-16) is contained
in H-invariant differential operators:

α(Ũ) ⊆ Γ(X̃,DX̃)H .

Composing α with Γ(π∗), we obtain a map

Ũ → Γ(X, D̃). (2-21)

THEOREM 2.6 [BB93, Lemma 3.2.2]. The map (2-21) is an isomorphism.

PROOF. The theorem holds for general g. We prove the theorem for g = sl2(C) by direct
computation.

We start by describing the sheaves π∗DX̃ and D̃ on X = CP1 by describing them on
the open patches

U1 := CP1\{(0 : 1)} and U2 := CP1\{(1 : 0)}

and giving gluing conditions. Set

V1 := π−1(U1) = C2\V(x1) and V2 := π−1(U2) = C2\V(x2),

where V( f (x1, x2)) denotes the vanishing of the polynomial f (x1, x2). By definition,

π∗DX̃(U1) = DX̃(V1) = D(C2)[x−1
1 ],

π∗DX̃(U2) = DX̃(V2) = D(C2)[x−1
2 ],

with obvious gluing conditions.
Using (2-17), we conclude that the H-action onDX̃ is given by the local formulas

g · xi = gxi and g · ∂i = g−1∂i,

where g ∈ H is regarded as an element of C× under the identification

H � C×,
(
a 0
0 a−1

)
�→ a.

From this, we obtain a local description of D̃, using (2-19):

D̃(U1) = 〈x−1
1 x2, x1∂1, x1∂2, x2∂1, x2∂2〉 ⊆ DX̃(V1)

D̃(U2) = 〈x1x−1
2 , x1∂1, x1∂2, x2∂1, x2∂2〉 ⊆ DX̃(V2).

Hence, the global sections are given by

Γ(X, D̃) � 〈x1∂1, x1∂2, x2∂1, x2∂2〉 = Γ(X̃,DX̃)H ⊆ Γ(X̃,DX̃).

Now, it is clear that

Le = −x2∂1, L f = −x1∂2, Lh + Rh = 2x2∂2 and Lh − Rh = −2x1∂1,
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so the operators Le, L f , Lh, and Rh generate Γ(X̃,DX̃)H . Since e ⊗ 1, f ⊗ 1, h ⊗ 1 and
1 ⊗ h generate Ũ, this shows that the map (2-21) is surjective. Direct computations
establish that

[Le, L f ] = x2∂1x1∂2 − x1∂2x2∂1 = x2∂2 − x1∂1 = Lh,

[Le, Lh] = x2∂1(x1∂1 − x2∂2) − (x1∂1 − x2∂2)x2∂1 = 2x2∂1 = −2Le,

[L f , Lh] = x1∂2(x1∂1 − x2∂2) − (x1∂1 − x2∂2)x1∂2 = −2x1∂2 = 2L f ,

[Le, Rh] = [L f , Rh] = [Lh, Rh] = 0.

Combining these computations with the fact that Le, L f , Lh, and Rh are linearly
independent shows that the relations satisfied by Le, L f , Lh, and Rh are precisely those
satisfied by e ⊗ 1, f ⊗ 1, h ⊗ 1, and 1 ⊗ h. Therefore, the map (2-21) is also injective.�

The relationships described in this section can be summarized with the following
commuting diagrams.

Mcoh(DX̃ , H)weak Mcoh(DX̃) Mcoh(π∗DX̃)

M f .g.(Ũ) Mcoh(D̃)

forget equiv.

Γ

π∗

restrict

Γ

The composition of the top two arrows and the right-most arrow is the equivalence
(2-20). (See [BB93, Sections 1.8.9, 2.5.3] for more details.)

2.3. Verma modules and dual Verma modules. Using the map (2-16) constructed
in Section 2.1, we can describe the Ũ-module structure on various classes of
DX̃-modules. We start by examining theDX̃-modules j+OU and j!OU , where j : U ↪→ X̃
is inclusion of the open union of N-orbits

U := C2\V(x2). (2-22)

Here the + and ! indicate theD-module push-forward functors; see [Mil]. These are the
DX̃-modules that are eventually endowed with geometric Jantzen filtrations in Section
2.5. In this section, we describe the Ũ-module structure on Γ(X̃, j+OU) and Γ(X̃, j!OU).

Because j is an open embedding, the DX̃-module j+OU is just the sheaf OU with
DX̃-module structure given by the restriction of DU to DX̃ ⊆ DU . Hence, the global
sections of j+OU can be identified with the ring

Γ(X̃, j+OU) = C[x1, x2, x−1
2 ].
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FIGURE 1. Dual Verma modules arise as global sections ofj+OU .

