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Abstract
The research of parallel mechanism (PM) configuration involves many problems. From topology to configuration,
dimensional constraint, etc., how to establish the relationship between topology and configuration with effective
methods is a long-term challenge for the configuration design. In this paper, the chemical molecular spatial structure
(CMSS) is linked with the configuration of symmetrical parallel mechanism (SPM). Starting from the methane
molecule (CH4), a spatial structural topological relation is obtained. Based on graph theory and the spatial structural
topological relation, a new expression method with topological graph and its kinematic pair adjacency matrix for
spatial SPM is proposed. Then, the expression and analysis for the characteristics of spatial SPM are obtained.
Finally, by taking the 3-RPS PM and the 3-RRC PM as examples, the effectiveness and corresponding consistency
of the proposed expression method are successfully verified. The proposed new expression method paves the way
for the subsequent digital and automated design and analysis of the SPM configuration.

1. Introduction
Due to the difference in microstructure and composition of molecular spatial structure, chemical
substances can go deep into various fields with different practicability. In the design of mechanism
configuration, the essence is also due to the difference in structure and composition. Therefore, whether
it is macroscopic or microscopic, the structure determines its properties [1].

In chemistry, the spatial configuration of a molecule [2] reflects the distribution of various atoms.
These atoms are combined to form a whole molecule based on certain rules. Hence, a certain geometric
shape in space can be presented by the molecular structure. Some common CMSSs, such as V-shaped,
straight-line-shaped, triangular cone-shaped, and regular tetrahedral-shaped [3], etc., their structures,
are shown in Fig. 1.

Among many spatial molecular configurations, the most representative molecular structure is the
regular tetrahedron. As shown in Fig. 2, the regular tetrahedron is a stable three-dimensional structure,
which is the basic component of all spatial polyhedrons. Methane molecule (CH4) and white phosphorus
molecule (P4) belong to the common regular tetrahedral structure of chemical molecules. Their spatial
structures are shown in Fig. 3. CH4 is an organic compound, and its chemical properties are relatively
stable [4], while the chemical properties of P4 are very active and unstable. Although the two chemical
molecules are both regular tetrahedral structures, their properties are quite different due to the different
atomic types and chemical bonds in space.

Chemical molecules are usually expressed in many forms. With the appearance of molecular struc-
tural formula, the spatial structural relationship of chemical molecule is transformed into a planar
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(a) (b) (c) (d)

Figure 1. Spatial configuration of different molecules. (a) V-shaped. (b) Straight-line-shaped. (c)
Triangular cone-shaped. (d) Regular tetrahedral-shaped.

Figure 2. Spatial regular tetrahedron structure.

(a) (b)

Figure 3. Chemical molecules with regular tetrahedral structure. (a) P4. (b) CH4.

(a) (b)

Figure 4. Structural formula of chemical molecules. (a) Structural formula of P4. (b) Structural formula
of CH4.

connection relationship. Element symbols and short lines are used to represent the arrangement and
combination of atoms in molecules [2]. Then, the expression of molecular spatial structure is further
simplified. For example, the planar structural formulas are shown in Fig. 4, and the spatial structures
of P4 and CH4 are significantly simplified. Hence, with the corresponding relationship between CMSS
and planar structural formula, it is shown that the spatial structure also can be described in the form of
a planar connection relationship.

In summary, the spatial structure can be expressed as a corresponding planar topological connection
relationship. However, in the research of mechanisms, there are various forms of mechanisms, includ-
ing planar mechanisms, spatial mechanisms, cam mechanisms, gear mechanisms, etc. The topological
method is proposed by graph theory based on non-logical thinking. Although the topological method
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can be used to design the topological structure of mechanisms [5, 6], it usually only represents the topo-
logical relationship of planar linkage mechanisms. For other types of mechanisms, such as mechanisms
with compound hinges and spatial multi-link mechanisms, etc., scholars also have proposed some cor-
responding topological models [7–12]. Nevertheless, these models are more complicated, and they are
not conducive to establishing the relationship with various mechanisms. Of course, for the spatial PM,
the expression in the form of topological graph is almost blank. It is still a long-term challenge for the
configuration design of PMs to establish the expression of topology and configuration with effective
methods, and simplify the analysis.

On the other hand, for the structural characteristics of spatial PMs, such as many spatial SPMs with
structures of regular tetrahedron [13, 14] and regular polyhedron [15], the current descriptions are mostly
expressed by mechanism diagrams. In the process of drawing diagrams, the representation of the kine-
matic pair relationship for mechanism is complicated. At this stage, there are few relevant studies on
expressing the topological relationship of spatial PMs with graph theory. However, the construction of
topological relations in mechanism innovation is an important basis for generating new mechanisms
[16–18]. By using graph theory, the expression for topological relations of spatial PMs is more concise
and intuitive, and it is convenient to use mathematical methods for analysis. What’s more, the topo-
logical expression is more conducive to discovering new mechanisms. Of course, for spatial PMs, the
application of graph theory is also limited. Since there are many similarities in essence between chemical
molecular structure and mechanism configuration, the chemical molecular structure can be transformed
from spatial structure to planar connection relationship. Moreover, graph theory is often used to express
the topological connection relationship of mechanisms. Therefore, in order to further explore the rela-
tionship between chemical molecular structure and spatial mechanism configuration, and to relieve the
limitation that the general graph theory method can only design planar mechanisms, this paper is started
from the perspective of CMSS, combined with the graph theory method, to develop the related research
on spatial mechanism configuration.

In this paper, based on the most representative regular tetrahedral structure of the chemical molecule
CH4 in space and its stable spatial structural characteristics, the spatial regular tetrahedral structure
of CH4 is evolved into a planar topological relationship. The spatial stable configuration of CH4 is
expressed in the form of a topological graph, and it is shown that the correlation of design between
spatial stable structure and planar topological structure. Hence, the topological graph of spatial configu-
ration is extended and applied to express the topological relationship of spatial PM. The structure of this
paper is organized as follows: Section 2 uses the spatial regular tetrahedral structure of CH4 for topo-
logical evolution and obtains the topological graph of the molecular spatial stable structure. According
to the obtained topological relationship, a new topological expression method of spatial SPM is pro-
posed and described in Section 3. Section 4 verifies the proposed topological graph and mathematical
analysis method of the spatial SPM. An example for digital and automated design based on topolog-
ical graph is given to explain the design method in Section 5. Finally, the conclusions are drawn in
Section 6.

