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Attenuation of perturbation growth of
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Attenuation and even freeze-out (amplitude growth stagnation) of the perturbation
amplitude growth of a shocked SF6–air interface are first realized in shock-tube
experiments through reflected rarefaction waves, which produce reverse baroclinic
vorticity offsetting the vorticity deposited by the shock. A theoretical model is constructed
to predict the perturbation growth after the impact of rarefaction waves, and seven
possibilities of amplitude growth are analysed. Experimentally, a planar air–helium
interface is used to produce reflected rarefaction waves. Through changing the perturbation
wavelength and the time interval of two impacts, five experiments with specific initial
conditions are carried out, and three different possibilities of perturbation growth
attenuation are realized.

Key words: shock waves

1. Introduction

The Richtmyer–Meshkov (RM) instability (Richtmyer 1960; Meshkov 1969) occurs when
a perturbed interface separating two fluids with different densities is impacted by a
shock wave. The initial perturbation amplitudes continuously grow with time, which
causes the formation of interpenetrating bubbles (lighter fluids penetrating into heavier
ones) and spikes (heavier fluids penetrating into lighter ones), and eventually leads to
the flow transitioning to turbulent mixing between the light and heavy components. The
development of the RM instability is mainly driven by baroclinic vorticity produced
by misalignment of the pressure and density gradients. In inertial confinement fusion
(ICF) (Lindl et al. 2014), the development of the interface perturbation consumes a large
amount of laser energy and impedes implosions. As a result, the RM instability is a
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significant obstacle to the realization of ICF and needs to be attenuated. If additional
vorticity, which has the opposite sign to the original vorticity on the interface, is added
to the single-shocked interface by a second wave impact, the perturbation growth can be
degraded. This provides the possibility to attenuate the RM instability through a second
wave impact.

The idea that the RM instability can be attenuated through a second shock impact was
first proposed theoretically by Mikaelian (1985). If the amplitude growth rate induced
by the second shock exactly cancels the growth rate caused by the first shock, the
amplitude growth will stagnate, which is called freeze-out. A simple theoretical model was
constructed by Mikaelian (1985) through superimposing the impulsive model (Richtmyer
1960) to predict the amplitude growth rate after two shock impacts. Through this model,
various approaches to attenuate and even freeze the RM instability were theoretically
proposed.

For a light–heavy interface, attenuation and freeze-out of the perturbation were realized
through a weaker reflected shock in numerical simulations (Mikaelian 2010) and in
shock-tube experiments (Chen et al. 2023). However, in a traditional ICF capsule, the
incident shock always travels from the heavy fluid to the light one (Lindl et al. 2014).
For a heavy–light interface, a reflected shock always enhances the perturbation growth
(Guo et al. 2022). In the concept proposed by Mikaelian (1985), to attenuate the
perturbation growth of a heavy–light interface after phase reversal, the second shock
must propagate in the same direction as the first shock (two successive shock waves).
Charakhch’yan (2000, 2001) numerically verified that attenuation and freeze-out of a
heavy–light perturbation growth can be realized through the impacts by two successive
shock waves. Experimentally, however, it is difficult to generate and precisely control
two successive shock waves in a conventional shock tube. Therefore, experimental
studies on attenuation and freeze-out of a heavy–light interface perturbation are
rare.

When reflected rarefaction waves move from light gas to heavy gas through a shocked
interface, baroclinic vorticity of the opposite sign to that deposited by the incident shock
will be produced on the shocked heavy–light interface. This provides a possibility to
attenuate the RM instability of a heavy–light perturbation through the impact of reflected
rarefaction waves. However, the impact of rarefaction waves will generally introduce the
Rayleigh–Taylor (RT) instability (Rayleigh 1883; Taylor 1950), which complicates the
flow. Previous studies mainly focused on the RT instability induced by rarefaction waves
(Morgan, Likhachev & Jacobs 2016; Morgan et al. 2018), and the RM instability induced
by rarefaction waves is rarely investigated in shock-tube experiments.