The operators Le, L f , Lh, and Rh from (2-10) and (2-13) act on monomials xm
1 xn

2 for
m ≥ 0, n ∈ Z by the formulas

Le · xm
1 xn

2 = −mxm−1
1 xn+1

2 , (2-23)

L f · xm
1 xn

2 = −nxm+1
1 xn−1

2 , (2-24)

Lh · xm
1 xn

2 = (n − m)xm
1 xn

2, (2-25)

Rh · xm
1 xn

2 = (m + n)xm
1 xn

2. (2-26)

Using (2-23)–(2-26), we can illustrate the Ũ-module structure on Γ(X̃, j+OU) using
nodes and colored arrows. We do this in Figure 1. The monomials xm

1 xn
2 for m ∈ Z≥0 and

n ∈ Z form a basis for Γ(X̃, j+OU). The green (dashed) arrows illustrate the action of
the operator Le on basis elements, the red (dotted) arrows the action of L f , and the blue
(solid) arrows the action of Lh. If an operator acts by zero, no arrow is included. The
Rh-eigenspaces are highlighted in gray, with corresponding eigenvalues listed below.

REMARK 2.7. We make the following observations about theDX̃-module j+OU and its
global sections.

(1) As a Ũ-module, Γ(X̃, j+OU) decomposes into a direct sum of submodules, each
of which is an Rh-eigenspace corresponding to an integer eigenvalue:

Γ(X̃, j+OU) =
⊕
n∈Z
Γ(X̃, j+OU)n.

In Figure 1, these eigenspaces are highlighted in gray.
(2) As aU(g)-module, the Rh-eigenspace Γ(X̃, j+OU)n of eigenvalue n is isomorphic

to the dual Verma module of highest weight n. In particular, it is irreducible if
n < 0, and it has a unique irreducible finite-dimensional submodule if n ≥ 0.
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(3) The sheaf π∗j+OU is a monodromic DX-module because it admits an action of
D̃ (Definition 2.4). For each positive integer n, π∗j+OU has a subsheaf (π∗j+OU)n

on which Rh acts locally by the eigenvalue n. These subsheaves areDn-modules,
whereDn is the twisted sheaf of differential operators as defined in Remark 2.5.
These are exactly theDn-modules appearing in [Rom21, Section 6, Figure 4].

Next we describe Γ(X̃, j!OX̃). This is slightly more involved. By definition,

j! = DX̃ ◦ j+ ◦ DU , (2-27)

where D denotes the holonomic duality functor. Explicitly, for a smooth algebraic
variety Y and a holonomicDY -moduleV,

DY (V) := Extdim Y
DY

(V,DX). (2-28)

This is a well-defined functor from the category of holonomic DY -modules to itself
[HTT08, Corollary 2.6.8].

The first two steps of the composition in (2-27) are straightforward to compute. The
right DU-module DUOU is just the sheaf OU , viewed as a right DU-module via the
natural right action. Then, since j is an open immersion, j+DUOU is the sheaf OU with
rightDX̃-module structure given by restriction toDX̃ ⊂ DU .

To apply DX̃ to j+DUOU , we must take a projective resolution of j+DUOU . First, we
make the identification

j+DUOU � 〈∂1, ∂2〉DU\DU .

We take the following free (hence, projective) resolution of 〈∂1, ∂2〉DU\DU:

0← 〈∂1, ∂2〉DU\DU
ε←− DX̃

d0←− DX̃ ⊕DX̃
d1←− DX̃

d2←− 0,

where the maps are defined by

ε : 1 �→ x−1
2 ,

d0 : (θ1, θ2) �→ ∂1θ1 − x2∂2θ2,
d1 : 1 �→ (x2∂2, ∂1).

Applying HomDX̃ ,r(−,DX̃) to this complex, we obtain the complex

0→ HomDX̃ ,r(DX̃ ,DX̃)
d∗0−→ HomDX̃ ,r(DX̃ ⊕DX̃ ,DX̃)

d∗1−→ HomDX̃ ,r(DX̃ ,DX̃)
d∗2−→ 0,

(2-29)

where d∗i sends a morphism f to f ◦ di.
Because the module j+DUOU is holonomic, the complex (2-29) only has nonzero

cohomology in degree 2. This can also be seen by direct computation. By identifying
HomDX̃ ,r(DX̃ ,DX̃) � DX̃ via f �→ f (1) and HomDX̃ ,r(DX̃ ⊕DX̃ ,DX̃) � DX̃ ⊕DX̃ via
f �→ ( f (1, 0), f (0, 1)), we see that

ker d∗2 � DX̃ and im d∗1 � DX̃〈∂1, x2∂2〉.
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FIGURE 2. Verma modules arise as global sections ofj!OU .

Hence,
j!OU � DX̃/DX̃〈∂1, x2∂2〉.

