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Summary

A full-sib intercross line (FSIL) is constructed in an outcrossing species by mating two parents and

intercrossing their progeny to form a large intercross line. For given statistical power, a FSIL

design requires only slightly more individuals than an F2 design derived from inbred line cross, but

6- to 10-fold fewer than a half-sib or full-sib design. Due to population-wide linkage

disequilibrium, a FSIL is amenable to analysis by selective DNA pooling. In addition, a FSIL is

maintained by continued intercrossing so that DNA samples and phenotypic information are

accumulated across generations. Continued intercrossing also leads to map expansion and thus to

increased mapping accuracy in the later generations. A FSIL can thus provide a bridge to

positional cloning of quantitative trait loci (QTL) and marker-assisted selection in outcrossers ; and

is particularly effective in exploiting the QTL mapping potential of crosses between selection lines

or phenotypically differentiated populations that differ in frequency, but are not at fixation, for

alternative QTL alleles. In the course of the power analyses, it is shown that for F2 and FSIL

designs, power is a function of Nd# alone, where N is the total size of the mapping population and

d is the standardized gene effect ; while for half-sib and full-sib populations, power is a function of

Nd# and of the number of families included in the mapping population. This provides a convenient

means of estimating power for a wide variety of mapping designs.

1. Introduction

Mapping quantitative trait loci (QTL) is a basic

operation for positional cloning and for application of

marker-assisted selection or marker-assisted intro-

gression in genetic improvement (Soller, 1994). In

selfing species, and outcrossers for which inbred lines

are available, QTL mapping through linkage analysis

with genetic markers is efficiently carried out in F2 or

backcross populations (Soller et al., 1976). For such

species, designs are also available that can increase the

efficiency and accuracy of QTL mapping. These

include selective genotyping (Lander & Botstein, 1989;

Darvasi & Soller, 1992), selective DNA pooling

(Darvasi & Soller, 1994; Lipkin et al., 1998),

development of advanced intercross lines (Darvasi &

Soller, 1995), and various procedures that can be

* Corresponding author. Telephone: ­972 2 6585104. Fax: ­972
2 6586975. e-mail : soller!vms.huji.ac.il.

classed under the general rubric ‘Genetic Chromo-

some Dissection’ (for a review see e.g. Darvasi, 1997).

Thus, in these species, one can envision a relatively

straightforward route leading from QTL mapping to

marker-assisted selection on the one hand or positional

cloning on the other. The same holds generally true

for dairy cattle, and many species of fish and fruit

trees, in which QTL mapping can be carried out

within single enormous half-sib or full-sib families.

In the remaining outcrossing species, however, such

as poultry, sheep and swine, marker-based linkage

mapping of QTL is generally thought of as requiring

an accumulation of data over a number of relatively

small half-sib or full-sib families (family size in the

range 2–100) that together make up the mapping

population. In addition, over the mapping population

as a whole there is a strong tendency to linkage

equilibrium of marker alleles and QTL alleles. Small

family size and linkage equilibrium reduce the power

of full-sib and half-sib populations as much as 10-fold
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compared with populations derived from crosses

between inbred lines (Soller & Genizi, 1978; Weller et

al., 1990; Knott & Haley, 1992; van der Beek et al.,

1995; Knott et al., 1996). Although mapping accuracy

has not been specifically simulated, it is plausible that

it too is reduced in proportion. The problem is

confounded because the tendency to linkage equi-

librium also precludes the utilization of most of the

above-mentioned methods for increasing mapping

efficiency and accuracy. This poses a major block to

linkage mapping and positional cloning of QTL, and

to the implementation of marker-assisted selection

in these species.

A full-sib intercross line (FSIL) is produced by

mating two parents and intercrossing their progeny

over two or more generations to form a large ‘mapping

population’. The genetic make-up of the mapping

population is thus completely determined by the

chromosome constitution of the two founder parents,

and tends, therefore, to a high degree of linkage

disequilibriumbetweenmarker alleles andQTLalleles.

The FSIL design thus provides a QTL mapping

population for utilization in outcrossing species, with

power and other attributes similar to those obtained

for populations derived from a cross between inbred

lines. In the present study we analysed the statistical

power of a FSIL design, according to the specific

marker and QTL composition of the founding

parental pair, and compared this with the power of

F2, full-sib and half-sib designs. Potential applications

of FSIL designs for positional cloning and marker-

assisted selection are also discussed.

2. Methods

(i) The mapping designs

Inbred line design. An inbred line design has two

versions, based on F2 and backcross populations,

respectively. In all that follows, only the F2 version

will be considered. In this form, a number of parent

individuals are taken from each of two fully inbred

lines. These are crossed to produce an F1 generation;

the F1 individuals are selfed or intercrossed to produce

an F2 generation, which serves as the mapping

population.

FSIL design. Two parents are chosen, either from

the same or different source populations. The parental

individuals are mated to produce a large first-

generation full-sib family. The full-sibs are intermated

at random to produce a first intercross generation.

The first intercross generation individuals are again

intermated at random to produce the second intercross

generation. This procedure is continued indefinitely.

Each generation, or any combination of generations

from and including the first intercross generation, can

serve as a mapping population.

Full-sib design. A series of parental pairs are chosen

from a source population. Each parental pair is mated

to produce a full-sib family. The entire set of full-sib

families serves at the mapping population.

Half-sib design. A series of males are chosen from

the same source population. Each is mated at random

to a series of females from the same population, to

produce a half-sib family. The entire set of half-sib

families serves as the mapping population. In the

present analysis we consider the situation of a single

offspring from each female. This is equivalent to a

‘daughter design’ (Weller et al., 1990).

(ii) Markers and QTL

We assume a QTL with two alleles A
"
and A

#
, and a

marker with many co-dominant alleles, M
"
, M

#
, M

$
,

M
%
, etc., in complete linkage to the QTL. Genotypic

effects at the QTL are A
"
A

"
¯ d, A

"
A

#
¯ h, A

#
A

#
¯

®d, where d and h are in standardized units.

Inbred line design. An inbred line design can

uncover marker–QTL linkage only for those marker–

QTL pairs for which the parental lines differ in allelic

status. Thus, in analysing the inbred line design, the

parental line P1 is assumed homozygous for marker–

QTL allele combination M
"
M

"
A

"
A

"
, and the parental

line P2 is assumed homozygous for marker–QTL

allele combination M
#
M

#
A

#
A

#
. The F2 mapping

population thus consists of three offspring genotypes

– M
"
M

"
A

"
A

"
, M

"
M

#
A

"
A

#
and M

#
M

#
A

#
A

#
– in pro-

portions 0±25, 0±50 and 0±25, respectively.

