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Abstract

A closed-form solution for zero-coupon bonds is obtained for a version of the discrete-time arbitrage-
free Nelson-Siegel model. An estimation procedure relying on a Kalman filter is provided. The model is
shown to produce adequate fit when applied to historical Canadian spot rate data and to improve distri-
butional predictive performance over benchmarks. An adaptation of the mixed fund return model from
Augustyniak et al. ((2021). ASTIN Bulletin: The Journal of the IAA, 51(1), 131-159.) is also provided to
include the discrete-time arbitrage-free Nelson-Siegel model as one of its building blocks.
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1. Introduction

Dynamics of interest rates have implications in different areas such as asset and derivatives pric-
ing, portfolio management, and risk measurement. In the context of actuarial science, interest rate
models are central to the evaluation of long-term financial contracts such as standard insurance
and annuities, as well as equity-linked products.

The seminal work of Nelson & Siegel (1987) depicts the term structure as a linear combi-
nation of interpretable factors representing the level, the slope, and a hump in the yield curve.
Although this model was initially developed in a static setting, Diebold & Li (2006) extend the
Nelson & Siegel (1987) model into a dynamic framework. However, a drawback associated with
the dynamic version of the model is its incompatibility with no-arbitrage theory, an issue that
is discussed in Filipovi¢ (1999). The work of Christensen et al. (2011) reconciles both the no-
arbitrage strand of literature and the Nelson & Siegel (1987) model by developing the so-called
arbitrage-free Nelson-Siegel (AFNS) model. Such model is an affine term structure (ATS) model
(see Duffie & Kan, 1996) where the specification of the diffusion followed by term structure fac-
tors is carefully chosen such that factor loadings exactly coincide with these of the Nelson-Siegel
model. The discrepancy between spot rates of the Nelson-Siegel model and of the AFNS model
only stems from a corrective term whose inclusion is necessary to preclude theoretical arbitrage
opportunities.

The AFNS model is expressed in a continuous-time settings. It is however of interest to develop
a discrete-time counterpart to the model. Indeed, many of existing interest rate models already
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have such discrete-time versions, as described for instance in Wiithrich & Merz (2013). Discrete-
time models often possess the advantage of being more simple to manipulate, which is favorable in
applications. For instance, when Monte-Carlo simulations are used to generate discount factors,
discretization must often be applied. Whenever such approximation is used, numerical testing is
required to ensure that discretization errors exhibit sufficiently low bias and variance. Discrete-
time models allow circumventing all such analyses by providing exact simulations. Furthermore,
multiple time series and econometric models involving regressions (e.g. these including lagged
components) are naturally formulated in discrete-time, and compatibility with such frameworks
is often a key consideration when developing interest rate models. Finally, dynamic optimization
schemes such as reinforcement learning are more extensively developed in a discrete-time context
and exhibit much more tractability in that case. The integration of stochastic interest rates to
applications of such methods to finance, such as the deep hedging scheme of Buehler et al. (2019),
will be simplified if the model is already specified in discrete-time.

A discrete-time version of the AFNS model has been developed in Hong et al. (2019). This
paper further expands on the work of Hong et al. (2019) and revisits the discrete-time arbitrage-
free Nelson-Siegel (DTAFNS) model, providing the following three main contributions. The first
is to obtain a closed-form expression for risk-free spot rates. The closed-form solution is obtained
after slightly modifying the interest rate dynamics from Hong et al. (2019) so as to obtain addi-
tional tractability (i.e. simpler formulas), while still retaining asymptotic equivalence with the
AFNS model. As highlighted in Section 2.5 of Hong et al. (2019), ATS models often provide
enough tractability to study the decomposition of yields into expected rates and risk premia ana-
Iytically. The closed-form expression we obtain can therefore further facilitate such analysis. The
second contribution consists in presenting evidence of superior distributional out-of-sample pre-
dictive ability of the DTAFNS model over benchmarks when applied on historical Canadian term
structure data. Finally, as an actuarial application, our third contribution is to develop a modified
version of the mixed fund return model of Augustyniak et al. (2021) by substituting their three-
factor Gaussian model with the DTAFNS model. The latter is justified by the higher performance
of the DTAENS model outlined in this paper. Such model is useful when pricing life insurance con-
tracts embedding guarantees related to financial market performance such as variable annuities,
universal life or participating contracts.