Now we can describe the global sections of j!OU and illustrate their Ũ-module
structure, as we did for OX̃ and j+OU . The monomials xm

1 xn
2 and xm

1 ∂
n
2 for m, n ≥ 0 form

a basis for Γ(X̃, j!OU). The action of Le, L f , Lh, and Rh on xm
1 xn

2 for m ≥ 0 and n > 0 is
given by (2-23)–(2-26). The action of Le, L f , Lh, and Rh on xm

1 ∂
n
2 for m ≥ 0 and n > 0

is given by
Le · xm

1 ∂
n
2 = m(n − 1)xm−1

1 ∂n−1
2 ,

L f · xm
1 ∂

n
2 = −xm+1

1 ∂n+1
2 , (2-30)

Lh · xm
1 ∂

n
2 = −(m + n)xm

1 ∂
n
2, (2-31)

Rh · xm
1 ∂

n
2 = (m − n)xm

1 ∂
n
2. (2-32)

The action of Le on xm
1 is given by (2-23), the action of L f on xm

1 is given by (2-30),
and the actions of Lh and Rh on xm are given by either (2-25)–(2-26) or (2-31)–(2-32).

We illustrate the Ũ-module structure of Γ(X̃, j!OU) in Figure 2. The colors
(line-styles) indicate the same operators as in the earlier example: green (dashed) is
Le, red (dotted) is L f , blue (solid) is Lh, and Rh-eigenspaces are highlighted in gray,
with corresponding eigenvalues listed below.

REMARK 2.8. We make the following observations about Γ(X̃, j!OU).

(1) As a Ũ-module, Γ(X̃, j!OU) decomposes into a direct sum of submodules, each of
which is an Rh-eigenspace corresponding to an integer eigenvalue. Again, these
eigenspaces are highlighted in gray.
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(2) As aU(g)-module, the Rh-eigenspace of Γ(X̃, j!OU) of eigenvalue n is isomorphic
to the Verma module of highest weight n. In particular, it is irreducible if n < 0,
and it has a unique irreducible finite-dimensional quotient if n ≥ 0.

(3) The sheaf π∗j!OU is an H-monodromic DX-module. For each positive integer n,
π∗j!OU has a subsheaf (π∗j!OU)n on which Rh acts locally by the eigenvalue n.
These subsheaves are modules over the TDODn (Remark 2.5). These are exactly
theDn-modules appearing in [Rom21, Section 6, Figure 3].

2.4. The maximal extension ΞρOU. To describe the geometric Jantzen filtrations
on theDX̃-modules j!OU and j+OU , it is necessary to introduce the maximal extension
functor

Ξρ :Mhol(DU)→Mhol(DX̃).

This functor (defined in (2-36) below) extends j+ and j! (see (2-37)–(2-38)), so it is a
natural way to study both modules j!OU and j+OU at once. In this section, we give the
construction of Ξρ, then describe the Ũ-module structure on Γ(X̃,ΞρOU).

To start, we recall the construction of maximal extension for D-modules, which is
a special case of the construction in [Bei87], which produces the maximal extension
and nearby cycle functors. Let Y be a smooth variety, f : Y → A1 a regular function,
and

U := f −1(A1 − {0})
j
↪−→ Y

i←−↩ f −1(0) (2-33)

the corresponding open-closed decomposition of Y. For n ∈ N, denote by

I(n) := (OA1−{0} ⊗ C[s]/sn)ts (2-34)

the free rank-1 OA1−{0} ⊗ C[s]/sn-module generated by the symbol ts. The action
∂t · ts = st−1ts gives I(n) the structure of a DA1−{0}-module. Any DU-module MU can
be deformed using I(n): set

f sM(n)
U := f +I(n) ⊗OU MU

to be the DU-module obtained by twisting MU by I(n). Note that f sM(1)
U =MU , and

that both I(n) and f sM(n)
U have a natural action by s ∈ C[s]/sn.

Assume thatMU is holonomic. Denote by

can : j! f sM(n)
U → j+ f sM(n)

U (2-35)

the canonical map between the ! and + pushforwards, and

s1(n) : j! f sM(n)
U → j+ f sM(n)

U

the composition of can with multiplication by s. For large enough n, the cokernel of
s1(n) stabilizes; that is, coker s1(n) = coker s1(n + k) for all k > 0. For n � 0, define
theDY -module

Ξ fMU := coker s1(n), (2-36)
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called the maximal extension of MU . By construction, this module comes equipped
with the nilpotent endomorphism s. The corresponding functor

Ξ f :Mhol(DU)→Mhol(DY )

is exact [BB93, Lemma 4.2.1(i)]. Moreover, there are canonical short exact sequences
[BB93, Lemma 4.2.1(ii)’]

0→ j!MU → Ξ fMU → coker(can)→ 0 (2-37)

0→ coker(can)→ Ξ fMU → j+MU → 0 (2-38)

with j! = ker(s : Ξ f → Ξ f ) and j+ = coker(s : Ξ f → Ξ f ).
Now, we apply this general construction in the setting of our example. Let X̃ and U

be as above (see (2-5) and (2-22)), and let fρ be the function

fρ : X̃ → A1; (x1, x2) �→ x2.