FSIL design. The two founder parents of a FSIL

mapping population carry a total of four homologues

of each chromosome type. For any given set of four

parental homologues there are five different archetype

marker combinations, in the sense that they have

different expectations with regard to number, value

and frequency of marker genotypes in the mapping

population. These archetype marker combinations

are M
"
M

"
M

"
M

"
, M

"
M

"
M

"
M

#
, M

"
M

"
M

#
M

#
, M

"
M

"

M
#
M

$
and M

"
M

#
M

$
M

%
. All other marker combi-

nations are simple permutations or substitutions in

one of the above, and have equivalent expectations as

their archetypes. For example, M
"
M

"
M

"
M

"
and

M
#
M

#
M

#
M

#
are equivalent ; as are M

"
M

"
M

"
M

#
,

M
"
M

"
M

#
M

"
, and M

#
M

#
M

#
M

"
, etc. For convenience

these five different archetype marker combinations

will be denoted M
""""

, M
"""#

, M
""##

, M
""#$

, M
"#$%

.

In the same sense as for the marker combinations,

for a diallelic QTL there are three different archetype

QTL combinations among the four parental chromo-

some homologues. Using the same notation as above,

these are denoted A
""""

, A
"""#

and A
""##

, respectively.

Specific marker–QTL combinations are denoted ac-

cordingly; e.g. a set of four parental homologues

having composition M
"
A

"
, M

"
A

"
, M

"
A

#
, M

#
A

"
,

respectively, is denoted M
"""#

A
""#"

. Note that in the
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FSIL design, the M
""##

and A
""##

combinations include

the M
"#"#

and A
"#"#

variants, but in the full-sib design

these must be treated separately (see later).

On the stated assumption of zero recombination

between marker and QTL, offspring genotypes in the

second and subsequent generations of an FSIL are

composed of various combinations of any two of the

four parental homologues. On the further assumption

of random mating, offspring genotypes in each

generation are considered to be distributed with the

same Hardy–Weinberg expectations, according to the

frequency of the various marker–QTL combinations

among the four parental homologues. For example,

given the above four parental homologues with

composition M
"
A

"
, M

"
A

"
, M

"
A

#
, M

#
A

"
, their re-

spective frequencies are : M
"
A

"
¯ 0±50 and M

"
A

#
¯

M
#
A

"
¯ 0±25.

The FSIL design can uncover marker–QTL linkage

only for those parental pairs that are in linkage

disequilibrium for markers and QTL. This excludes

monomorphic marker and QTL combinations, and

also certain specific marker–QTL combinations such

as M
""##

A
"#"#

, or variants thereof, that are in linkage

equilibrium. Thus, some of the QTL segregating in a

source population will not be uncovered by a FSIL

design based on a pair of individuals chosen from that

population. Given a number of markers in each

chromosomal region, however, at least one or more

can be expected to be both polymorphic and in

linkage disequilibrium with a QTL in that region that

is polymorphic in the parental pair. Thus, the above

limitation applies specifically to QTL that are mono-

morphic in the parental pair.

Full-sib design. The two founder parents of each

family of a full-sib design mapping population also

carry a total of four homologues for each chromosome

type. Offspring genotypes within each family are

assumed to be distributed according to elementary

genetic expectations. In this design, as noted above,

there are six different archetype marker combinations

and four different archetype QTL combinations, since

the M
""##

and A
""##

combinations are split into M
""##

and M
"#"#

, and A
""##

and A
"#"#

combinations, re-

spectively, which differ in their expectations with

respect to number, value and frequency of genotypes

in the mapping population. As in the FSIL design,

only those parental pairs that are in linkage disequi-

librium for markers and QTL are informative for

marker–QTL linkage. This excludes the same marker

or QTL chromosome combinations as in the FSIL

design. In addition, the first-generation offspring must

be segregating, which also excludes the M
""##

or A
""##

parental combinations, or variants thereof.

In contrast to the FSIL design, however, while any

individual family may have a marker–QTL com-

position that is uninformative with respect to marker–

QTL linkage, the collection of full-sib families

provides information on all segregating QTL in the

source population (unless one of the alleles at the

QTL is close to fixation, or the number of full-sib

families in the experiment is small). Here too, in

principle, proper choice of markers could also bring

all informative QTL combinations into play in the

full-sib family design, in this way increasing power.

However, in practice and theory this would be much

more difficult, since markers would need to be adjusted

separately for each family.

Half-sib design. Only instances in which the sire of

the half-sib family is heterozygous at both marker and

QTL are informative for marker–QTL linkage. In the

mapping population offspring genotypes are assumed

to be distributed according to expectation assuming

Hardy–Weinberg equilibrium at the QTL in the dam

population. Here too, although any sire homozygous

at the QTL is uninformative with respect to marker–

QTL linkage, the experiment as a whole will be

informative for all QTL segregating in the source

population, subject to the same exceptions noted for

the full-sib family design.

(iii) The marker combinations

Inbred line and half-sib designs. In both these designs

the only requirement is marker heterozygosity. Since

a wealth of highly polymorphic markers is available

for QTL mapping purposes, we assume the desired

condition for all markers.

FSIL and full-sib designs. In both these designs,

power of the mapping population will depend on the

specific marker combinations present. The probability

of obtaining any particular marker combination is

given by a multinominal distribution, and depends on

the marker composition of the population from which

the parents are drawn. For the general case, where

marker allele frequencies are unequal, the expected

sampling probability, P
m
, of the various archetype

marker combinations is given as sums of multinominal

probabilities corresponding to the individual marker

combinations, C(m) that belong to archetype com-

bination m. P
m

can be written in the form

P
m

¯ Σ
C(m)

[4 !}Πx
i
!]Πpxi

i
,

where p
i
is the frequency of the ith marker allele M

i
in

the source population; x
i
is the number of parental

chromosomes carrying marker allele, M
i
, Σx

i
¯ 4;

and Σ
C(m)

indicates summation over all combinations

that constitute the archetype combination, m.

When all p
i
¯ p are equal, so that p¯1}R, the

expression for P
m

simplifies to

P
m

¯kCR

r
[4 !}Πx

i
!](1}R%),

where R is the total number of different marker alleles

in the source population; r is the number of different
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marker alleles among the four parental chromosomes

in marker combination, m ; and k is the number of

permutations relevant to this combination. Thus, k¯
1 for marker combinations M

""""
, M

""##
and M

"#$%
;

k¯ 2 for marker combination M
"""#

; and k¯ 3 for

marker combination M
""#$

.