In this work, the perturbation development of a single-mode SF6–air interface
accelerated by an incident shock and its reflected rarefaction waves is investigated.
A planar air–helium gas interface is used to produce reflected rarefaction waves. The
duration of the reflected rarefaction waves interacting with the shocked interface is
assumed to be short enough to ignore the RT instability. Through manipulating the
perturbation wavelength and the time interval of the two impacts, three different
behaviours of the perturbation growth attenuation after the rarefaction waves impact
are experimentally realized. We shall first construct a model to predict the amplitude
growth rate after the rarefaction waves impact. Then, corresponding experiments are
designed according to the model. It will be shown that the amplitude growth is attenuated
after the impact of rarefaction waves, and freeze-out is achieved under some designed
conditions.
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Figure 1. Schematics showing the interaction processes of the incident shock and reflected rarefaction waves
with a single-mode SF6–air interface: (a) before and (b) after the incident shock impact; and (c) before and
(d) after the reflected rarefaction waves impact. Here a0 is the initial perturbation amplitude; vs, vt and vf are
the velocities of the incident shock, the transmitted shock and the front of the single-mode reflected rarefaction
waves during the interaction of the incident shock with the SF6–air interface; �u (�ur) and �u1 are the jump
velocity of the interface induced by the incident shock (rarefaction waves) and the heavy-fluid velocity caused
by the incident shock; a−

r (a+
r ) is the perturbation amplitude just before (after) the rarefaction waves impact;

and vrf (vrt) is the velocity of the rarefaction waves front (tail) relative to the gas before the rarefaction waves.

2. Theoretical analysis

There are three assumptions for theoretical analysis. First, the wavenumber (k) and
amplitude (a−

r ) of the perturbation satisfy the small-perturbation hypothesis when the
rarefaction waves arrive, i.e. ka−

r < 1. Second, the amplitude growth rates induced by
the incident shock and the rarefaction waves follow the linear superposition principle
(Mikaelian 1985), namely, V2 = Vi + Vr, where V2 is the amplitude growth rate after the
rarefaction waves impact, Vi is the growth rate caused by the incident shock just before
the rarefaction waves arrive and Vr is the linear growth rate induced by the rarefaction
waves. Third, the duration of the planar rarefaction waves interacting with the shocked
interface is short enough that the RT instability (Rayleigh 1883; Taylor 1950) induced by
the rarefaction waves can be ignored.

Sketches showing the interactions of a planar shock and reflected rarefaction waves with
a single-mode SF6–air interface are presented in figure 1. As the incident shock impacts
the interface, the transmitted shock and the reflected rarefaction waves are generated, as
shown in figure 1(b). To predict the amplitude development of a single-mode perturbation
induced by a planar shock wave, the nonlinear model proposed by Zhang & Guo (2016)
(the ZG model) is adopted since it has been widely verified in previous work (Liu et al.
2018; Guo et al. 2022). The ZG model can be described as

Vi = VZG
i (t) = 1

2
[VZG

b (t) + VZG
s (t)], VZG

b/s(t) = − |V0
i |

1 + θk|V0
i |t . (2.1a,b)

Here Vb/s is the amplitude growth rate of the bubble/spike, where the minus sign denotes
that the heavy–light perturbation growth induced by a shock has the opposite direction to
the phase of perturbation before impact (Meyer & Blewett 1972; Guo et al. 2022); V0

i is
the linear amplitude growth rate of the heavy–light perturbation; and

θ = 3
4

(1 + A+)(3 + A+)

[3 + A+ + √
2(1 + A+)1/2]

[4(3 + A+) + √
2(9 + A+)(1 + A+)1/2]

[(3 + A+)2 + 2
√

2(3 − A+)(1 + A+)1/2]
(2.2)

is a function of the post-shock Atwood number (A+ = (ρ+
2 − ρ+

1 )/(ρ+
2 + ρ+

1 ), with ρ+
1

and ρ+
2 being the densities of the heavy and light fluids on both sides of the perturbed

interface after the incident shock impact), with positive Atwood number for bubble and its
negative counterpart for spike; θ represents the effect of Atwood number on the asymptotic
growth rate of the perturbation amplitude.
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To accurately predict V0
i , the irrotational model proposed by Wouchuk & Nishihara