2. Topological evolution with the spatial regular tetrahedral structure of CH4

2.1. Introduction to the spatial structure of CH4

In the chemical molecular structure, when an atom interacts with other four identical atoms, four chem-
ical bonds can be formed. If each bond has the same bond length and bond angle, the spatial regular
tetrahedral structure is formed. For example, methane molecule (CH4), carbon tetrachloride molecule
(CCl4), etc., all belong to the spatial regular tetrahedral molecular configuration. Conversely, if there is a
different bond parameter, it will belong to the spatial tetrahedral structure, such as monochloromethane
molecule (CH3Cl), trichloromethane molecule (CHCl3), etc.

The regular tetrahedral structure of chemical molecules have a stable existence of three-dimensional
structure compared to other spatial structure molecules. Its properties are more stable, and its structure
is simpler. CH4 is the most representative molecule among the regular tetrahedral structure chemical
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(a) (b)

Figure 5. Structure of CH4. (a) 3D model. (b) Spatial structure.

Figure 6. The spatial regular tetrahedral structure of CH4.

molecules, so this paper is based on CH4 molecule to perform the topological evolution of the spatial
structure.

The spatial regular tetrahedral structure of CH4 [19] is shown in Fig. 5. It includes four identical C-H
bonds with bond lengths of 109.1pm and bond angles of 109◦28′ [3]. The molecular structure is a spatial
symmetrical structure, and it exists in a stable state for a long time.

The properties of substances are the external performance of the molecular structure. In the formation
of CH4, due to the interaction between C atom and H atoms, each bond is formed with the same length
and angle. Hence, a spatial regular tetrahedral molecule is obtained. In addition, the C atom of CH4

is located in the center of regular tetrahedron structure, and the distance from C atom to each vertex
is the C-H bond length. It can be described mathematically that each vertex of the regular tetrahedron
structure of CH4 is distributed on its circumscribed sphere, and the radius of the circumscribed sphere
is the bond length.

To obtain mechanisms with stronger spatial structural stability, the spatial symmetrical molecular
structure is used as the prototype in this paper, and the evolution from spatial structure to planar topology
will be deduced.

2.2. Topological evolution for the spatial structure of CH4

After describing the spatial structure characteristics of CH4 in Section 2.1, the evolution of molecular
configuration is deduced in this section. As shown in Fig. 6, it is the spatial regular tetrahedral structure
of CH4. The connection relationship between various element points for the spatial configuration of the
chemical molecule is retained, and the spatial characteristics for the circumscribed circle of molecular
structure are also reflected.

Due to the intersection of multiple edges in a regular tetrahedron, the description of the spatial geo-
metric relationship is complex. Thus, it is necessary to simplify the main geometric feature information
and express the spatial connection relationship of each element clearly. The expression of edges and ver-
tex positions for constituting the tetrahedral structure needed to be reduced. In the process of evolution,
since the information of the four vertices of regular tetrahedron structure is known, the four structural
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(a) (b)

Figure 7. Top view and projection edges of the regular tetrahedral structure. (a) Top view. (b) Four
projection edges.

Figure 8. Two intersecting lines in space.

edges of AB, AC, BD, and CD are used to express the spatial structure. The four structural edges are
transformed from spatial structure into planar graph to express the basic configuration characteristics of
the regular tetrahedral structure, and the reasons are as follows:

By projecting the regular tetrahedral structure onto plane, the top view is obtained, as shown in
Fig. 7(a). According to the structural characteristics, it is necessary to determine any surface as the bot-
tom surface of the regular tetrahedron firstly. Here, assuming that the bottom of the regular tetrahedron
is �ABC, then three vertex information of the regular tetrahedron structure is expressed, and the bottom
�ABC of the regular tetrahedron just can be determined by the edge AB and AC, as shown in Fig. 7(b).
Secondly, on the basis of the determined bottom �ABC, it is also necessary to express the edge and
vertex height information of regular tetrahedron structure. As shown in Fig. 7(b), the above information
can be determined by the edge BD and CD. To sum up, the spatial feature information of regular tetra-
hedron structure is determined by these four edges, so they can be used to simplify the expression of the
regular tetrahedron structure on the plane.

It is known that two straight lines l1 and l2 in space intersect at point A, as shown in Fig. 8. Thus, it
is necessary to prove that there is only one plane α passing through the straight lines l1 and l2, that is,
the bottom surface of the above regular tetrahedron.

As shown in Fig. 8, taking another point C that does not coincide with A on the straight line l1, and
then taking another point B that does not coincide with A on the straight line l2, it can be obtained that
the three points A, B, and C are not collinear.

According to axiom three [20] in space solid geometry, it can be known that there is one and only
one plane passing through three points that are not on a straight line. Hence, there is one and only one
plane α through points A, B, and C.

On the contrary, according to the axiom one [20] in space solid geometry, it can be known that if two
points on a straight line are in a plane, then all the points on the straight line are in this plane.

Since A∈α, B∈α, we can get: l2⊂α, and l1⊂α.
Thus, through two intersecting straight lines l1 and l2, there is one and only one plane α.
That is, two intersecting lines determine a plane.
Therefore, as shown in Fig. 9, the position of the bottom surface �ABC of regular tetrahedron

structure can be determined by using the edges AB and AC. The proposed edges are proved.
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Figure 9. The bottom surface of regular tetrahedron.

(a) (b)

Figure 10. Evolution of edges. (a) Evolution of four edges. (b) Planar topological expression.

Figure 11. Preliminary topological graph for the spatial structure of CH4.