(iv) The QTL combinations

Inbred line design. When the two inbred parental lines

are derived from the same source population, the

probability that the two lines differ at the QTL is

equal to 2pq. Ordinarily, however, in the case of an

inbred line design the two parental inbred lines will

have been derived from different source populations.

In this case the proportion of heterozygous QTL

combinations will depend on the genetic distance

between the source populations. Since this will vary

and is generally unknown, all calculations are on the

assumption that the parental lines differ in QTL allele

status.

FSIL design. When the two parental individuals

are taken from the same source population, the

probability of any particular QTL combination is

given by px
"qx

#, where p and q are frequencies of QTL

alleles A
"
and A

#
in the source population; and x

"
and

x
#
(¯ 4®x

"
) are the number of parental chromosomes

carrying QTL alleles A
"

and A
#
, respectively. When

the two parental individuals are each taken from a

different source population, the probability of any

particular QTL combination is given by px
""

"
qx

"#

"
px

#"

#
qx

##

#
,

where p
"

and p
#

denote the frequency of allele A
"

in

source populations 1 and 2, respectively ; x
""

and x
"#

(¯ 2®x
""

) refer to the number of chromosomes of the

parent taken from source population 1, that carry

allelesA
"
orA

#
respectively ; and x

#"
and x

##
(¯ 2®x

#"
)

are the corresponding values for the parent taken

from source population 2. Calculations of QTL

combination frequencies were carried out for three

situations: both parents from the same source popu-

lation, with equal allele frequencies at the QTL

(p¯ q¯ 0±5); both parents from the same source

population, with unequal allele frequencies at the QTL

(p¯ 0±8, q¯ 0±2); and each parent from a different

source population, with different allele frequencies

(source population 1 : p¯ 0±8, q¯ 0±2; source popu-

lation 2: p¯ 0±2, q¯ 0±8).

Full-sib design. In this design, the two parental

individuals are always taken from the same source

population. The probability of any particular parental

QTL combination is thus given by the corresponding

expressions of the FSIL design. Since a full-sib family

design will generally include a large number, k, of

families (k" 20), it is assumed that the distribution of

the various QTL combinations within any given

marker combination is in proportion to their prob-

abilities. Calculations were for p¯ q¯ 0±5, which

maximizes the number of informative families. Clearly

any other situation will increase the proportion of

uninformative parent combinations and decrease

power. Similarly, the proportion of uninformative

parent combinations is increased by taking each

parent from a different source population, except for

the trivial case when the two source populations have

identical allele frequencies. Producing the parents by

crossing two separated populations, however, will

often increase the proportion of heterozygous parents

and increase power.

Half-sib design. The probability that any given sire

is heterozygous at the QTL is equal to 2pq. When the

total number of families is large (k& 20), it can be

assumed that this is indeed close to the proportion of

heterozygous sires in any given experiment. When the

total number of families in the experiment is small,

however (k! 20), the proportion of heterozygous

sires in any given experiment will vary widely,

according to a binomial distribution with parameters

k and 2pq. Calculations were on the best case basis,

p¯ q¯ 0±5, which maximizes the number of informa-

tive sires. Here, too, deviation of allele frequencies

from equality will increase the proportion of unin-

formative homozygous sires and decrease power;

while producing the sires by crossing two separated

populations will increase the proportion of hetero-

zygous sires and increase power.

(v) Power calculations

Henceforth, to simplify notation, M
i
and A

h
will be

used for marker and QTL combinations, rather than

for the state at a single allele ; accordingly, M
i
A

h
will

denote a marker–QTL combination. To test for

linkage in a given mapping population derived from

an M
i
A

h
marker–QTL combination, one-way

ANOVA with significance level α is used among the

different marker genotype groups. Power of the test is

defined as equal to 1®β, where β is the Type II error

of the experiment. The Type II error is given by a non-

central F distribution (Scheffe, 1959), as follows:

β¯ProbF (n
"
, n

#
,Ψ)!F (n

"
, n

#
,α),

where n
"
, d.f. in numerator¯m

i
®1 ; n

#
, d.f. in

denominator¯N®m
i
; and Ψ, the non-centrality

parameter¯NΣw
ij
(µ

ijh
®µ

h
)#. In turnm

i
is the number

of different marker genotypes in a mapping population

or family originating from the M
i

parental marker

combination; N is the total number of individuals in

the mapping population or family derived from the

M
i
A

h
marker}QTL combination; w

ij
is the frequency

of marker genotype G
j
within the mapping population

originating from parental marker combination M
i
;

µ
ijh

is the genotypic value of marker genotype G
j
,
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Table 1. Parameters for noncentral F power

calculations according to mapping design: n
"
, d.f. in

the numerator; n
#
, d.f. in the denominator; Ψ,

noncentral parameter

Design n
"

n
#

Ψ

Inbred line 2 N®3 NΣw
j
(µ

j
®µ)#

FSILa m
i
®1 N®m

i
NΣw

ij
(µ

ijh
®µ

h
)#

Full-sibb k(m
i
®1) N®km

i
NΣ�

h
Σw

ij
(µ

ijh
®µ

h
)#

Half-sibc

k"10 k N®k 2pqNΣ(µ
j
®µ)#}2

k%10 k N®k H
x
NΣ(µ

j
®µ)#}2

a Calculated for given marker composition, M
i
; separately

for each QTL composition, A
h

within M
i
. Power was

calculated as Σ�
h
(1®β

h
), where 1®β

h
is power for A

h
within

M
i
and �

h
is frequency of A

h
within M

i
, including only A

h

that are informative for QTL mapping.
b Calculated for given marker composition, M

i
; over all

possible QTL compositions, A
h

within M
i
.

c Calculated over homozygous and heterozygous QTL
compositions. For this design there are always two marker
genotype classes in the mapping population, each at
frequency 0±5. For k"10, 2pq was taken as the expected
proportion of sires, heterozygous at the QTL. For k%10,
the non-central parameter and power, β

x
, were calculated

separately for each possible proportion of sires, H
x
out of k,

heterozygous at the QTL. Expected power was then
calculated as Σ�

Hx

(1®β
x
), where �

Hx

is the binomial
probability of finding a proportion H

x
of sires heterozygous

at the QTL in a sample of k sires.
Notation : N¯ total number of individuals in the mapping
population; m

i
¯number of different marker genotypes in a

FSIL design mapping population, or full-sib family,
originating from the M

i
parental marker combination; w

j
¯

frequency of marker genotype G
j
in an F2 population; µ

j
¯

genotypic value of marker genotype G
j
in an F2 population;