This choice of function corresponds to the deformation direction ρ ∈ h∗; see
Remarks 1.3 and 2.10.

For a variety Y, set
AY := DY ⊗ C[s]/sn.

We compute the maximal extension ΞρOU := Ξ fρOU of the structure sheaf OU using
the construction above, then describe the Ũ-module structure on its global sections.
To clarify the exposition, we list each step as a subsection.

2.4.1. Step 1: Deformation. Let I(n) be as in (2-34). The deformed version of OU is

f sO(n)
U = f +I(n) = OU ⊗ f −1(O

A1−{0})
f −1(I(n)).

The global sections of f sO(n)
U are

(C[x1, x2, x−1
2 ] ⊗ C[s]/sn)ts, (2-39)

where the differentials ∂1, ∂2 ∈ Γ(X̃,DX̃) act on the generator ts by

∂1 · ts = 0 and ∂2 · ts = sx−1
2 ts.

Alternatively, we can identify f sO(n)
U with a quotient ofAU:

f sO(n)
U = AU/AU〈∂1, x2∂2 − s〉. (2-40)

Both descriptions are useful below.

2.4.2. Step 2: +-pushforward. Because j : U ↪→ X̃ is an open embedding, the
DX̃-module j+ f sO(n)

U is the sheaf f sO(n)
U withDX̃-module structure given by restriction

toDX̃ ⊂ DU . Under the identification (2-40),

j+ f sO(n)
U = AU/AU〈∂1, x2∂2 − s〉,

withDX̃-action given by left multiplication.
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FIGURE 3. Deformed dual Verma modules arise as global sections ofj+ f sO(n)
U .

It is interesting to examine the Ũ-module structure on the global sections of this
module. The operators Le, L f , Lh, and Rh in (2-10), (2-13) act on the monomial basis
elements of (2-39) by the following formulas:

Le · xk
1x�2smts = −kxk−1

1 x�+1
2 smts; (2-41)

L f · xk
1x�2smts = (−s − �)xk+1

1 x�−1
2 smts; (2-42)

Lh · xk
1x�2smts = (s − k + �)xk

1x�2smts; (2-43)

Rh · xk
1x�2smts = (s + k + �)xk

2x�2smts. (2-44)

The resulting Ũ-module has a natural filtration given by powers of s, and it decom-
poses into a direct sum of submodules spanned by monomials {xk

1x�2smts} for fixed
integers k + �. Each of these submodules has the structure of a deformed dual Verma
module, as illustrated in Figure 3 for k + � = 0. Note that in Figure 3, we omit the
generator ts and the arrows corresponding to the Rh-action for clarity.

Moreover, one can compute that the Casimir element LΩ in (2-11) acts by

LΩ · xk
1x�2smts = ((k + �)2 + 2(k + �) + 2s(1 + k + �) + s2)xk

1x�2smts. (2-45)

Since s is nilpotent, we can see from this computation that a high enough power of the
operator

LΩ − γHC(k + �) = 2s(1 + k + �) + s2 (2-46)

annihilates any monomial basis element. (Here, γHC is the Harish-Chandra projection
in (2-3).) Hence, the global sections of the submodules of j+ f sO(n)

U spanned by mono-
mials {xk

1x�2smts} for fixed integers k + � have generalized, but not strict, infinitesimal
character.

2.4.3. Step 3: !-pushforward. Recall that j! = DX̃ ◦ j+ ◦ DU , where D denotes holo-
nomic duality, as in (2-28). We begin by computing the rightDU-module DU f sO(n)

U by
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taking a projective resolution of f sO(n)
U as a left AU-module. This is straightforward

using the description (2-39). The complex

0
d2−→ AU

d1−→ AU ⊕AU
d0−→ AU

ε−→ AU/AU〈∂1, x2∂2 − s〉 → 0,

where ε is the canonical quotient map, d0 sends (θ1, θ2) ∈ AU ⊕AU to θ1∂1 −
θ2(x2∂2 − s), and d1 sends 1 �→ (x2∂2 − s, ∂1), is a free resolution of the leftAU-module
f sO(n)

U . Applying the functor HomAU (−,AU) and making the natural identification

HomAU (AU ,AU) � AU;ϕ �→ ϕ(1)

of rightAU-modules, we see that

DU f sO(n)
U = Ext2AU

( f sO(n)
U ,AU) = im d∗1\ ker d∗2 = 〈∂1, x2∂2 − s〉AU\AU .

Here, d∗i (ϕ) = ϕ ◦ di for an appropriate homomorphism ϕ, and the right AU-module
structure is given by right multiplication.