(1997) (the WN model) is used, which can be expressed as

V0
i = ka0

ρ+
2 �u

(
1 − vt

vs

)
+ ρ+

1 (�u1 − �u)

(
1 + vf

vt

)

ρ+
1 + ρ+

2
. (2.3)

Here a0 is the initial amplitude of the perturbation; vs, vt and vf are the velocities
of the incident shock, the transmitted shock and the front of the single-mode reflected
rarefaction waves during the interaction of the incident shock with the SF6–air interface;
and �u and �u1 are the jump velocity of the interface induced by the incident shock and
the heavy-fluid velocity caused by the incident shock, respectively. These parameters in
(2.3) can be calculated using one-dimensional (1-D) gas dynamics theory by providing
the initial parameters. Through the ZG model, the perturbation amplitude just before
the arrival of the front of planar reflected rarefaction waves can be calculated, i.e.
a−

r = a0C1 + ∫ �t
0 VZG

i (t) dt, in which C1 = 1 − �u/vs is the shock compression factor
(Meshkov 1969) and �t is the time interval between impacts of the incident shock and the
planar rarefaction waves.

After the planar reflected rarefaction waves impact the perturbed air–SF6 interface,
reflected and transmitted rarefaction waves are generated, as shown in figure 1(d), and the
perturbation amplitude grows linearly in the RM instability flow. Note that the WN model
is not appropriate to predict the growth rate induced by the rarefaction waves because it
was constructed based on the fact that the transmitted wave is a shock.

In this work, the modified impulsive model proposed by Vandenboomgaerde, Mügler &
Gauthier (1998) (the Van model) is used to accurately predict the linear growth rate (Vr)
of a single-mode heavy–light perturbation accelerated by rarefaction waves (Zhou et al.
2021), and the Van model can be expressed as

Vr = −k
a−

r A+ + a+
r Ar

2
�ur. (2.4)

Here �ur is the interface velocity jump induced by the rarefaction waves; and a+
r (Ar) is

the perturbation amplitude (Atwood number) just after the rarefaction waves collide with
the shocked interface. The perturbation amplitude can be described as a+

r = Ra−
r , with

R = 1 + �ur/(vrf + vrt) being the rarefaction factor and vrf (vrt) being the velocity of the
rarefaction waves front (tail) relative to the gas before the rarefaction waves. By solving
the 1-D gas dynamics equations after providing the intensities of the planar shock and
rarefaction waves and the initial gas parameters, the parameters in (2.4) can be calculated.

According to the theoretical analysis, V2 can be accurately predicted if the initial
parameters are provided. There are seven possibilities for the perturbation development
after the rarefaction waves impact, as presented in table 1, and the details of these
possibilities are presented as follows. For convenient discussion, we assume a0 > 0, and
therefore V0

i < 0 and Vi < 0.
Possibility I (V2 < Vi < 0): The impact of rarefaction waves occurs before the phase

reversal of the perturbation is completed. The perturbation growth induced by the
rarefaction waves (Vr) has the same direction as that induced by the shock (Vi). Thus, V2
and Vi have the same sign and the rarefaction waves impact accelerates the perturbation
growth.

Possibility II (V2 = Vi < 0): The rarefaction waves reach the balanced position of the
shocked interface at the moment when the phase reversal is just finished, i.e. the rarefaction
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Possibility Rarefaction waves impact Relation between growth rates Growth after second impact

I before phase reversal V2 < Vi < 0 faster growth
II phase reversal just finished V2 = Vi < 0 unaffected
III after phase reversal Vi < V2 < 0 slower growth
IV after phase reversal Vi < V2 = 0 freeze-out
V after phase reversal −Vi > V2 > 0 slower growth
VI after phase reversal −Vi = V2 > 0 growth reversal
VII after phase reversal V2 > −Vi > 0 faster growth

Table 1. The classification of seven possibilities.

waves impact a flat interface (a−
r = 0). Under the hypotheses above (weak rarefaction

waves and small perturbations), the density field near the interface before and after
the rarefaction waves impact can be approximately regarded as uniform. Consequently,
the rarefaction waves have no effect on the perturbation growth (Vr = 0). This specific
condition is called the ‘acceleration line’ in this work.