µ¯mean of F2 population; w
ij
¯ frequency of marker

genotype G
j

within FSIL mapping population or full-sib
family originating from parental marker combination M

i
;

µ
ijh

¯ genotypic value of marker genotype G
j
, within

parental marker combination M
i
, and parental QTL

combination A
h
; µ

h
¯mean genotypic value of FSIL

mapping population or full-sib family originating from A
h
;

k¯ the number of full-sib or half-sib families in the mapping
population; �

h
¯ the proportion of full-sib families having

QTL combination A
h
; p and q, frequency of QTL alleles A

"
and A

#
, respectively, in the source population.

within parental marker–QTL combination M
i
A

h
;

and µ
h

is the mean genotypic value of mapping

population originating from parental QTL combi-

nation A
h
.

Specific details showing how this expression was

adapted for the various mapping designs are given in

Table 1.

The marker combinations. In principle, given multi-

allelic markers and saturated genome maps, the

parental chromosomes can be genotyped for numerous

markers in each chromosomal region, until a desired

marker combination is found. For the inbred line and

half-sib family designs there is only a single in-

formative marker combination. Namely, for the

inbred line design the two parental lines must be

homozygous for alternative alleles at the marker being

analysed; and for the half-sib family design the sire of

the half-sib family must be heterozygous for the

marker being analysed. In both cases it is assumed

that the required condition is met for all markers and

(in the case of the half-sib family design) all sires being

analysed. For the chromosome and full-sib family

designs, however, there are a number of different

informative marker combinations. In these cases, each

marker combination was treated separately in the

power analyses. This was done to provide some

indication of the benefit that would be obtained by

pursuing a more informative marker combination in

the relevant chromosomal region.

The QTL combinations. In contrast to the situation

with respect to markers, the specific QTL chromo-

somal combination in the parental chromosomes of

any particular mapping population (for inbred line or

FSIL design) or family (for full-sib or half-sib family

designs) is in principle unknown; yet the various

combinations differ in power and some have zero

power. This has different consequences, depending on

whether an experiment derives from a single parental

pair (as in inbred line or FSIL designs) or from a

number of parents or parental pairs (as in half-sib and

full-sib family designs).

In the inbred line design, a specific experiment has

only two possible outcomes with respect to a specific

QTL: maximum power with respect to all QTL for

which the parental lines differ in allelic state, and zero

power with respect to all QTL for which the parental

lines are similar in allelic state. Thus, any given

experiment will be informative only with respect to

some fraction of the QTL segregating in the original

source populations from which the inbred lines were

derived. However, with respect to the QTL for which

the cross is informative, the fact that some other cross

might be uninformative with respect to these QTL

does not decrease power in any way. Thus, for the

inbred line design, power calculations are based on the

assumption that the parental lines differ at the QTL.

In the FSIL design, depending on the parental QTL

combination, a particular experiment can have a

variety of outcomes with respect to a specific QTL.

These differ sharply in power, and include zero power

for the case where the two parents are monomorphic

or in linkage equilibrium with respect to the QTL.

Here too, if a given FSIL design mapping population

is informative, the fact that a different FSIL design

mapping population might be less informative, or

even uninformative at this marker, does not reduce

power in any way. Thus, an average power value

would not represent the actual power for any

experiment. Consequently, for the FSIL design, we

provide separate power values for each of the

informative QTL combinations.
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In the full-sib family design, a mapping population

will generally consist of a fairly large number of

families (k" 20). In this case, any particular ex-

periment will not vary widely from the expected

proportions of the various types of parental QTL

combinations. Thus, a satisfactory approach is simply

to calculate the expected noncentrality parameter over

the experiment as a whole, according to the probability

of each parental QTL combination, and then obtain

the overall power of the experiment for this non-

centrality parameter.

In the half-sib design, the same holds true when a

large number of half-sib families are included in the

mapping population, in which case the proportion of

sires heterozygous at the QTL will not vary widely.

When the mapping population comprises only a small

number of half-sib families, however, the proportion

of sires heterozygous at the QTL can vary widely from

one experiment to another, according to a binomial

sampling distribution. In this case, we followed the

procedure of Weller et al. (1990), and calculated the

expected power of each configuration separately, and

then calculated the mean expected power, weighted

according to the probability of each configuration of

sire QTL genotypes.

Note that in the case of full-sib and half-sib families,

the uninformative families are an integral part of each

and every experiment. Thus, the uninformative fami-

lies necessarily reduce the power of each experiment

and must be included in power calculations. The

positive aspect of this situation is that once the

number of families in an experiment is greater than

10, there is essentially zero probability, given that the

alternative QTL alleles are at moderate frequencies, of

all families in a given experiment being uninformative

with respect to a given QTL. Thus, in contrast to

inbred line or FSIL designs, a single full-sib or half-sib

experiment can potentially access all QTL segregating

in the source population.

Table 1 gives n
"
, n

#
and Ψ as calculated for the

various designs, as a function of total population size

(N ) and, for the full-sib and half-sib designs, the

number of families (k) within the mapping population.

Examination of the expressions for the non-centrality

parameter, Ψ, show that, on the assumption that h¯
0, they are all functions of N and of some variant of

(µ
i
®µ) ; where µ

i
is the genetic value of a marker

genotype and µ is the population or family mean.

Both µ
i

and µ are expressed in units of QTL gene

effect, d, and dominance h. Hence, assuming h¯ 0, it

is evident that the non-centrality parameters can all be

expressed in the form Nd#δ#, where δ#, denoted the

‘design parameter ’, is a function of the experimental

design and of marker and QTL composition. This

means that within a particular design, all combinations

of population size and gene effect that yield the same

value of Nd# will have the same power. Furthermore,

since δ# is a known function of the design, depending

on gene frequencies, the non-centrality parameter of a

design can readily be calculated for any combination

of values of N and d.

In order to provide a convenient basis of comparison

of the various designs, Nd# values for power from 0±10

to 0±90 are provided for the inbred line design.

Relative Nd# values, denoted RN values, are given for

all other designs as a multiple of the inbred line Nd#

values necessary to obtain equivalent power.