To finish the computation of j! f sO(n)
U , we must take a projective resolution of this

module. We do so following a similar process to the !-pushforward computation in
Section 2.3. Denote by I the right ideal 〈∂1, x2∂2 − s〉AU inAU . The complex

0← I\AU
ε←− AX̃

d0←− AX̃ ⊕AX̃
d1←− AX̃

d2←− 0

with maps given by

ε : 1 �→ Ix−1
2 ;

d0 : (θ1, θ2) �→ x2∂1θ1 − (x2
2∂2 − x2s)θ2;

d1 : 1 �→ (x2∂2 − s, ∂1)

is a free resolution of DU f sO(n)
U by right AX̃-modules. Applying HomAX̃ ,r(−,AX̃) and

making the natural identifications as above,

j! f sO(n)
U = ker d∗2/ im d∗1 = AX̃/AX̃〈∂1, x2∂2 − s〉.

The leftAX̃-module structure is given by left multiplication.
Again, it is interesting to examine the Ũ-module structure on the global sections

of this module. The global sections of j! f sO(n)
U are spanned by monomials xk

1x�2sm for
k, � ≥ 0 and 0 ≤ m < n, and xa

1∂
b
2sm for a, b ≥ 0 and 0 ≤ m < n. For � > 0, the Le, L f , Lh,

and Rh-actions on the monomials xk
1x�2sm are as in (2-41)–(2-44) (where we identify the

generator ts of j+ f sO(n)
U with the coset containing 1 in j! f sO(n)

U ), and the actions on the
monomials xa

1∂
b
2sm are given by the following formulas:

Le · xa
1∂

b
2sm = a(b − 1 − s)xa−1

1 ∂b−1
2 sm;

L f · xa
1∂

b
2sm = −xa+1

1 ∂b+1
2 sm;

Lh · xa
1∂

b
2sm = (s − a − b)xa

1∂
b
2sm; (2-47)
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FIGURE 4. Deformed Verma modules arise as global sections ofj! f sO(n)
U .

Rh · xa
1∂

b
2sm = (s + a − b)xa

1∂
b
2sm. (2-48)

For � = b = 0, the actions of Lh and Rh are as in (2-47)–(2-48), and the actions of Le

and L f are given by

Le · xk
1sm = −kxk−1

1 x2sm;

L f · xk
1sm = −xk+1

1 ∂2sm.

As in Section 2.4.2, this Ũ-module has an n-step filtration by powers of s, and
decomposes into a direct sum of Ũ-submodules, each spanned by the set of monomials
{xk

1x�2sm} and {xa
1∂

b
2sm} such that k + � = a − b is a fixed integer. For k + � = a − b = λ,

this submodule is isomorphic to a deformed Verma module of highest weight λ. We
illustrate the module corresponding to λ = 0 in Figure 4.

2.4.4. Step 4: Image of the canonical map. Set IU = AU〈∂1, x2∂2 − s〉 and
IX̃ = AX̃〈∂1, x2∂2 − s〉 to be the left ideals generated by the operators ∂1 and x2∂2 − s
inAU andAX̃ , respectively. The canonical map between the !- and +-pushforwards is
given by

j! f sO(n)
U = AX̃/IX̃

can−−→ AU/IU = j+ f sO(n)
U

1IX̃ �−→ 1IU .

Since 1AX̃ generates j! f sO(n)
U as an AX̃-module, its image completely determines the

morphism can. On the monomial basis elements xk
1x�2sm and xk

1∂
�
2sm of j! f sO(n)

U , the
canonical map acts by

xk
1x�2sm can�−−→ xk

1x�2sm and xa
1∂

b
2sm can�−−→ s(s − 1) · · · (s − b + 1)xa

1x−b
2 sm (2-49)

for b > 1. For b = 1, xa
1∂2sm can�−−→ sxa

1x−1
2 .
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FIGURE 5. Caricature of the maximal extensionΞρOU .

The image of the morphism can is theAX̃-submodule

im (can) = AX̃/IU ⊂ AU/IU .

In the description of the global sections of j+ f sO(n)
U in (2-39), the global sections of

im (can) can be identified with

(C[x1, x2] ⊗ C[s]/sn + C[x1, x2, x−1
2 ] ⊗ sC[s]/sn)ts.

2.4.5. Step 5: The maximal extension. Composing the canonical map can with s
gives

s1(n) : AX̃/IX̃
can−−→ AU/IU

s−→ AU/IU . (2-50)

The global sections of the image of s1(n) (as a submodule of (2-39)) are

Γ(X̃, im s1(n)) � (C[x1, x2] ⊗ sC[s]/sn + C[x1, x2, x−1
2 ] ⊗ s2C[s]/sn)ts.