Possibility III (Vi < V2 < 0): The rarefaction waves impact occurs when the phase
reversal has finished, i.e. a−

r < 0, and Vr has the opposite direction to Vi. However, a−
r

is small, and |Vr| < |Vi|. After the rarefaction waves impact, the perturbation growth rate
is attenuated but the perturbation amplitude continues to grow in the same direction as the
interface before rarefaction waves impact.

Possibility IV (Vi < V2 = 0): Vr and Vi have the same magnitudes but different
directions, and they almost offset each other. After the rarefaction waves impact, the
velocity field in the vicinity of the interface is nearly uniform, and freeze-out of amplitude
growth is realized. This specific condition is called the ‘freeze-out line’ in this work.

Possibility V (−Vi > V2 > 0): In this situation, a−
r is high enough, and Vr has a

slightly larger magnitude than Vi but the opposite direction to Vi. After the impact
of rarefaction waves, the perturbation growth rate is weakened (V2 < −Vi), and the
perturbation amplitude first decreases with a smaller rate than that before the rarefaction
waves impact. After the second phase reversal is finished, the perturbation amplitude
continues to grow and has the same phase as the initial amplitude (a0).

Possibility VI (−Vi = V2 > 0): Here, Vr is twice Vi in magnitude. Thus, V2 has the same
magnitude as Vi but the opposite direction to Vi. Although the rarefaction waves impact
fails to attenuate the perturbation growth rate, the perturbation amplitude decreases first in
time with the same rate as that before the rarefaction waves impact. This specific condition
is called the ‘reversal acceleration line’ in this work.

Possibility VII (V2 > −Vi > 0): Vr is more than twice Vi in magnitude. The
perturbation amplitude decreases in time until the second phase reversal occurs. The
rarefaction waves impact accelerates the perturbation growth but reverses the growth
direction.

3. Experimental method

In this work, a planar air–helium gas interface is used to produce weak reflected rarefaction
waves. As shown in figure 2(a,b), there are two interfaces, a perturbed one and a planar
one. The single-mode perturbed interface (II) separates air (in space B) from SF6 (in
space A and driven section), and the planar interface (AI) separates air (in space B) from
helium (in space C). The distance between II and AI is defined as L0, which has a linear
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Figure 2. Schematics of the soap-film interface generation (a) and initial configuration studied (b). Here AI
is the auxiliary air–helium interface; II is the initial SF6–air interface; IS is the incident shock; and L0 is the
initial distance between the average positions of II and AI.

relationship with �t when the other initial parameters are fixed. The linear relationship
between L0 and �t can be solved through 1-D gas dynamics equations. The determination
of L0 is important, because a smaller (larger) L0 will result in a smaller (larger) amplitude
of the interface at the arrival of the rarefaction waves and consequently a smaller (larger)
amplitude growth rate induced by the rarefaction waves. In other words, the amplitude
growth rate induced by the rarefaction waves can be manipulated through changing L0,
and different attenuation behaviours may be achieved.

The soap-film technique (Liu et al. 2018) is used to create the initial perturbed and
planar interfaces. After the soap-film interfaces are formed, SF6 is pumped into the driven
section and space A, and helium is pumped into space C. For all experimental runs, the
inflation rate and duration are the same to ensure similar volume fractions of SF6 and
helium in the spaces as far as possible. Note that the value of L0 will alter the volume
of space C. In experiments, the inflation rate and duration are determined to ensure the
helium concentration of about 100 % when the volume of space C is the largest. However,
because helium diffuses much faster, its concentration cannot be 100 % when the incident
shock impacts. The gas concentration is determined by comparing the velocities of the
incident shock and the transmitted shock, and the interface velocity jump measured from
experiments, with those predicted from 1-D gas dynamics theory.