3. Results

Table 2 shows the probability of the various marker

combinations for the two parents of the FSIL or full-

sib family designs, according to number, R, of marker

alleles in the population from which the parent

individuals are taken, assuming equal frequency for

all marker alleles, m
i
¯1}R. When R¯ 2, a pro-

portion of 0±875 of markers will be found in

informative combinations for the FSIL design, and

0±750 will be informative for the full-sib family design.

When R¯ 3, these proportions improve dramatically,

to 0±963 and 0±889 for the FSIL design and full-sib

design, respectively. When R& 4, over half the marker

Table 2. The probability of the �arious marker

combinations for the two parents of the FSIL or full-

sib family designs, according to number, R, of marker

alleles in the population from which the parent

indi�iduals are taken, assuming equal frequency for

all marker alleles, p
i
¯1}R

Marker
R

combination 2 3 4 5 8 10

1111 0±125 0±037 0±016 0±008 0±002 0±001

1122a 0±125 0±074 0±047 0±032 0±014 0±009
1212 0±250 0±148 0±094 0±064 0±027 0±018
1112 0±500 0±296 0±188 0±128 0±055 0±036
1123b — 0±148 0±188 0±192 0±164 0±144
1213 — 0±296 0±375 0±384 0±328 0±288
1234 — — 0±094 0±192 0±410 0±504

a For FSIL design 1122 and 1212 combinations are
equivalent, and are referred to in the text as the M

""##
marker combination. Probability of the archetype 1122
marker combination was calculated using the expression for
P
m
. This was then split into 1122 and 1212 combinations by

noting that within the 1122 archetype, combinations of the
form 1212 are twice as frequent as combinations of the form
1122.
b For FSIL design 1123 and 1213 combinations are
equivalent, and are referred to in the text as the M

""#$
marker combination. Probability of the archetype 1123
marker combination was calculated using the expression for
P
m
. This was then split into 1123 and 1213 combinations by

noting that within the 1123 archetype, combinations of the
form 1213 are twice as frequent as combinations of the form
1123.
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Table 3. FSIL design. The number of permutations (P ), the design

parameter (δ#), and the frequency of each QTL combination within

each marker combination, according to source populationa

Source population
Marker QTL
combination combination P δ# Equal Unequal Cross

1112 1111 2 0 0±125 0±411 0±051

1112 2 0±375 0±125 0±109 0±109
1121 6 0±043 0±375 0±326 0±326
1122 6 0±165 0±375 0±154 0±514

1122 1111 2 0 0±125 0±411 0±051

1112 8 0±125 0±500 0±435 0±435
1122 2 0±500 0±125 0±051 0±411

1212 4 0 0±250 0±103 0±103

1123 1111 2 0 0±125 0±411 0±051

1112 4 0±375 0±250 0±218 0±218
1211 4 0±125 0±250 0±218 0±218
1122 2 0±500 0±125 0±051 0±411

1212 4 0±250 0±250 0±102 0±102

1234 1111 2 0 0±125 0±411 0±051

1112 8 0±375 0±500 0±435 0±435
1122 6 0±500 0±375 0±154 0±514

a See text for details.

combinations will be of the highly informative M
""#$

or M
"#$%

types.

Table 3 shows the number of combinations and

permutations of each QTL combination within marker

combinations for the FSIL design. Also shown are the

design parameter for each QTL combination and the

frequencies of each QTL combination within each

marker combination according to source population.

The design parameter varies quite widely according to

QTL combination within marker combinations, but

there is a general tendency for higher design para-

meters in the M
""#$

and M
"#$%

marker combinations

than in the M
"""#

and M
""##

marker combinations.

The frequency of the uninformative A
""""

QTL

combination is much greater when the QTL allele

frequencies of the source population are unequal ;

while the frequency of the highly informative A
""##

QTL combination is much increased when the two

parents of the FSIL design derive from source

populations that differ widely in QTL allele frequen-

cies.

Table 4 shows the same parameters for the full-sib

family design. The design parameter again varies quite

widely according to QTL combination within marker

combinations. In addition, the proportion of uninfor-

mative QTL combinations also varies within marker

combinations, decreasing from the M
"""#

and M
""#$

combinations, through the M
"#"#

to the M
"#"$

combi-

nations. Again, the frequency of the uninformative

A
""""

QTL combination is much greater when the

QTL allele frequencies of the source population differ

widely. In marked contrast to the FSIL design, for the

full-sib design the frequency of the uninformative

A
""##

QTL combination also increases when the two

parents are taken from different source populations

(not shown). If the two parents of the full-sib families

are produced by crossing source populations that

differ widely in QTL allele frequency, however, the

frequency of the informative A
"#"#

QTL combination

increases.

Overall design parameters are as follows. For the

inbred line cross, δ#¯ 0±50. For the half-sib design, the

overall half-sib design parameter is pq}2, hence, δ#¯
0±250 when the sire is heterozygous at the QTL, and 0

otherwise. For the full-sib and FSIL designs, overall

design parameters for the FSIL design were calculated

by weighting the design parameters of the various

QTL combinations by their frequency, assuming p¯
q¯ 0±5. For the full sib design, δ#¯ 0±125, 0±125, 0±125

and 0±250 for marker combinations M
"""#

, M
""#$

,

M
"#"#

and M
"#$%

, respectively. For the FSIL design, for

comparison with the inbred line design, it is instructive

to include informative QTL combinations only. In

this case, we obtain δ#¯ 0±142, 0±200, 0±286 and 0±429

for marker combinations M
"""#

, M
""##

, M
""#$

and

M
"#$%

, respectively. For comparison with the full-sib

design it is instructive to include the uninformative

A
""""

QTL combination as well, reducing the above

values to 0±125, 0±125, 0±250 and 0±375, respectively.

The overall superiority of the inbred line cross to all

other designs is expressed clearly in its greater design

parameter, equal to 0±500. This value is approached,

however, by the M
"#$%

A
""##

combination in the FSIL

design, and is equalled by specific marker–QTL
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Table 4. Full-sib design. The number of permutations (P ), the design

parameter (δ#), and the frequency of each QTL combination within each

marker combination, according to source populationa

Source population
Marker QTL
combination combination P δ# Equal Unequal

1112 1111 2 0 0±125 0±411

1123 1112 4 0±250 0±250 0±218
1211 4 0 0±250 0±217
1212 4 0±250 0±250 0±102
1122 2 0 0±125 0±051

1212 1111 2 0 0±125 0±412
1112 8 0±125 0±500 0±435
1212 2 0±500 0±125 0±051

1221 2 0 0±125 0±051

1122 2 0 0±125 0±051

1234 1111 2 0 0±125 0±412
1213 1112 8 0±250 0±500 0±435

1212 4 0±500 0±250 0±102
1122 2 0 0±125 0±051

a See text for details.

