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Abstract. If the observed parallax �′ has a gaussian measurement error σ, there is a 68%
probability that the actual parallax � is in the range �′ − σ < � < �′ + σ (the frequentist
approach). The probability distribution within this range is not known from �′ and σ alone,
and in particular, we cannot state that the most probable distance D is given by D = 1/�′. To
obtain a probability distribution, we need to know or assume a distribution of pulsar distances.
Similar assumptions are also required to estimate the velocity distribution of radio pulsars.
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1. Conditional probability
For a detailed discussion of the conversion of the parallax to distance and of the role of

priors, we refer to an excellent paper by Bailer-Jones (2015). Here we briefly summarize
the articles of Igoshev et al. (2016) and of Verbunt et al. (2017).

If an object with a real parallax � and distance D = 1/� is measured with a gaussian
measurement error σ, the probability of measuring �′ when the real value is � is

p(�′|�)d�′ = p(�′|1/D)d�′ =
1

σ
√

2π
exp

[
− (1/D − �′)2

2σ2

]
d�′. (1.1)

In this equation �′ varies and � is fixed. There is an approximately 68% probability
that the measured parallax �′ lies in the range |�′ − �| < σ, or equivalently that
�′ − σ < � < �′ + σ. However, a measurement �′ may also result from a different
�2 �= �. In that case there is still a probability of 68% that �′ − σ < �2 < �′ + σ.
Therefore, from �′ and σ we can indicate an interval for the actual parallax � with
a corresponding probability, but not the probability distribution within or outside the
interval. This is the frequentist approach.

To obtain a probability distribution, we need to know or assume a prior probability
distribution of the parallaxes; in practice a prior of the distance distribution, f(D), is
used. This prior acts as a weighting, and for the probability of a real distance D for a
fixed measurement �′ we have

p(D|�′)dD = Cf(D)
1
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dD (1.2)

where C is a normalization constant.
Various authors, e.g. Verbiest et al.(2012), following Faucher-Giguère & Kaspi (2006),

erroneously replace dD in Eq.(1.2) with d� = (1/D2)dD, which leads to a wrong weight-
ing of D.
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Figure 1. Our best model velocity distribution, the sum of two Maxwellians, converts to a
good description (red line) of the observed cumulative distribution of nominal projected pulsar
velocities v′

⊥ ≡ μ′/�′ (histogram), in contrast to the single Maxwellian found by Hobbs et al.
(2005, blue line). The p-values of one-sided Kolmogorov-Smirnov tests confirm this.

2. Velocities of young radio pulsars
The measured velocity projected on the sky is found by combining a measured parallax

and a measured proper motion: v′
⊥ = μ′/�′. Thus each model velocity must be converted

into a parallax and proper motion to properly take into account the measurement errors
in the model fitting. This requires a (known or assumed) distance distribution f(D).

We have found that the bimodal distribution which consists of two maxwellians with
σ1 = 75+20

−15 km/s σ2 = 316+58
−40 km/s and w = 0.42+0.10

−0.12 describes the young isolated radio
pulsar velocity distribution much better than the single maxwellian with σ = 265 km/s
that describes the result from a non-parametric analysis by Hobbs et al. (2005). A direct
comparison of the velocity distribution with the nominal pulsar velocities v′

⊥ = μ′/�′,
illustrates this well (Figure 1).
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