The remainder of this paper is organized as follows. Section 2 specifies the proposed interest
rate model and provides closed-form expressions for risk-free zero-coupon bond prices and spot
rates. In Section 3, the model calibration is illustrated and numerical experiments assessing pre-
dictive performance are provided. Section 4 adapts the mixed fund model of Augustyniak et al.
(2021) to include the DTAFNS model as a building block for the term structure model. Section 5
concludes.

2. Interest rate term structure model

This section presents the mathematical construction of the discrete-time version of the arbitrage-
free Nelson-Siegel term structure model, referred to subsequently as the DTAFNS model. First, the
specification of the traditional Nelson-Siegel model and its dynamic continuous-time arbitrage-
free extension are recalled. Then, the dynamics of the short rate in the DTAFNS model is provided
and closed-form formulas for spot rates are derived. As explained in more details subsequently,
the DTAFNS model presented in this section has a slighlty different specification from that of
Hong et al. (2019).

2.1. The Nelson-Siegel term structure representation
Nelson & Siegel (1987) propose a parametric representation of the yield curve of the form

1— —AT 1 _ —AT
y(t, T) = x4 x@ (—; >+X(3) <—; - e“>, 2.1)
T T
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where y(t, T) is the time-t spot rate with tenor t = T — ¢, and X, x® xG) and A > 0 are model
parameters. The model leads to a convenient interpretation of the parameters, with X1, X,
and X, respectively, characterizing the level, slope, and curvature of the yield curve, while 2 is
a dilation parameter. Although this model has first been considered in a static setting, Diebold
& Li (2006) embed it in a dynamic setting where time-varying factors XEI), ng), X§3) are consid-
ered instead of X1, X, X®_ Several auto-regressive models are used for the dynamics of such
parameters, thereby making it possible to forecast the term structure.

A pitfall of the dynamic Nelson-Siegel model of Diebold & Li (2006) is its incompatibility with
no-arbitrage theory as discussed Filipovi¢ (1999). Christensen et al. (2011) therefore adapt the
Nelson-Siegel framework and develop the AFNS model, an arbitrage-free term structure model
whose spot rate formulas match exactly these of the Nelson-Siegel model up to a correction term.
It is obtained by specifying the short rate risk-neutral dynamics as the following affine Gaussian
It6 diffusion:

re=x" 4 x?, (2.2)
0
dx™ o0 o7[6%-x" AWy,
ax? =0 r —x||62-x? [d+x|dw} (2.3)
dx;” 0 0 & 1]g2—x? AW
[ —
«@ 60X,

where {W;@l} =0’ {W%} ;=0 and { Wg} ;>0 are independent Brownian motions under the risk-

neutral probability measure Q, X is a 3 x 3 positive semi-definite matrix and o2, 99, 0;@, A are
real numbers. As shown in Christensen et al. (2011), this leads to the following formulas for spot

rates:
3 ~
1 py o C(t,T)
LTy =—=Y B, T)xV¥ — =222 2.4
y(tT) T; (61X — = (24)
¢ ~ 290y [T 50 L (T 2T T )T
— J —
a, T)—X;(K 09), /t BOGs, T)ds+221: /t (=BG DB T) z)des (2.5)
J= J=

with

B(s, T) = [B‘U(s, ), BO(s, T), B, T)]T

_ AT _ AT T
= |:—r, — (lTe) , (te_)‘r — lTe>] (2.6)

and (); or ();; denoting respectively the jth element of a vector or the element at row j and column
j of a matrix, respectively.