Table 5. Inbred line design. Power as a function of

Nd#

Nd# Power

4±63 0±10
10±00 0±27
16±48 0±50
20±00 0±61

35±20 0±90
40±00 0±94
90±00 1±00

N, population size ; d, gene effect at the QTL.

combinations within the above archetype. The advant-

age of the FSIL design relative to the full-sib design,

even when uninformative QTL combinations are

included in the FSIL design, derives primarily from

the A
""##

QTL combination, which is uninformative in

the full-sib design but highly informative in the FSIL

design. Note that, in the case of the FSIL and half-sib

designs, the overall design parameters were not used

for the actual power calculations. As noted, the power

calculations were based on the weighted mean of the

power of the various QTL combinations, and not on

the weighted mean of their non-centrality parameter.

Table 5 shows power as a function of Nd# for the

inbred line design, at Type I error, α¯ 0±01. Powers of

0±10, 0±50 and 0±90 require Nd# values of 4±63, 16±48

and 35±2, respectively. As an example of the use of Nd#

values, we note that from the given Nd# value for

power of 0±90, it follows that this power will be

obtained at N¯100, d¯ 0±59; N¯ 500, d¯ 0±27;

and N¯1000, d¯ 0±19.

Table 6. FSIL design. Relati�e Nd# (RN) required

with the FSIL design to pro�ide the same power as

the inbred line design, according to marker and QTL

composition

Power
Marker QTL
composition composition 0±10 0±50 0±90

1112 1112 1±46 1±34 1±33
1121 12±48 11±75 11±64
1122 3±26 3±06 3±02

1122 1112 4±09 4±00 3±98
1122 1±00 1±00 1±00

1123 1112 2±02 1±79 1±68
1211 6±09 5±38 5±07
1122 1±64 1±35 1±26
1212 3±03 2±69 2±53

1234 1112 2±66 2±22 2±00
1122 2±02 1±66 1±50

Table 6 shows the relative Nd# (RN) required with

the FSIL design to provide the same power as the

inbred line design, according to marker and QTL

composition. On the assumption of zero recom-

bination between marker and QTL, these RN values

will hold for all generations of the FSIL design. As an

example of the use of the RN values, we note that for

the M
"""#

A
"""#

marker}QTL combination, the RN

value for a power of 0±90 is 1±33. This means that the

Nd# value required for a power of 0±90 with this

combination is 1±33-fold that required for equivalent

power by an inbred line design, i.e. 1±33¬35±20¯
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46±8; from which it follows that for a QTL of effect

0±27, a population size of N¯ 46±8}(0±27)#¯ 642 is

required for power of 0±90, as compared with N¯ 500

for the inbred line design. RN values tend to be a little

smaller for power of 0±9 than for power of 0±1, but are

within³10% of the values for power 0±50 across the

power range. Marker composition plays a major role

in determining RN, creating up to a 9-fold difference

in RN for QTL composition A
"""#

(i.e. any parental

QTL set with three alleles of one type and the fourth

of a different type) ; and up to a 3-fold difference in

RN for QTL composition A
""##

. The M
"#$%

marker

composition, however, delivers consistently low RN

values. Taken over all QTL compositions, most RN

values are in the range 1±0 to 4±0 at any given power,

with a modal value of 2±2. Thus, it seems reasonable to

conclude that, on average, a FSIL design will deliver

power equivalent to that of an inbred line design, at

twice the corresponding population size or Nd#.

However, this ‘average’ view does not exhaust the

possibilities of the FSIL design. The reason for this is

that some of the marker combinations can be

transformed into other more powerful marker combi-

nations, according to the specific marker–QTL coup-

ling relationships in the parental chromosomes. For

example, marker}QTL combination M
"""#

A
""#"

has

an RN of 11±64 for power of 0±90; while marker}QTL

combination M
"""#

A
"""#

has an RN of 1±33. Yet by

judicious search, a marker having distribution M
""#"

A
""#"

can be found, which will provide an RN of 1±33.

Similarly, marker combination M
"#$%

A
"""#

has an RN

of 2±00. Yet, by combining marker alleles having

similar effects in the analysis, it should be possible to

transform this into an M
"""#

A
"""#

combination with

an RN of 1±33. In general, by judicious choice of

markers or by combining marker alleles having similar

associated effects, it should be possible to transform

any parental pair having an A
"""#

QTL composition

into an M
"""#

A
"""#

combination, with an RN of 1±33;

and any parental pair having an A
""##

QTL com-

position into an M
""##

A
""##

combination with an RN

of 1±00. Thus, in the analysis of an FSIL design, one

would initially use a fairly high Type I error, to

identify potential marker–QTL linkages, and then

subject these to a second round of marker search and

analysis, attempting to identify a marker combination

that greatly increased statistical significance. In this

way, it should be possible to obtain from a FSIL

design population power virtually equivalent to that

of an inbred line design.

Table 7 shows the RN required with the half-sib

design to provide the same power as the inbred line

design, according to number of sires tested. RN values

increase strongly with the number of sires tested. This

reflects the change in sire configurations in moving

from 5 to 20 sires, and also the fact that with more

sires tested, fewer daughters are tested per sire. RN

Table 7. Half-sib design. Relati�e Nd# (RN) required

with the half-sib design to pro�ide the same power as

the inbred line design, according to number of sires

tested within a fixed total population size, N,

assuming equal frequency for the two QTL alleles

Power
No. of
sires 0±10 0±50 0±90

5 5±88 5±42 4±89
10 7±74 6±70 6±00
20 10±94 8±62 7±53

Table 8. Full-sib design. Relati�e Nd# (RN) required

with the full-sib design to pro�ide the same power as

the inbred line design, according to marker

composition, and number of families tested within a

fixed total population size, N, assuming equal

frequency for the two QTL alleles

Power
Marker No. of
composition families 0±10 0±50 0±90

1112 25 9±7 7±9 7±0
1123 50 14±1 10±8 8±8

100 19±5 14±4 11±9
200 27±5 19±4 15±6

1212 25 11±4 8±9 7±8
50 16±9 12±6 9±9

100 23±9 16±6 13±6
200 32±9 22±6 17±8

1213 25 6±2 4±8 4±1
1234 50 9±1 6±1 5±6

100 12±5 8±9 7±2
200 18±2 12±1 9±6

values for this design do not vary widely, remaining in

the range of 4 to 10, with a modal value of about 6.