It can be seen from the above analysis that the two edges AB and AC intersect, so it is shown that
the points A, B, and C are coplanar, that is, the bottom surface of spatial regular tetrahedron structure is
determined. When the three points A, B, and C are known, the information for the bottom surface of the
regular tetrahedron structure can be expressed by the two edges AB and AC. In the same way, it can be
proved that the two intersected edges BD and CD determine the plane, where �BCD is located. Then,
the information for the vertex and high of spatial regular tetrahedron structure is determined. Hence,
the four edges AB, AC, BD, and CD of the spatial regular tetrahedron structure can be used to express
its characteristics. It is further shown that the edges selected in this section can be used to evolve and
represent the spatial characteristics of regular tetrahedron structure.

In the process of evolution, to facilitate the distinction and analysis, the spatial tetrahedral structural
features are decomposed into multiple triangles. The edges AB, AC, BD, and CD correspond to ∠AEB,
∠AEC, ∠BED, and ∠CED, respectively, as shown in Fig. 10(a). After the four edges of the structure
are transformed into the circumcircle of the regular tetrahedron, the planar topological expression is
generated as shown in Fig. 10(b).

Then, the redundant lines and color expressions are removed, and a preliminary topological graph
for the spatial structure of CH4 is obtained, as shown in Fig. 11. Among them, the core skeleton of CH4

is retained, and the molecular spatial topological structure is simplified to the plane.
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(a) (b)

Figure 12. Topological graph for the spatial structure of CH4. (a) The simplified graph. (b) The final
topological graph.

(a) (b)

Figure 13. The spatial structure and topological graph of CH4. (a) Spatial structure. (b) Topological
graph.

During the evolution of the above molecular spatial structure, the edge AB of �ABE, the edge AC
of �ACE, the edge BD of �BDE, and the edge CD of �CDE have all been evolved to the circum-
circle. And in the evolution of �ABE and �ACE, �BDE, and �CDE, there are two common edges
AE and DE; that is, the other edge feature of the above triangle is also expressed. Based on the above
information, each triangle in the molecular spatial structure is expressed with the existing topological
relationship. Then, the redundant connection relationship can be removed, and the connection between
B, C, and E is further simplified. Thus, the topological graph based on the molecular spatial structure
is obtained, as shown in Fig. 12(a). On the other hand, since the expressions of two common edges AE
and DE have already existed in �AED, the connection relationship is preserved. By sorting out, the
final topological graph for the molecular spatial structure of regular tetrahedral is obtained, as shown in
Fig. 12(b).

2.3. Topological evolution results for the spatial structure of CH4

After the evolution of the topological relationship in Section 2.2, the spatial regular tetrahedral structure
of CH4 has been expressed with the planar topological relationship, as shown in Fig. 13. It is a more
simplified form to describe the spatial structure.

Based on the molecular spatial structure of CH4, as shown in Fig. 13(a), C is at the center of the
molecular structure and H is at the two ends of each branch of the regular tetrahedral structure, that is:
C is in the middle of each H-C-H branch, and C belongs to the common connecting part. Therefore, the
topological connection form of H-C-H that exists in CH4 is still preserved during the evolution process.
Also, due to the symmetric form of the spatial regular tetrahedral structure, the structure of each branch
is the same and can be completely overlapped by rotation, so it can be simplified to be one branch chain
structure to analyze. And the shape of the external sphere of CH4 spatial structure is preserved in the
evolution process, so the topological graph is in a circular form. In this paper, by using such a connection
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(a) (b)

Figure 14. The carbon tetrachloride molecule. (a) Topological graph. (b) Spatial structure.

relationship in the spatial structure of CH4 for topological evolution expression, the elements in each
branch are split and merged based on the expression form of shared connection, so the topological graph
of the spatial structure as shown in Fig. 13(b) is obtained.

Through analyzing the topological graph of CH4, it can be concluded that the left, middle, and right
branches of the topological graph are exactly the same. The C atom of each branch is taken as the core,
and it connects two H atoms up and down to generate two C-H bonds. The H atoms at the top and bottom
of the topological graph are shared, so as to form three branches, and then, the topological relationship
for the spatial structure of CH4 is expressed.

Similarly, using the same topological expression form of CH4, if the C-H bond is replaced by the C-Cl
bond, a carbon tetrachloride molecule (CCl4) is formed. Its topological graph is shown in Fig. 14(a), and
the corresponding spatial structure is shown in Fig. 14(b); that is, it is also a spatial regular tetrahedron
structure.

By comparing the topological graph and spatial structure of CH4 and CCl4, it can be found that: for
the same type of CMSS, the element symbols in topological graphs are different, and the chemical bonds
formed are different, so the types and properties of chemical molecules are different, but the expressions
of topological graphs are the same; that is, the number of branches, the number of elements, and the
connection relationship are the same. Hence, the same type of chemical molecular spatial structure can
be expressed in the form of the same topological graph. It is distinguished by labeling element symbols,
and the topological relationship expression for a class of chemical molecules with the same structure
can be obtained.

From the above analysis results, it is shown that the topological graph can be used to express the struc-
ture and element connection relationship of molecular spatial structure. The chemical bonds between
atoms are used to form a stable spatial structure. For the mechanism, a spatial mechanism is formed
through the kinematic pairs between components. The kinematic pairs play the same role as the chemi-
cal bonds in spatial structure. Thus, the chemical molecular structure and mechanism configuration can
be analogized in the evolution. For example, the CMSS is expressed by the topological graph, and dif-
ferent chemical molecules under the same spatial structure are obtained by replacing chemical bonds.
These methods can be further applied to the expression of spatial mechanisms. A similar form of the
topological graph for molecular structure can be used to express spatial PMs. By changing the types of
kinematic pairs between components in the topological graph, different PM configurations are generated,
and the configuration design and expression of the same type of mechanism can be realized.

To sum up, combined with the expression of topological graph for CMSS and the graph theory method
of planar topological structure, the two are introduced into the expression of topological relationship of
the spatial PM. Hence, a new topological method is used to represent PM, simplify the expression, and
establish the connection between PMs and topological models. The new topological graph method is
to relieve the limitation of the application of graph theory and realize the research goal of mechanism
configuration design.
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(a) (b) (c)

Figure 15. The spatial topological structure of CH4. (a) Spatial structure. (b) Topological graph. (c)
Topological graph prototype.