This gives us an explicit description of ΞρOU = coker s1(n):

Γ(X̃,ΞρOU) = (C[x1, x2, x−1
2 ] ⊗ C[s]/sn)ts/Γ(X̃, im s1(n))

= (C[x1, x2, x−1
2 ] ⊗ C[s]/s2)ts/(C[x1, x2] ⊗ sC[s]/s2)ts. (2-51)

A caricature of the Γ(X̃,AX̃)-module (2-51) is illustrated as in Figure 5. It has two
layers, corresponding to the two nonzero powers of s, and action by s moves layers up.
As vector spaces, the bottom layer is isomorphic to C[x1, x2, x−1

2 ] and the top layer to
sx−1

2 C[x1, x−1
2 ].

Our final step is to examine the Ũ-module structure on Γ(X̃,ΞρOU). The module
(2-51) has a basis given by monomials xk

1x�2ts for k ∈ Z≥0 and � ∈ Z, and xk
1x�2sts for

k ∈ Z≥0 and � ∈ Z<0. The actions of the operators Le, L f , Lh, and Rh in (2-10) on these
monomials are given by applying the formulas (2-41)–(2-44) and taking the image of
the resulting monomials in the quotient (2-51).
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FIGURE 6. Big projective modules arise as global sections of slices of ΞρOU .

The Ũ-module Γ(X̃,ΞρOU) splits into a direct sum of submodules spanned by
monomials xk

1x�2ts and xk
1x�2sts such that k + � is a fixed integer. We illustrate the

submodule for k + � = 0 in Figure 6. For clarity, we drop the generator ts from our
notation in Figure 6. If λ ≥ 0, the submodule corresponding to the integer λ = k + �
has the Verma module of highest weight λ as a submodule, and the dual Verma module
corresponding to λ as a quotient. As a U(g)-module, it is isomorphic to the big pro-
jective module P(w0λ) in the corresponding block of category O. (The big projective
module is the projective cover of the irreducible highest-weight module L(w0λ), where
w0 is the longest element of the Weyl group. It is the longest indecomposable projective
object in the block Oλ of category O [Hum08, Section 3.12].)

2.5. The monodromy filtration and the geometric Jantzen filtration. The max-
imal extension ΞρOU naturally comes equipped with a nilpotent endomorphism s,
giving it a corresponding monodromy filtration. This is the source of the geometric
Jantzen filtrations on j!OU and j+OU . In this section, we use the monodromy filtration
on ΞρOU to compute the geometric Jantzen filtration on j!OU . Using the computations
of Section 2.4, we then describe the corresponding Ũ-module filtration on global
sections.

We begin by recalling monodromy filtrations in abelian categories, following
[Del80, Section 1.6]. Given an object A in an abelian category A and a nilpotent
endomorphism s : A→ A, it follows from the Jacobson–Morosov theorem [Del80,
Proposition 1.6.1] that there exists a unique increasing exhaustive filtration μ• on A
such that sμn ⊂ μn−2, and for k ∈ N, sk induces an isomorphism grk

μA � gr−k
μ A. This

unique filtration is called the monodromy filtration of A.
Following Deligne’s proof in [Del80, Section 1.6], the monodromy filtration can be

described explicitly in terms of powers of s. Namely, if we set

K pA :=

⎧⎪⎪⎨⎪⎪⎩ker sp+1 for p ≥ 0;
0 for p < 0

to be the kernel filtration of A and

I qA :=

⎧⎪⎪⎨⎪⎪⎩im sq for q > 0;
A for q ≤ 0,
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to be the image filtration of A, then μ• is the convolution of the kernel and image
filtrations; that is,

μr =
∑

p−q=r

K p ∩I q. (2-52)

The monodromy filtration μ• induces filtrations J•! on ker s and J•+ on coker s. By
(2-52), these can be seen to be

Ji
! = ker s ∩I −i and Ji

+ = (K i + im s)/ im s. (2-53)

In the setting of holonomic D-modules, the filtrations J•! and J•+ define the geometric
Jantzen filtrations.

DEFINITION 2.9. Let Y be a smooth variety, f a regular function on Y and
U = f −1(A1 − {0}) as in (2-34). For a holonomic DU-module MU , recall that
j!MU = ker(s : Ξ fMU → Ξ fMU) and j+MU = coker(s : Ξ fMU → Ξ fMU) [BB93,
Lemma 4.2.1]. The filtrations J•! of j!MU and J•+ of j+MU are called the geometric
Jantzen filtrations.

Now we return to our running example. The monodromy filtration μ• on ΞρOU is

μ−2 = 0 ⊂ μ−1 = im s ⊂ μ0 = j!OU ⊂ μ1 = ΞρOU .

Restricting this to ker s = j!OU , we obtain the geometric Jantzen filtration of j!OU:

0 ⊂ im s ⊂ j!OU .

The induced filtration on coker s = j+OU gives the geometric Jantzen filtration on
j+OU:

0 ⊂ ker s/ im s ⊂ j+OU .