The experiments are conducted in a horizontal shock tube (Liu et al. 2018; Guo et al.
2022), and the Mach number of the incident planar shock moving in SF6 is 1.37 ± 0.01.
The post-shock flow field is recorded by high-speed schlieren photography. The frame
rate of the high-speed video camera (FASTCAM SA-Z, Photron Ltd) is 50 400 frames
per second and the exposure time is 0.36 µs. The spatial resolution of the schlieren
image is 0.25 mm pixel−1. The ambient pressure and temperature are 101.3 ± 0.1 kPa
and 295 ± 1.5 K.

4. Results and discussion

4.1. Undisturbed case
The developments of the undisturbed II after shock and rarefaction waves impacts are
investigated first, and the experimental schlieren images with L0=144 mm are presented
in figure 3(a). The initial time is defined as the moment when the incident shock (IS)
meets II, and similarly hereinafter. As IS impinges upon II, a transmitted shock wave
(TS) and a shocked SF6–air interface (SI) are formed (96 µs). Then TS impacts the
auxiliary air–helium interface (AI), which produces a shocked air–helium interface (SAI)
and planar rarefaction waves moving upstream (394 µs). Note that the rarefaction waves in
air cannot be captured due to their weak intensity. After the rarefaction waves impact SI,
transmitted rarefaction waves (TRW) moving in SF6 and the interface RSI are generated
(632 µs). Subsequently, RSI moves downstream (969 µs). Note that, due to the size
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Figure 3. Evolution of an undisturbed SF6–air interface accelerated by a plane shock and rarefaction waves
(a) and the trajectories of the interface and waves (b). Here SI is the shocked SF6–air interface; SAI is the
shocked auxiliary air–helium interface; TS is the transmitted shock; RSI is the interface after rarefaction waves
impact; TRW is the transmitted rarefaction waves; and x is the distance of the evolving interface from the initial
position of II. The symbols (lines) represent the experimental (theoretical) results.

Ms ϕ(SF6) ϕ(air) ϕ(helium) A+ Ar vs vt vf �u �u1 �ur �uaui

1.37 0.63 1.00 0.81 −0.59 −0.58 226.2 431.2 72.9 123.2 99.7 22.9 158.7

Table 2. Experimental parameters: Ms is the incident shock Mach number; ϕ(SF6), ϕ(air) and ϕ(helium) are
the volume fractions of SF6 in space A, air in space B and helium in space C, respectively; A+ and Ar are
the post-shock and post-rarefaction waves Atwood numbers; and �uaui is the jump velocity of the air–helium
interface induced by the transmitted shock. The unit of velocity is m s−1.

limitation of the observation window, the developments of these two interfaces cannot
be captured simultaneously by the camera during the whole experimental duration, and
only the developments of the perturbed SF6–air interface are highlighted hereinafter.

The trajectories of the shock waves and the two interfaces extracted from the
experimental schlieren images are shown in figure 3(b). Three experimental runs are
performed, and the interface trajectories for these runs are nearly the same. According
to the parameters in table 2, the theoretical trajectories of the shock waves and interfaces
are also plotted for comparison. Good agreement between experiments and predictions
is achieved, verifying the good repeatability and reliability of the experiments. As a
result, the parameters in table 2 are considered as the initial parameters in the following
experiments. Based on the parameters in table 2, the relationship between L0 (mm) and �t
(µs) can be described as L0 = 0.237�t.

In the following studies, we focus on the realization of the perturbation growth
attenuation (possibilities III–V). Three kinds of single-mode SF6–air interfaces with
different λ are considered. According to the experimental parameters in undisturbed runs,
five different L0, as presented in table 3, are designed to realize different attenuations
of the perturbation growth. Three experiments (cases 1–3) are performed by changing
L0 to verify different possibilities of the perturbation growth attenuation for the same
initial interface condition, and two additional experiments (cases 4 and 5) are performed
to achieve freeze-out of the perturbation with different initial interface conditions.