3. New topological expression method for spatial SPM
3.1. Topological evolution results for the spatial structure of CH4

Through the topological transformation of molecular spatial structure, the above evolution results show
that the spatial structure and planar topological graph can be effectively transformed. Hence, research-
ing the relationship between spatial structure and topological graph helps to generate new spatial
configurations quickly.

The spatial topological structure of CH4 shown in Fig. 15 is analyzed, and it has the following
characteristics:

1. Since the molecular structure of CH4 belongs to a spatial symmetrical structure, the evolution
retains this feature. Thus, the topological graph is still symmetrical, that is, the three branches
are exactly the same, and can be overlapped by rotation.

2. The expression of spatial structure is simplified by the topological graph, but its characteristics
are still retained, that is, the element arrangement of branches in the topological graph is the same
as molecular spatial structural characteristics, and the corresponding relationship is consistent.

3. In each closed-loop triangle of the spatial structure, the C atom is taken as the center, and two
H atoms are connected to form each branch. The regular tetrahedral structure is formed by
three branches. The same characteristics are still in the corresponding topological graph, and
the chemical bond is represented by a solid line.

4. The common elements and chemical bonds in the spatial structure are merged and split in the
topological graph. The branch distribution is simplified in these ways.

5. The shape of the topological graph is obtained from the evolution of the circumscribed sphere of
spatial regular tetrahedron structure, so the shape of the topological graph is round. The spatial
structure can be better represented by this feature of a round.

PM has many configurations, and each configuration has multiple chains. Considering that the spatial
structure of CH4 is symmetrical. Thus, the topological graph of CH4 is compared with the structure of
the symmetrical parallel mechanism (SPM). There are many similarities between them, as shown in
Table I.

It can be seen from Table I that the spatial structural topological graph of CH4 is very similar to
the structural characteristics of SPM. They are both composed of upper parts, lower parts, and multiple
branches, and the branches in their respective structures are the same. They both have multiple spatial
closed-loop chains. SPM is composed of multiple branch chains with the same structural form, and
branch chains are connected to the moving platform and the fixed platform through kinematic pair.
These branch chains are evenly distributed, and each branch chain can coincide after rotation, so it
belongs to the spatial symmetrical mechanism. In fact, the spatial structural topological graph of CH4 is
exactly the same expression form. Therefore, in the expression of the topological relationship of spatial
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Table I. Comparison for topological graph of CH4 and SPM.

Expression Structural Branch
form features characteristics Meaning

Topological
graph of
CH4

1. Two vertices
2. Multiple
branches

Contains
multiple
chemical
elements and
chemical
bonds

Expressing the
topological
relationship of
spatial structure

Brief
diagram of
SPM

1. Two platforms
2. Multiple
branches

Contains
multiple
components
and kinematic
pairs

Expressing the
relative motion
relationship
between the
components of
mechanism

mechanism, SPM is taken as the research object. It is combined with the spatial structural topological
graph of CH4, the topological relationship of SPM is described, and the configuration information of
SPM is expressed, so as to realize the configuration analysis and design of SPM.

3.2. Definition for the topological graph of spatial SPM
A graph is a collection of vertices or nodes connected together by lines or edges. In the topological graph
of planar mechanism, the components are represented by points and the kinematic pairs are represented
by edges [21]. The topological graph has a certain corresponding relationship with the structural diagram
of the planar mechanism. According to the basic definition of the graph, combined with the spatial
structural topological graph of CH4 and the representing method of planar mechanism, the topological
graph of spatial SPM is defined as follows:

Assuming that the spatial SPM is Ms. For the mechanism Ms, the number of branch chains of Ms is
m, and the number of kinematic pairs of each branch is k. Then, the number of vertices of the topological
graph is n = m · (k − 1), and the number of edges of the topological graph is e = m · k. To facilitate the
analysis, each component and kinematic pair are uniformly numbered here. It is stipulated that the fixed
platform serial number is set as 1, and the moving platform serial number is set as n. The components
and kinematic pairs of each branch chain are numbered sequentially from left to right and from bottom
to top (from the fixed platform to the moving platform). Similarly, the components are also represented
by circles (in which the hollow circle represents the movable component, the solid circle represents the
fixed component), and the kinematic pairs are represented by edges. At the same time, in order to reflect
the feature of the spatial structure, the circular contour is still adopted in the topological graph, and thus
the topological graph of the mechanism Ms is obtained.

According to the above definition of the topological graph of SPM, the expression form of the topo-
logical graph for spatial SPM can be obtained, as shown in Fig. 16. The unified form of spatial SPM is
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Table II. Types of topological graph for spatial SPMs.

Spatial SPM 3-branch chains 4-branch chains 5-branch chains 6-branch chains

Expression
form

m 3 4 5 6
k 3 3 3 3
n 8 10 12 14
DOF 3 4 5 6
Kinematic
pair

R, P, S U, P, U R, C, U S, P, S

Topological
graph

Represented
mechanism

3-RPS PM 4-UPU PM 5-RCU PM 6-SPS PM

Figure 16. Topological graph of spatial SPM.

represented by this topological graph, that is, the topological graph of spatial SPM with m branch chains,
and each branch chain contains k kinematic pairs. Meanwhile, from the characteristics of the spatially
symmetric parallel mechanism, it is known that the DOF of the spatially symmetric parallel mechanism
is equal to the number of branch chains of the mechanism topological graph, that is, the DOF is m.