REMARK 2.10 (Geometric deformation direction). There are other choices of regular
functions on X̃ that we could have used in the construction of these filtrations. In
particular, if γ ∈ h∗ is dominant and integral such that γ(h) = n for n ∈ Z>0, then the
function fγ : (x1, x2) �→ xn

2 can be used to define an intermediate extension functor Ξ fγ
and corresponding Jantzen filtrations. Beilinson and Bernstein establish that all such
fγ lead to the same filtration. For general Lie algebras g, the construction can also be
done for other choices of meromorphic functions on X̃, but it is unclear geometrically
whether these result in different filtrations [BB93, Section 4.3]. This is comparable
to the dependence on deformation direction in the algebraic Jantzen filtration; see
Remark 1.3.

Using the computations in Section 2.4, we can examine the Ũ-module filtrations
that we obtain on global sections. Recall that Γ(X̃,ΞρOU) decomposes into a direct
sum of submodules spanned by monomials xk

1x�2ts and xk
1x�2sts such that k + � is a fixed

nonnegative integer. Figure 6 illustrates the submodule corresponding to k + � = 0.
Looking at this figure, it is clear that ker s = span{xk

1x�2sts, ts} is isomorphic to the
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FIGURE 7. Global sections of the monodromy filtration onΞρOU are the composition series of the big
projective module.

Verma module of highest weight 0, and coker s = span{xk
1x�2ts} is isomorphic to the

corresponding dual Verma module. Moreover, the global sections of the monodromy
filtration on ΞρOU restricted to the submodule corresponding to k + � = λ is the
composition series of the corresponding big projective module P(w0λ) when λ ≥ 0.
This is illustrated in Figure 7 for λ = 0. We conclude that the filtrations on the Verma
module M(λ) and dual Verma module I(λ) obtained by taking global sections of the
geometric Jantzen filtrations are the composition series. Note that this is an sl2(C)
phenomenon. For larger groups, this procedure yields a filtration different from the
composition series.

2.6. Relation to the algebraic Jantzen filtration. The geometric Jantzen filtrations
described above have an algebraic analogue, due to Jantzen [Jan79]. In this section,
we recall the construction of the algebraic Jantzen filtration of a Verma module, then
explain its relation with the geometric construction in Section 2.5.

2.6.1. The algebraic Jantzen filtration. We follow [Soe08]. Another nice reference
for Jantzen filtrations is [IK11].

Let g be a complex semisimple Lie algebra, b a fixed Borel subalgebra, n = [b, b]
the nilpotent radical of b, and h a Cartan subalgebra so that b = h ⊕ n. Denote by b̄ the
opposite Borel subalgebra to b. For λ ∈ h∗, denote the Verma module of highest weight
λ by

M(λ) := U(g) ⊗U(b) Cλ.

Denote by I(λ) the corresponding dual Verma module, defined to be the direct sum of
weight spaces in

HomU(b)(U(g),Cλ).

Set T = O(Cρ) to be the ring of regular functions on the line Cρ ⊂ h∗, where ρ is
the half-sum of positive roots in the root system determined by b. A choice of linear
functional s : Cρ→ C gives an isomorphism T � C[s]. Fix such an identification. Set
A := T(s) to be the local C-algebra obtained from T by inverting all polynomials not
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divisible by s, and

ϕ : O(h∗)→ A (2-54)

to be the composition of the restriction map O(h∗)→ T with the inclusion T ↪→ A.
Note that under the identification U(h) � O(h∗), ϕ(h) ⊆ (s), the unique maximal ideal
of A.

Let V be a (g, A)-bimodule on which the right and left actions of C agree. The
deformed weight space Vμ of V corresponding to a weight μ is the subspace

Vμ := {v ∈ V | (h − μ(h))v = vϕ(h) for all h ∈ h}. (2-55)

The direct sum of all deformed weight spaces of V is a (g, A)-submodule of V [Soe08,
Section 2.3].

For λ ∈ h∗, the deformed Verma module corresponding to λ is the (g, A)-bimodule

MA(λ) := U(g) ⊗U(b) Aλ,

where theU(b)-module structure on Aλ is given by extending the h-action

h · a = (λ + ϕ)(h)a

trivially to b. Here, h ∈ h, a ∈ A, and ϕ is as in (2-54). The deformed Verma module
MA(λ) is equal to the direct sum of its deformed weight spaces.

The deformed dual Verma module IA(λ) corresponding to λ is the direct sum of
deformed weight spaces in the (g, A)-bimodule

HomU(b̄)(U(g), Aλ). (2-56)

There is a canonical isomorphism [Soe08, Proposition 2.12]

Hom(g,A)−mod(MA(λ), IA(λ)) � A.

Under this isomorphism, 1 ∈ A distinguishes a canonical (g, A)-bimodule homomor-
phism

ψA,λ : MA(λ)→ IA(λ). (2-57)

For any A-module M, there is a descending A-module filtration Mi := siM with
associated grading griM = Mi/Mi+1. Hence, there is a reduction map

red : M → gr0M = M/sM.