Table 8 shows the relative Nd# (RN) required with

the full-sib design to provide the same power as the

inbred line design. Extensive calculations (not given)

showed that, for a fixed number of families, Nd#

values for given power were hardly affected by number

of full-sibs per family, so long as this number was not

less than 5. For example, with 25 families and marker

composition M
"""#

or M
""#$

, Nd# required for a power

of 0±50 with family size of 10, 20 or 40 was 130±6, 126±0
and 122±8, respectively. Similarly, with 50 families,

Nd# required for a power of 0±50 with family size of 5,

10 or 20 was 178±3, 171±4 and 164±2, respectively.

Thus, in both cases, power was affected in the same

manner by equivalent proportionate changes in family

size (and hence in N ) or in d#. When family size drops

below 5, however, degrees of freedom for the

denominator drop precipitously, reducing power.
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The relative independence of Nd# for given power

on family size, as long as it is 5 or more, enables RN

values for the full-sib family case to be presented in

Table 8 as a function of number of families only,

within marker composition classes. Values of Nd# for

given number of families in the table are those for the

family size closest to, but not less than, 5. Within a

given number of families, RN values decrease strongly

as a function of power. Although a slight to moderate

decrease is observed with the other designs, the effect

in the full-sib design is much greater. A reason for this

behaviour is not immediately evident. RN values for

given power increase strongly with the number of

families tested. Thus, RN values for 25 families for a

power of 0±50 range from 4±8 to 7±9, depending on

marker composition; while those for 200 families at

the same power range from 12±1 to 19±4. This reflects

the fact that as more families are tested at given total

population size, the individual family is necessarily

smaller.

In the full-sib design, marker compositions M
"""#

,

M
""#$

and M
"#"#

have very similar RNs; those for

marker compositions M
"#"$

and M
"#$%

are distinctly

smaller. Thus, here too, it seems reasonable to

conclude that by judicious choice of markers for each

family, a full-sib design could potentially be brought

to an RN of 6 to 8. However, this would clearly be a

much more onerous task than for a FSIL design, since

a separate marker search would need to be carried out

for each family. In addition, with small family sizes,

chance alone would yield high test statistics with some

marker arrangements, not necessarily reflecting the

underlying marker–QTL composition. This would

inflate test statistics, producing a higher Type I error.

Thus effective RN for a full-sib family design may be

closer to 10 overall, depending however on marker

composition and number of families tested.

All in all, it seems reasonable to conclude that a

FSIL design, following adjustment of markers to the

optimum, will deliver power equivalent to that of a

half-sib or full-sib design at one-sixth and one-tenth

the corresponding population size, respectively.

4. Discussion

The results of the present analysis show that in

principle the FSIL design brings to QTL mapping in

outbreeding populations (animals, fruit trees, some

plants) many of the advantages that the inbred line

designs provide for selfing species, or species for which

inbred lines are available. Foremost among these

advantages is the greater statistical power for given

population size and gene effect, relative to the

alternative full-sib or half-sib designs applicable in

outbreeding populations. A useful attribute of the

FSIL design is the ability to achieve a major increase

in power, in the same sample and data base, by

searching for more informative marker combinations

in chromosomal regions showing indications of QTL

presence. As noted in Section 3, this is not relevant for

the half-sib design, and impractical and theoretically

complex for the full-sib design. Following marker

adjustment, a FSIL design can consistently provide 6-

to 10-fold greater power than equivalent half-sib of

full-sib family designs. In addition, FSIL mapping

populations, being in massive linkage disequilibrium,

are amenable to mapping through selective DNA

pooling (Darvasi & Soller, 1994; Lipkin et al., 1998).

This can provide major reductions in genotyping costs

of the initial genome scan for QTL of interest.

Yet another advantage of the FSIL design is the

ability to continue the population for a number of

generations allowing phenotyping and genotyping

data to be accumulated over the generations – a

matter which can be of practical importance in

experimental situations where rearing facilities are

limited. A potential drawback of the FSIL design is

the fact that the first intercross population is two

generations removed from the founder parents. This

increases the proportion of recombination between

markers and QTL, as compared with the other

mapping designs that are only a single generation

removed from their founders. Continuing a FSIL

population over a number of generations by repeated

intercrossing will further increase the cumulative

number of recombination events between closely

linked sites. Consequently, a FSIL design requires a

more dense marker spacing for equivalent power

compared with the other designs. This presupposes

working with a high density of markers, but is easily

accommodated by the use of selective DNA pooling

for the initial QTL scan, as described above.

All the outcrosser designs have maximum power

with respect to QTL present at moderate allele

frequencies : full-sib and half-sib designs access all

QTL present at moderate frequencies, while the FSIL

design can be expected to access 80–90% of these

QTL, depending on their specific allele frequencies.

The designs differ more in their power with respect to

rare alleles. A full-sib design based on a moderate

number of offspring per family will have very low

power for QTL present at low frequencies. A half-sib

design based on a small number of very large families

has greater likelihood of identifying rare alleles,

because of the high power of a single large half-sib

family (Lipkin et al., 1998). The FSIL design is

intermediate. It will have high power for a rare allele

included by chance among the four parental chromo-

somes, but only a small proportion of rare alleles will

be included Thus, a favourable QTL present at a

frequency of 0±01 in the source population would

never be identified by a full-sib mapping population

based on small to moderately small families ; would be
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identified in up to 10% of half-sib mapping popu-

lations based on, say, 10 very large half-sib families ;

and would be identified in 4% of FSIL populations.

The corresponding values for a favourable QTL allele

present at a frequency of 0±1, are : almost never,

almost always, and one-third.

In principle, the FSIL design is perfectly general,

and does not require prior development or availability

of special lines. Thus it can be applied to any mapping

situation involving outcrossing populations. The FSIL

design provides an especially powerful means of

tapping the mapping potential of selection lines, or

differentiated populations, which differ in allele

frequency at the relevant QTL but are not yet at

fixation for alternative alleles. In this case, F2 analyses

which assume fixation for alternative alleles (Beck-

mann & Soller, 1988; Haley et al., 1994) lose much of

their power. Within-population mapping, by full-sib

or half-sib design, will also be relatively ineffective due

to the likely shift of QTL allele frequencies to the

‘unequal ’ situation. Half-sib or full-sib design map-

ping by F1 parents produced by crossing the two lines,

however, will be more effective than within-population

mapping, because of the high expected proportion of

heterozygotes at the QTL.