From the definition of graph theory and the topological graph of SPM, it can be known that: for
all spatial SPMs with m branch chains and the number of kinematic pairs of each branch chain is k,
the corresponding topological graphs are isomorphic graphs. Namely, the topological graph has the
same structural form, and the same kind of SPM can be represented by any one of the topological
graphs. Hence, by sorting out and giving examples of the structural types of the topological graph for
spatial SPM, as shown in Table II, the topological graph of SPM with three to six branch chains can be
obtained.
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3.3. Mathematical expression and properties of the topological graph
After transforming the spatial SPM to a topological graph, to facilitate subsequent automatic processing
and analysis by computer [22], it is necessary to express the topological graph of SPM in a mathe-
matical form and describe the topological relationship. Since the matrix is an effective mathematical
tool to study graph theory, and the general adjacency matrix and the correlation matrix [23, 24] can
describe all topological characteristics of the topological graph. Hence, the adjacency matrix is taken
as the algebraic representation of topological graph for configuration design and analysis in this paper.
However, the general adjacency matrix only expresses the connection relationship between components.
The mechanism topology information is described less, and the correspondence between the matrix and
configuration is poor. Therefore, a kinematic pair adjacency matrix MKPA is constructed to describe the
PM in this section, as shown in formula (1). The information contained in the matrix MKPA includes
the number of components, the number of kinematic pairs, the type of kinematic pairs, the spatial posi-
tion relationship of kinematic pairs, and the connection relationship between components and kinematic
pairs, etc. The configuration characteristics of PM are expressed more comprehensively in the matrix
MKPA.

MKPA =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L1
C2
pq J12 C3

pq J13 · · · Ci
pqJ1i · · · C(n−1)

pq J1,n−1 Cn
pq J1,n

a21 L2
C3
pq J23 · · · Ci

pqJ2i · · · C(n−1)
pq J2,n−1 Cn

pq J2,n

a31 a32 L3

. . . · · · Cj
pqJ3j · · · · · ·

...
...

. . .
. . . Ci

pqJ
i−1,i

...
...

...

ai1 ai2 · · · ai,i−1 Li
C(i+1)
pq Ji,i+1 · · · Cn

pq Ji,n

· · · · · · ai+1,j · · · ai+1,i

. . .
. . . · · ·

an−1,1 an−1,2 · · · · · · · · · . . . Ln−1
Cn
pq Jn−1,n

an,1 an,2 · · · · · · an,i · · · an,n−1 Ln

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

where i is the row of the matrix and j is the column of the matrix, i, j, p, q represent the No. of the
mechanism component, respectively, (i, j, p, q = 1, 2, . . ., n); Li represents the ith component of the
mechanism according to the defined serial number; aij represents the connection relationship between
various components of the mechanism; the left upper corner mark Cj represents the constraint type.

Through the constructed kinematic pair adjacency matrix MKPA for the topological graph of PM,
not only the degrees of freedom (DOF) of the mechanism can be obtained but also the diagram of the
mechanism can be inversely described. Under the condition that only the matrix MKPA of the mechanism
is known, the information can be used to draw the mechanism diagram. These will be verified in the
subsequent sections.

In the matrix of formula (1), the lower triangular element represents whether there is a connec-
tion relationship between various components of the mechanism, and its specific value is defined as
follows:

aij =
{

0, No connection between the components i and j

1, There is a connection between the components i and j
(2)

The diagonal element Li represents the ith component of the mechanism according to the defined
serial number. To express the information of the driving pair, the fixed platform, and the moving platform
of mechanism, the diagonal element is defined and assigned as follows:
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Table III. Definition of position constraint type Cj for kinematic pair axis.

Constraint Element
type Cj assignment Type of axial constraint Example
No 0 No positional relationship No
a 1 The axes of adjacent kinematic pairs are

parallel to each other
R‖R, R‖H, H‖H etc.

b 2 The axes of adjacent kinematic pairs are
coaxial (coincident)

R|R, R|P, H|R, H|H, etc.

c 3 The axes of adjacent kinematic pairs
intersect at the same point

(RRR), (RR), (R⊥R), etc.

d 4 The axes of adjacent kinematic pairs are
perpendicular to each other

R⊥R, R⊥P, H⊥P, etc.

e 5 The prismatic pair is parallel to the same
plane

♦ (P, P, P), etc.

f 6 The axes of the kinematic pair are in any
direction

R-R, R-P, R-H, H-H, etc.

Table IV. Definition of connection relationship.

Element DOF of
Jij assignment kinematic pair Meaning
No 0 0 There is no connection between i and j
R 1 1 The connection between i and j is a revolute pair
P 2 1 The connection between i and j is a prismatic pair
S 3 3 The connection between i and j is a spherical joint
U 4 2 The connection between i and j is a Hooke hinge
C 5 2 The connection between i and j is a cylindrical pair
H 6 1 The connection between i and j is a screw pair

Li = aii =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

7, Component i is the driving part
8, Component i is the passive part
9, Component i is the fixed platform
10, Component i is the moving platform

(3)

The upper triangular element Cj
pqJ

ij indicates that the kinematic pair J is connected to the current
component i and j, and the positional relationship between this axis of kinematic pair and the axis
of connecting component p and q is the constraint type Cj. The left upper corner mark Cj represents
whether there is a position connection between the axes of the kinematic pair in mechanisms. The lower
left corner mark pq represents the axis of kinematic pair for connecting component p and q. There is
a positional relationship between the axis of connecting component p and q and the axis of connecting
component i and j. Among them, there are six kinds of positional relationships included in Cj, namely the
axes in space are parallel, the axes are coaxial, the axes intersect at one point, the axes are perpendicular,
the axes are parallel to the same plane, and the axes are in any direction [6, 9]. The specific definition
and assignment are shown in Table III.

For the kinematic pair Jij of the element Cj
pqJij, it represents the connection relationship between the

component i and j, and the specific definition and assignment are shown in Table IV.
In the kinematic pair adjacency matrix MKPA, the expression elements Cj

pqJij for the axis position
connection relationship of the kinematic pair are specifically described as follows:
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Figure 17. Topological graph of spatial SPM (m = 3).

R12 means that the component 1 and 2 are connected by the revolute pair. P34 means that the compo-
nent 3 and 4 are connected by the prismatic pair. a

23R12 means that the component 1 and 2 are connected
by the revolute pair, and the axis of the revolute pair is parallel to the axis of component 2 and 3 in space.
b
45P34 means that the component 3 and 4 are connected by the prismatic pair, and the axis of the prismatic
pair is coaxial (coincident) to the axis of component 4 and 5 in space. f

67S
78 means that the component 7

and 8 are connected by the spherical pair, and the axis of the spherical pair is arbitrary with the axis of
component 6 and 7 in space.