For each case, at least three successful experimental runs are performed to ensure the
repeatability of experiments. The velocities of the incident shock (226.2 ± 1.0 m s−1),
the transmitted shock (431.2 ± 1.0 m s−1) and the auxiliary air–helium interface
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Case L0 (mm) a0 (mm) ka0 ka−
r λ (mm) Vt

i (m s−1) Ve
i (m s−1) Possibility

1 149 0.64 0.10 −0.38 40 −4.11 −4.23 ± 0.13 III
2 79 0.64 0.10 −0.20 40 −3.77 −3.75 ± 0.13 V
3 109 0.64 0.10 −0.28 40 −4.03 −4.06 ± 0.06 IV
4 82 0.48 0.10 −0.28 30 −4.03 −4.09 ± 0.12 IV
5 164 0.95 0.10 −0.28 60 −4.03 −4.08 ± 0.09 IV

Table 3. Interface parameters and L0 in perturbed cases. Here k and λ are the perturbation wavenumber and
wavelength; and Vi is the growth rate of amplitude just before the reflected rarefaction waves arrival. The
superscripts ‘t’ and ‘e’ denote theoretical and experimental results.

(158.7 ± 1.0 m s−1) for the different cases are nearly the same. Based on the 1-D gas
dynamics theory, the duration of the rarefaction waves interacting with the perturbed
interface can be calculated as 13–28 µs in different cases, and the jump velocity induced by
the rarefaction waves is relatively small (�ur ∼ 20 m s−1). Comparing with the previous
work on the interaction of the rarefaction waves with a single-mode interface (Liang et al.
2020), it is reasonably assumed that the interaction duration in this work is short enough
to ignore the RT instability caused by the rarefaction waves.

4.2. Single-mode cases
When the initial experimental parameters and shock intensity are fixed, the initial interface
shape and L0 can determine the possibilities of the perturbation growth. In this work, the
initial dimensionless amplitude ka0 is 0.1 and remains constant. The different possibilities
of attenuation are achieved through varying λ and L0. Note that changing λ instead of
ka0 is more convenient and effective. For example, when λ = 40 mm and ka0 = 0.1, L0 is
calculated to be about 109 mm to achieve freeze-out of RSI perturbation. If λ is changed
to 30 mm while ka0 = 0.1 remains fixed, L0 becomes 82 mm for achieving freeze-out.
However, if ka0 is changed to 0.2 while λ is fixed as 40 mm, L0 is about 105 mm for
achieving freeze-out.

Figure 4 shows the distributions of the perturbation growth possibilities after the
reflected rarefaction waves impact in the (λ, L0) domain. As analysed in § 2, seven different
possibilities are classified by three specific lines. In the following studies, we first fix λ as
40 mm but change L0 (cases 1–3 in table 3) to achieve three possibilities (III–V). Then,
two additional cases (cases 4 and 5 in table 3) with different λ are chosen to verify that
the model proposed can accurately predict the freeze-out conditions (possibility IV). The
distributions of these five cases in the (λ, L0) domain are shown in figure 4.

Typical schlieren images of the SF6–air interfaces accelerated by the incident shock and
the reflected rarefaction waves for cases 1–5 are provided in figure 5. Taking case 1 as an
example, when IS interacts with II, a transmitted shock (TS) and reflected single-mode
rarefaction waves (RW1) are generated (87 µs). The shocked II (SI) moves downstream
and phase reversal occurs. Because the amplitude of II is small, TS quickly recovers to
a planar shock. Subsequently, TS impacts AI, generating a transmitted shock moving in
helium and reflected rarefaction waves moving in air. These waves are invisible in air due
to their weak intensities (326 µs). After the rarefaction waves collide with SI, transmitted
rarefaction waves (TRW) moving in SF6 can be observed (365 µs), and the perturbation
amplitude of RSI grows continuously (544–1079 µs). In case 2, after the rarefaction waves
impact, it is clear that the perturbation amplitude of RSI reduces (694–1190 µs). In cases
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Figure 4. Distributions of seven possibilities of the perturbation growth after the impact of reflected
rarefaction waves in the (λ, L0) domain.
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Figure 5. Typical schlieren images showing the interface evolution and wave patterns before and after the
impact of rarefaction waves for cases 1–5.

3–5, after the rarefaction waves impact, the perturbation amplitudes of RSI are almost
unchanged, and freeze-out is achieved.