In practice, the FSIL design has a number of

limitations that restrict its field of application.

Foremost among these is the fact that it requires

developing a dedicated mapping population, outside

of the routine commercial breeding procedures. This

is probably an insuperable obstacle for its utilization

for any of the larger livestock species with low

reproductive potential (cattle, sheep and goats) ; but it

should not preclude its utilization for species with

high reproductive potential and short generation time,

such as mice, rats, fish, poultry, swine, and outcrossing

plant species including some trees.

A major practical problem in implementing a FSIL

design is the inbreeding associated with production of

the F2 generation of the mapping population, since

this is produced by intermating the F1 full-sibs born

of the initial parental pair. The deleterious effects of

the resultant inbreeding might best be circumvented

by initiating a number of independent F1 families

from independent parental pairs drawn from the

source population; intermating each of these F1

families ; and continuing with the F2 or F3 families

that show least signs of inbreeding depression. Aside

from the inescapable inbreeding in the F1 generation,

inbreeding in later generations is much reduced simply

by maintaining a large effective number of parents,

and can be further minimized by deliberate choice of

parental mating pairs to avoid inbreeding. Never-

theless, when implementing a FSIL design, it should

be kept in mind that some effects mapped in the early

generations may be due to rare deleterious recessive

alleles that have been moved to relatively high

frequency by their chance presence in the founder

parental pair. This can be examined by noting changes

in associated marker allele frequencies across gener-

ations. Some QTL effects may also be modified by

interaction with the specific genetic background of the

FSIL, or by interaction with more general inbreeding

effects.

Continuing an FSIL design population over a

number of generations by recurrent intercrossing

results in an accumulation of recombination events

and map expansion. Thus, for the purposes of fine

mapping, an advanced generation FSIL population

can provide some of the same advantages as an

advanced intercross line (AIL; Darvasi & Soller,

1995). When data and DNA samples are retained

from early generations of the cross, these can be used

for gross QTL mapping; while data and DNA samples

from the later generations are used for fine mapping.

The accumulation of recombination events within an

advanced-generation FSIL population also lends itself

naturally to ultra-fine mapping methods based on

analysis of recombinant chromosomes (referenced in

Darvasi, 1997). In this way, a FSIL population can

provide a basis for positional cloning of QTL.

A FSIL design can also be viewed as a procedure

for general identification and mapping of QTL, not

necessarily related to a specific commercial breeding

population. In this case, the information on QTL

effects and map location obtained from the FSIL

design can feed into an MAS programme in a

commercial population in a number of ways: (i) By

focusing QTL mapping efforts in the commercial

population on chromosomal regions that are likely to

contain QTL. (ii) By serving as a step to linkage

disequilibrium QTL mapping in the commercial

population. Specifically, because of the mapping

precision possible with a FSIL design, it is possible to

saturate the region containing the QTL with markers,

aiming at a spacing of 1–2 cM (so that on the average

a QTL would be only 0±25–0±50 cM from the nearest

marker) and then look for marker-associated effects

on a population-wide basis (Lande & Thompson,

1990). (iii) By serving as a source of ‘marked’ QTL for

introduction into the commercial line by marker-

assisted introgression. In particular, as in an inbred

line design, a FSIL design provides information on

specific marker–QTL phase relationships. Con-

sequently, once a FSIL design has located a QTL of

interest to a specific chromosomal region, flanking

and spanning markers can be defined, so that

favourable QTL alleles are defined within specific

haplotypes of marker alleles. Such marker–QTL

complexes could be treated as quasi-Mendelian super-

alleles, and serve as a source of favourable QTL alleles

for marker-assisted introgression into the commercial

population.

In addition to the above, a FSIL population can be
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created as an adjunct to a commercial breeding

population, using founder animals from the breeding

population itself. In this case, mapping information

from the FSIL design population would be directly

applicable to the commercial population. This could

be used as a basis for linkage disequilibrium mapping

or marker-assisted introgression, as above. In ad-

dition, multi-generational BLUP-based methods for

identification of marker–QTL phase when QTL effect

and location are known are under active development

(Fernando & Grossman, 1989; Meuwissen &

Goddard, 1996). Thus one can envision a programme

in which a FSIL design population is established while

simultaneously DNA samples and data are accumu-

lated in the commercial breeding population. Mapping

information obtained in the FSIL design population

would provide a basis for retroactive genotyping of

the commercial population leading to BLUP estimates

of marker–QTL phase in the chromosomes of the

commercial population.

APPENDIX. A note on the Nd2 method of

summarizing power information

In the course of the power analyses, it was shown that

power is a function of Nd# for all designs, where N is

the total size of the mapping population and d is the

standardized gene effect. Thus, to approximate power

for any combination of N and d within a given

mapping design, one need only calculate or simulate

power for a small number of Nd# values that among

them cover a range of power from 0±05 to 0±95. From

these, power for all combinations of N and d can then

be obtained by calculating the corresponding Nd#, and

interpolation.

For rapid estimates of power with half-sib designs,

one can simply calculate the corresponding Nd# for an

inbred line cross, and solve easily for power with given

Type I error. For example, Knott et al. (1996, table 2,

10 cM interval) found a power of 0±92 with Type I

error 0±00111 for the case of a half-sib design with 20

sires, 100 progeny per sire ; a QTL having two alleles

at equal frequency, with effect of d 0±545; a single

marker 0±05 cM from the QTL, the marker having

four alleles at equal frequency (giving a probability of

0±75 of a sire being heterozygous) ; and dam marker

genotype information not available (giving a prob-

ability of 0±75 of determining which sire allele an

offspring has inherited). The marker-associated effect

of a QTL with effect d, at a distance r cM from the

markers, is equivalent to the effect of a QTL with

effect (1®2r)d at the marker. Thus, the power obtained

corresponds to a value ofNd#¯2000 (1®0±10)# (0±545)#
(0±75) (0±75)¯ 270±6, for a completely informative

marker, at the QTL. Dividing by an RN of 6 gives the

equivalent N(1®2r)#d#¯ 45±1 for an inbred line

design. Following the well-known expression for the

power of an F2 design (Soller et al., 1976), we have

N(1®2r)#d#¯ 2(zα/#
­z

"−
β)#.

Substituting N(1®2r)#d#¯ 45±1 and zα/#=!
±
!!!&&&

¯
3±265, yields z

"−
β ¯1±48, and power¯ 0±93. Clearly,

this is a very close approximation to the value obtained

in the simulation study.
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