Moreover, the kinematic pair adjacency matrix MKPA is analyzed. It has the following properties:

1. The lower triangular element aij in the matrix MKPA described the connection relationship
between components i and j. It is judged by the values of 0 and 1. If there is a connection
relationship, the element value is 1; otherwise, it is 0.

2. The diagonal element Li in the matrix MKPA described the serial number and quantity of com-
ponents in the mechanism. According to the size of the matrix MKPA n×n, it can be known that
there are n components in the mechanism.

3. The upper triangular element Cj
pqJij in the matrix MKPA described the types of kinematic pair

between component i and j, and the spatial position relationships for the axis of kinematic pairs.
4. The DOF of the mechanism can be calculated through the information in the matrix MKPA, such as

the number of mechanism components, the number of kinematic pairs, and the type of kinematic
pairs, etc.

5. The matrix MKPA can be used to draw the spatial mechanism. With the help of the information
of the number of mechanism components, the number of kinematic pairs, the type of kinematic
pairs, and the spatial position relationship for the axis of kinematic pairs in the matrix, the topo-
logical graph for spatial mechanism can be drawn, and the diagram of mechanism can be further
obtained.

6. The adjacency matrix of mechanism can be derived from the lower triangular element aij in the
matrix MKPA. The elements of the adjacency matrix are symmetrical about the diagonal. The
diagonal elements are all 0, and the adjacency matrix belongs to the real symmetrical matrix.

4. Verification of the new topological expression method for spatial SPM
4.1. Verification and analysis based on the topological graph
To verify the corresponding consistency and uniqueness of the proposed new topological expression
method in this paper with spatial SPM, the spatial SPM is obtained through the topological graph and
kinematic pair adjacency matrix in this section. Here, the 3-RPS PM [25] is taken as an example for
verification. In Section 3.2, different structural types of topological graph for spatial SPMs are obtained.
When m = 3, as shown in Fig. 17, the topological graph of SPM with three identical branched structures
in space is obtained based on Fig. 16.
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Figure 18. Topological graph of 3-RPS PM.

After determining the number of branches of the spatial SPM, if the connection relationship between
the components is uncertain, many similar topological relationships of configurations can be generated.
For example, the 3-RPS, 3-PRS, 3-SPR, 3-RRC, 3-RRPR, and other three-branch SPMs can be rep-
resented by Fig. 18. Hence, the kinematic pairs and the spatial position relationships of axes of each
branch chain structure needed to be further clarified to determine the mechanism configuration. When
the connection relationships between different components are given in the topological graph, a spe-
cific topological graph of SPM is generated. Here, the number of kinematic pairs in the topological
graph Fig. 17 is set as k = 3, and the kinematic pairs of each branch chain adopt R, P, and S. Then, the
topological relationship of the spatial SPM is formed, as shown in Fig. 18.

The 3-RPS PM is represented by the topological graph in Fig. 18. It is a typical representative of the
3-DOF PM and belongs to the spatial SPM. It can be seen from the topological graph that the mechanism
is composed of three identical branch chains, a moving platform, and a fixed platform. Each branch chain
contains three kinematic pairs: R, P, and S. The upper end is connected to the moving platform through
the spherical pair, the lower end is connected to the fixed platform through the revolute pair, and the
prismatic pair is in the middle of the branch chain.

According to the definition of the kinematic pair adjacency matrix MKPA in Section 3.3, with the
spatial position relationships of axes by {−R⊥P − S−} in each branch chain, the matrix MKPA for the
topological graph of 3-RPS PM can be obtained as follows:

MKPA =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L1 R12 0 R14 0 R16 0 0

1 L2
d
12P23 0 0 0 0 0

0 1 L3 0 0 0 0 f
23S38

1 0 0 L4
d
14P45 0 0 0

0 0 0 1 L5 0 0 f
45S58

1 0 0 0 0 L6
d
16P67 0

0 0 0 0 0 1 L7
f
67S78

0 0 1 0 1 0 1 L8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

From the 8 × 8 square matrix of formula (4), it can be known that the PM is composed of eight
components (L1, L2, . . ., L8), three revolute pairs (R), three prismatic pairs (P), and three spherical pairs
(S). At the same time, information such as the connection relationship between each component, the type
of kinematic pair, the spatial position relationship for the axis of kinematic pair, etc., are also expressed
in the matrix. Among them, R12 means that the component 1 and 2 are connected by the revolute pair.
d
12P23 means that the component 2 and 3 are connected by the prismatic pair, and its axis is in a d-type
constraint relationship with the axis of revolute pair of component 1 and 2; that is, the two axes are
perpendicular to each other. f

23S38 means that the component 3 and 8 are connected by spherical pair,
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Table V. Correspondence between the matrix MKPAU and the branches of topological graph.

Branch Kinematic pair elements Single open chain (SOC) Single branch chain
1 R12, d

12P23, f
23S38 {−R12⊥P23 − S38−} R-P-S

2 R14, d
14P45, f

45S58 {−R14⊥P45 − S58−} R-P-S

3 R16, d
16P67, f

67S78 {−R16⊥P67 − S78−} R-P-S

(a) (b) (c)

Figure 19. The topological graph of 3-RPS PM obtained by MKPAU. (a) The connection relationship.
(b) Topological graph. (c) Topological graph of 3-RPS PM.

and its axis is in the f-type constraint relationship with the axis of rotation pair of component 2 and 3,
that is, the two axes intersect and can be in any orientation.

Combined with the information of the matrix MKPA, according to the calculation formula of spatial
degrees of freedom [26, 27], the DOF of this mechanism is obtained as follows:

M = 6 (n − g − 1) +
g∑

i=1

fi + μ − ξ = 6 × (8 − 9 − 1) + (1 × 3 + 1 × 3 + 3 × 3) = 3

The above kinematic pair adjacency matrix MKPA of the 3-RPS PM is further analyzed. By split-
ting the matrix MKPA, the upper triangular matrix MKPAU and the lower triangular matrix MKPAL are
obtained. The upper triangular matrix MKPAU of the kinematic pair adjacency matrix is shown in
formula (5).