For MA(λ) and IA(λ), the layers of this filtration are g-stable, so we obtain surjective
g-module homomorphisms

red : MA(λ)→ M(λ) = gr0MA(λ) and red : IA(λ)→ I(λ) = gr0IA(λ). (2-58)

Pulling back the filtration above along the canonical map ψA,λ in (2-57) gives a
(g, A)-bimodule filtration of MA(λ).

https://doi.org/10.1017/S1446788724000168 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788724000168


[29] An example of the Jantzen filtration of a D-module 29

DEFINITION 2.11. The algebraic Jantzen filtration of MA(λ) is the (g, A)-bimodule
filtration

MA(λ)i := {m ∈ MA(λ) | ψA,λ(m) ∈ siIA(λ)},

where ψA,λ is the canonical map (2-54). By applying the reduction map in (2-58) to the
filtration layers, we obtain a filtration M(λ)• of M(λ).

2.6.2. Relationship between algebraic and geometric Jantzen filtrations. Though the
constructions seem quite different at first glance, the geometric Jantzen filtration in
Section 2.5 aligns with the algebraic Jantzen filtration described in Section 2.6.1 under
the global sections functor. In this final section, we illustrate this relationship through
our running example.

Recall the canonical map (2-35):

can : j! f sO(n)
U → j+ f sO(n)

U .

As illustrated in Figures 3 and 4, the global sections of j! f sO(n)
U and j+ f sO(n)

U decompose
into direct sums of deformed dual Verma and Verma modules, respectively. The global
sections of can are the direct sum of ψA,λ in (2-57) for all integral λ.

REMARK 2.12. To be more precise, the submodules of Γ(X̃, j! f sO(n)
U ) and

Γ(X̃, j+ f sO(n)
U ) corresponding to an integer λ are truncated versions of MA(λ) in (2-56)

and IA(λ) in (2-56) obtained by taking a quotient so that sn = 0.

There are two natural filtrations of j!OU that we have described using this set-up.

Filtration 1: (algebraic Jantzen filtration)
We obtain a filtration of j! f sO(n)

U by pulling back the ‘powers of s’ filtration along
can. This induces a filtration on the quotient

j!(OU) � j! f sO(n)
U /sj! f sO(n)

U . (2-59)

This is exactly the D-module analogue of the algebraic Jantzen filtration described in
Section 2.6.1. On global sections, it is the filtration

FiΓ(X̃, j!OU) = {v ∈ Γ(X̃, j!OU) | Γ(can)(v) ∈ siΓ(X̃, j+ f sO(n)
U )}. (2-60)

Filtration 2: (geometric Jantzen filtration)
There is a unique monodromy filtration on ΞρOU = coker(s ◦ can). Restricting this

to the kernel of s, we obtain a filtration on

j!OU � ker(s : ΞρOU → ΞρOU). (2-61)

This is the geometric Jantzen filtration. It can be realized explicitly in terms of the
image of powers of s using (2-53). On global sections, this gives

GiΓ(X̃, j!OU) = {w ∈ ker(s� Γ(X̃,ΞρOU)) | w ∈ siΓ(X̃,ΞρOU)}. (2-62)
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FIGURE 8. Relationship between the algebraic and geometric Jantzen filtrations.

It is helpful to see these filtrations in a picture. Figure 8 illustrates the set-up when
restricted to the submodule corresponding to λ = 0.

The map can is described on basis elements in (2-49). Computing these actions
for λ = 0, we see in Figure 8 that can fixes the right-most column and sends any
other monomial on the left to a linear combination of monomials directly above
the corresponding monomial on the right. The image of s1(n) = s ◦ can in (2-50) is
highlighted in gray. The quotient by this image is the maximal extension, which is
outlined in the black box. The quotient in (2-59) is highlighted in blue (darker shading)
in the left hand module, and the submodule in (2-61) is highlighted in blue (darker
shading) in the right-hand module.

We see that there are two copies of j!OU (each highlighted in blue (darker shading)
in Figure 8) in this set-up: one as a quotient of the left-hand module j! f sO(n)

U , and one
as a submodule of a quotient of the right-hand module j+ f sO(n)

U . These two copies can
be naturally identified as follows.

Because the submodule sj! f sO(n)
U is in the kernel of the composition of can with

the quotient j! f sO(n)
U → coker(s ◦ can) = ΞρOU , the map can descends to a map on the

quotient:

can : j!OU � j! f sO(n)
U /sj! f sO(n)

U → ΞρOU .

By construction, the map can is injective. Its image is exactly ker(s : ΞρOU → ΞρOU).
This is immediately apparent in Figure 8. Hence, can provides an explicit isomorphism
that can be used to identify the two copies of j!OU . Under this identification, the
algebraic Jantzen filtration in (2-60) and the geometric Jantzen filtration in (2-62)
clearly align.
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