The temporal variations of the dimensionless amplitude for cases before and after the
impact of rarefaction waves are plotted in figure 6(a). The time is normalized as τ =
kVe

0(t − t∗), where Ve
0 is the experimental linear growth rate of the SI amplitude and t∗

is the time when the linear growth of the SI amplitude starts (compression phase ends).
The growth rate Ve

0 is 5.01 ± 0.12 m s−1 for all cases in this work and V0
i is calculated

through the WN model to be 5.05 m s−1. The amplitude is scaled as α = k(a − a∗), where
a∗ is the amplitude of SI at t = t∗, which differs from the initial amplitude. As shown in
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Figure 6. (a) Temporal variations of the dimensionless perturbation amplitude before and after the rarefaction
waves impact for cases 1–5. (b) Zoomed-in image showing the stretching effect of the rarefaction waves, as
represented by the solid lines.

figure 6(a), before the rarefaction waves impact, the data for different cases collapse well.
The amplitude growth rates before the rarefaction waves can be accurately predicted by
the ZG model (Zhang & Guo 2016), as shown in table 3.

After the rarefaction waves impact, the interface experiences a rarefaction process,
and the amplitude of RSI first increases rapidly for a short time. To clearly show the
stretching effect of the rarefaction waves, the results shortly before and after the rarefaction
waves impact are zoomed in, as indicated in figure 6(b), in which the stretching effect
of the rarefaction waves is represented by solid lines. Then after the start-up process
(Lombardini & Pullin 2009), the amplitude growth is attenuated in all cases. In case 1,
the amplitude of RSI continues to grow but its growth rate (Vt

2 = −1.44 m s−1 and Ve
2 =

−1.41 ± 0.04 m s−1, where the superscripts ‘t’ and ‘e’ denote theoretical and experimental
results) is smaller than the counterparts just before the rarefaction waves impact (Vt

i =
−4.11 m s−1 and Ve

i = −4.23 ± 0.13 m s−1). In case 2, before the second phase reversal
is finished, the amplitude of RSI decreases with a smaller rate (Vt

2 = 1.68 m s−1 and
Ve

2 = 1.61 ± 0.05 m s−1) than Vi (Vt
i = −3.77 m s−1 and Ve

i = −3.75 ± 0.13 m s−1). The
linear growth rates after the rarefaction waves impact in these two cases are well predicted
by the Van model, as given in figure 6(a). In cases 3–5, the amplitude growth of RSI almost
stagnates, and freeze-out of amplitude growth of single-mode SF6–air perturbations with
different wavelengths is realized in shock-tube experiments.

In summary, attenuation and even freeze-out of amplitude growth of a shocked
single-mode SF6–air interface can be realized through the second impact by reflected
rarefaction waves, and the relationship among initial parameters for attenuating the
amplitude growth can be accurately predicted by theoretical models.

5. Conclusions

Attenuation and freeze-out of amplitude growth of a shocked single-mode SF6–air
interface is first realized through the impact of reflected rarefaction waves both
theoretically and experimentally.

Theoretically, the ZG model (Zhang & Guo 2016) is used to predict the amplitude
growth before the rarefaction waves impact and the Van model (Vandenboomgaerde et al.
1998) to predict perturbation growth induced by the rarefaction waves. Based on the
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linear superposition principle, seven possibilities of perturbation growth are classified.
It is found that the reflected rarefaction waves can enhance, attenuate and even freeze the
interfacial instability. The possibility can be flexibly changed through varying the time
interval between the two impacts and the perturbation wavelength by fixing other initial
parameters.

Experimentally, a planar air–helium interface is used to produce the reflected rarefaction
waves, and the soap-film technique is used to create the initially perturbed and undisturbed
interfaces. Five experiments with different initial conditions are carried out, and the
schlieren images show that, after the reflected rarefaction waves impact, the amplitude
growth of single-mode heavy–light perturbation can be weakened or frozen-out, as
accurately predicted by models.

These findings may be helpful for better understanding how to suppress hydrodynamic
instabilities in ICF. Note that this work only considers the manipulation of single-mode
interface perturbation growth. In a following work, the manipulation of a multimode
interface perturbation growth, which is more desirable in ICF, will be considered.
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