MKPAU =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 R12 0 R14 0 R16 0 0

0 0 d
12P23 0 0 0 0 0

0 0 0 0 0 0 0 f
23S38

0 0 0 0 d
14P45 0 0 0

0 0 0 0 0 0 0 f
45S58

0 0 0 0 0 0 d
16P67 0

0 0 0 0 0 0 0 f
67S78

0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

From the element information of the matrix MKPAU, the connection order and branch chain loop
between components are obtained, as shown in Table V.

Further, the information in the matrix MKPAU can be used to obtain the connection relationship of
components, as shown in Fig. 19(a). Starting from component 1 to get the topological relationship dia-
gram, as shown in Fig. 19(b). Then, combining the kinematic pair information from the matrix MKPAU

and expressing it to form the topological graph of SPM, as shown in Fig. 19(c).
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(a) (b)

Figure 20. Topological graph and corresponding 3-RPS PM. (a) Topological graph. (b) 3-RPS parallel
mechanism.

To sum up, by combining the topological graph of the 3-RPS PM with the information expressed
by the kinematic pair adjacency matrix MKPA of formula (4), the spatial symmetrical 3-RPS PM is
uniquely determined. Then, the topological graph of mechanism is evolved from plane to space, and the
corresponding spatial 3-RPS PM is obtained, as shown in Fig. 20.

In addition, based on the kinematic pair adjacency matrix MKPA, the lower triangular matrix MKPAL

is obtained, as shown in formula (6).

MKPAL =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 1 0 1 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)

Then, the adjacency matrix MA is further derived from the lower triangular matrix MKPAL, as shown
in formula (7). The matrix MA is an 8 × 8 square matrix, so the corresponding mechanism has eight
components. The connection relationship between each component is also expressed. Among them, the
diagonal elements are all 0, the elements are symmetrical about the diagonal, and the matrix MA belongs
to a real symmetrical matrix.

MA =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 0 1 0 0

1 0 1 0 0 0 0 0

0 1 0 0 0 0 0 1

1 0 0 0 1 0 0 0

0 0 0 1 0 0 0 1

1 0 0 0 0 0 1 0

0 0 0 0 0 1 0 1

0 0 1 0 1 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

After uniformly assigning values to the matrix elements, the corresponding matrix MKPA for the
topological graph of 3-RPS PM is obtained, as shown in formula (8).
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MKPA =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

9 112 0 114 0 116 0 0

1 7 4
12223 0 0 0 0 0

0 1 8 0 0 0 0 6
233

38

1 0 0 7 4
142

45 0 0 0

0 0 0 1 8 0 0 6
453

58

1 0 0 0 0 7 4
16267 0

0 0 0 0 0 1 8 6
673

78

0 0 1 0 1 0 1 10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)

To facilitate computer processing, according to the upper triangular matrix MKPAU of formula (5), the
symmetry of the matrix about the diagonal elements is used to obtain the adjacency matrix MA. After
uniformly assigning values to the matrix MA and simplifying the expression information, the numerical
matrix MD is derived, as shown in formula (9).

To facilitate computer processing, according to the upper triangular matrix MKPAU of formula (5),
by taking advantage of the symmetry of the matrix MKPAU about the diagonal elements, that is, making
the matrix elements aij = aji, (i 
= j), and then symmetrizing the upper triangular matrix elements and
simplifying the information of the upper and lower corner markers of the matrix elements, the matrix
MD based entirely on the numerical expression is derived, as shown in formula (9).

MD =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

9 1 0 1 0 1 0 0

1 7 2 0 0 0 0 0

0 2 8 0 0 0 0 3

1 0 0 7 2 0 0 0

0 0 0 2 8 0 0 3

1 0 0 0 0 7 2 0

0 0 0 0 0 2 8 3

0 0 3 0 3 0 3 10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9)

where i is the row of the matrix and j is the column of the matrix, i and j represent the No. of the
mechanism component, respectively, (i = 1, 2, . . . , 8; j = 1, 2, . . . , 8). The diagonal values 7, 8, 9, 10
represent that the ith component of the mechanism is the driving component, the passive component,
the fixed platform, and the moving platform, respectively; the values 1, 2, 3 in the matrix represent that
the components i and j are connected with each other through the revolute pair R, the prismatic pair P,
and the spherical pair S, respectively; the value 0 in the matrix represents that there is no topological
connection between the components i and j.

Hence, based on the numerical matrix MD, the configuration of PM can be designed and analyzed
with the help of the computer programming.

4.2. Verification and analysis based on the spatial SPM
To verify the corresponding consistency of the spatial SPM with the new topological expression method
proposed in this paper, the 3-RRC PM is taken as an example to obtain its corresponding topological
graph and kinematic pair adjacency matrix in this section.

The 3-RRC PM is a spatial SPM, and it can realize three-dimensional translational motion, as shown
in Fig. 21. From the diagram of the 3-RRC PM, it consists of three identical branches, a moving platform
and a fixed platform, with a total of eight components. Each branch chain includes three kinematic pairs:
R, R, and C, and the axes of these kinematic pairs are parallel to each other. The lower end of each branch
chain is connected to the fixed platform through the first revolute pair, and the upper end is connected to
the moving platform through the cylindrical pair. Based on the above information, the topological graph
of 3-RRC PM can be further obtained, as shown in Fig. 22.
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Figure 21. The diagram of 3-RRC PM.

Figure 22. The topological graph of 3-RRC PM.

Combining the information in the diagram with the topological graph of 3-RRC PM, the kinematic
pair adjacency matrix MKPA for the topological graph of 3-RRC PM can be obtained, as shown in
formula (10).

MKPA =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L1 R12 0 R14 0 R16 0 0

1 L2
a
12R23 0 0 0 0 0

0 1 L3 0 0 0 0 a
23C38

1 0 0 L4
a
14R45 0 0 0

0 0 0 1 L5 0 0 a
45C58

1 0 0 0 0 L6
a
16R67 0

0 0 0 0 0 1 L7
a
67C78

0 0 1 0 1 0 1 L8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10)

After the same assignment, the corresponding kinematic pair adjacency matrix MKPA and the
numerical adjacency matrix MD are obtained, as shown in formulas (11) and (12).

MKPA =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

9 112 0 114 0 116 0 0

1 7 1
12123 0 0 0 0 0

0 1 8 0 0 0 0 1
235

38

1 0 0 7 1
141

45 0 0 0

0 0 0 1 8 0 0 1
455

58

1 0 0 0 0 7 1
16167 0

0 0 0 0 0 1 8 1
675

78

0 0 1 0 1 0 1 10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)
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(a) (b) (c)

Figure 23. Topological traversal model of the adjacency matrix for 3-DOF SPM: (a) Adjacency matrix.
(b) Upper triangular adjacency matrix. (c) Lower triangular adjacency matrix.

MD =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

9 1 0 1 0 1 0 0

1 7 1 0 0 0 0 0

0 1 8 0 0 0 0 5

1 0 0 7 1 0 0 0

0 0 0 1 8 0 0 5

1 0 0 0 0 7 1 0

0 0 0 0 0 1 8 5

0 0 5 0 5 0 5 10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12)

So far, through the diagram of 3-RRC PM, the 3-RRC PM is transformed into the expression of the
planar topological relationship, and the corresponding topological graph and kinematic pair adjacency
matrix are established. By using the kinematic pair adjacency matrix, various connection relationships
between components in the topological graph of the 3-RRC PM are described in detail. The correspond-
ing consistency of the 3-RRC PM with the proposed new topological expression method is verified. At
the same time, combined with the numerical matrix, it will be convenient to use for digital and automated
design of the SPM configuration.

5. Example for digital and automated design based on topological graph
To obtain all the parallel mechanisms that meet the requirements and to facilitate computer processing,
it is necessary to generate the adjacency matrix based on the topological graph of the SPM. Then, the
topological traversal model of the mechanism can be established by computer programming, and using
constraints to remove isomorphic structures, all targeted mechanisms will be obtained.

Taking the 3-DOF SPM as an example, by creating the topological traversal model as shown in Fig. 23
to get all parallel mechanisms. This topological traversal model represents all the three-branch SPMs
with 3-DOF. During the topological traversal with computer programming, the following constraints
need to be satisfied: (1) the traversal does not change the degrees of freedom; (2) the traversal does not
change the number of branched chains; (3) the traversal does not change the symmetry; (4) the traversal
can change the number and order of branched kinematic pairs.

For the topological traversal of the 3-DOF SPM, any basic configuration can be chosen. Here, taking
the 3-RPS configuration in Section 4.1 as an example, the adjacency matrix MD is first derived from
the mechanism topological graph, as shown in formula (9). Then, based on the adjacency matrix MD
of the 3-RPS PM, the corresponding topological traversal model is obtained by computer programming
transformation, as shown in Fig. 24.
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(a) (b) (c)

Figure 24. Adjacency matrix and traversal model of the 3-RPS PM: (a) Topological graph of 3-RPS
SPM. (b) Adjacency matrix MD. (c) Topological traversal model.

(a) (b) (c) (d)

Figure 25. Triangular matrix of 3-RPS and corresponding topological traversal model: (a) Topological
graph. (b) The connection relationship. (c) Matrix MKPAU, MKPAL. (d) Topological traversal model.

As the adjacency matrix is a real symmetric matrix, it can be simplified by choosing its upper tri-
angular matrix or lower triangular matrix for topological traversal. The topological traversal model is
consistent with the topological connection relationship of the mechanism in Fig. 19 in Section 4.1, and
its correspondence is shown in Fig. 25.

Then, the topological traversal algorithm will be designed to traverse all the topological models that
satisfy the constraints proposed above. The preliminary design process of the topological traversal algo-
rithm is shown in Fig. 26. Finally, the single-DOF kinematic pair combination is equivalent to replace
the multi-DOF kinematic pair, and changing the kinematic pair arrangement order; then, the adjacency
matrix of multiple mechanisms can be obtained, and further transforming the expression to generate all
the target mechanism configurations.

The basic idea of the algorithm design is as follows:

1. Traverse all the kinematic pair types of each effective kinematic pair in the adjacency matrix
MD, and use the DOF calculation formula to filter the adjacency matrix MD that satisfies the
unchanging DOF;

2. Construct the configuration topology function of each effective kinematic pair in the adjacency
matrix MD, and transform the equivalent single-DOF kinematic pair combinations with multi-
DOF kinematic pairs into each other to obtain all the adjacency matrices MD;
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Figure 26. Traversal algorithm process.

3. For all the kinematic subsets in the adjacency matrix MD generated in (2), change their
arrangement order and generate the new adjacency matrix MD again;

4. Transform the adjacency matrix MD obtained in (2) and (3) into the corresponding mechanism
topological connection relations, and finally obtain all the mechanism configurations.

In conclusion, by designing the above traversal algorithm, all the 3-DOF SPM configurations satis-
fying the requirements will be further obtained, so as to achieve the goal of mechanism configuration
synthesis. Since the complex research work is not yet completed, only basic ideas and methods of the
research are given here. The next step of the research is to complete the algorithm design to obtain all
the 3-DOF SPM configurations and realize the programmed design of the 3-DOF SPM configuration
synthesis.

6. Conclusions
In this paper, the chemical molecular spatial structure (CMSS) is linked with the configuration of PM.
From the perspective of CMSS, the evolution from spatial structure to planar topology is deduced and
verified. The conclusions are as follows:

1. The planar topological graph of spatial regular tetrahedron molecular structure is obtained. With
the topological evolution for the spatial structure of CH4, the correlation of design between spatial
structure and planar topological structure is verified.

2. A new topological expression method for spatial symmetrical parallel mechanism (SPM) is pro-
posed. The topological graph of spatial SPM and the corresponding kinematic pair adjacency
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matrix MKPA are described and established, based on the evolution analysis with the topological
relationship of the obtained spatial molecular structure.

3. The effectiveness and corresponding consistency of the new topological expression method for
the spatial SPM are verified and analyzed, by taking the 3-RPS PM and 3-RRC PM as examples,
respectively. The proposed new expression method paves the way for the subsequent digital and
automated design and analysis of the PM configuration.
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