Striking similarities can be observed when comparing (2.1) with (2.4) and (2.6). Indeed,
identifying Xfl),XEZ),X?) with X1, X, XB) discrepancies between the spot rates from both

models are only caused by the corrective term —@ appearing in (2.4). This leads Christensen

et al. (2011) to describe the arbitrage-free Nelson-Siegel model (2.2)-(2.3) as the “closest match
to the Nelson-Siegel yield function” within some class of exponential affine term structure
models.
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2.2. Discrete-time arbitrage-free Nelson-Siegel model
The purpose of this section is to define a discrete-time model analogous to model (2.2)-(2.3).
In what follows, an arbitrage-free market with discrete time steps t =0, 1, ..., T, each separated
by a time elapse A, is considered. Market dynamics are defined on probability space (€2, Fr, P)
where P is the real-world probability measure and F := {.7-}}th0 is a filtration characterizing the
information flow in the market.

In the discrete-time context, the time-t short risk-free rate r; is the F;-measurable rate effective
for the period [t, t 4 1). The short rate dynamics considered are

=X 4+x%, 2.7)
Xt-‘rl =Xt + K'IP(GIP Xt) + EZH_I, (28)
where the stochastic factor vectors are X; = [Xgl),XEZ),X?)] ,t=0,...,T, k¥ and = are con-

stant parameter matrices of dimension 3 x 3, and 6 is a constant column vector of dimension 3.

The process ZF = { ZP} with Z = (2}, Z},, Z} ] is a multivariate standard Gaussian white

noise under [P with contemporaneous correlation parameters ,o( )= corr(ZR, ZP> t=1,...,T

and i,j =1, 2, 3. The initial value of the factor process is fixed at Xy = xp € R3. ¥ is assumed to
be a diagonal matrix with strictly positive elements. Equations (2.7)-(2.8) are meant to mimic
(2.2)-(2.3), except that the model is specified under the physical measure [P instead of under the
risk-neutral measure Q. A more general class of Gaussian discrete-time affine structure models is
studied in Wiithrich & Merz (2013), but without specializing to the DTAFNS model which is the
object of this paper.

To obtain the specification of spot rates under the DTAFNS model, risk-neutral dynamics need
to be specified. Indeed, spot rates are given by

log P(t, T)
(T—1nA
where P(t,T) is the time-f of a risk-free zero coupon of unit face value with maturity on time point

T. In discrete-time models of the short rate, the relationship between P(#,T) and the risk-free
rate is

)’(f, T):—

T-1
P(t, T) =EQ exp| —A Z j ‘}'t

j=t
To obtain risk-neutral dynamics, following the lines of Augustyniak et al. (2021) for instance,
a discrete-time version of the Girsanov theorem can be invoked to apply a translation to the drift
of short rate factors X; without altering their volatilities, while keeping a multivariate Gaussian
distribution for innovations.! It follows from this theorem that for a given constant market price
of risk matrix y € R¥*3, there exists a probability measure Q equivalent to IP such that the process

AR {Z(t@}tT:1 defined through Z = =ZF | — v X, is also an F-adapted standard Gaussian white

noise under @, still with contemporaneous correlation matrix p@ = [,ol(z)] v Substituting
e

t+1

ZF’H = Z?H + y X, into (2.8) leads to

Xpo1 =X, +F6F — (KP - Ey) X+ 322,

!Because of the discrete-time nature of the model, alternative changes of measures could have been contemplated.
Nevertheless, the Girsanov-type family of changes of measure is considered to keep the model as similar as possible to the
continuous-time version of the model.
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Assuming there is a solution (k@,6%) with k2 eR>*3 and 9% e R®>*! to the system of

equations
k202 = PoF,
Qo3 (2.9)
then
Xip1 =X+ 1200 - X)) + 222 | (2.10)

and thus, the factor process {Xt}tT:0 preserves its auto-regressive structure under the risk-neutral
measure. Note that as a future research avenue, other pricing kernels can be considered. For
instance, these associated with essentially affine models defined in Duffee (2002) are shown in
that work to enhance the forecasting ability of the model by generalizing the physical dynamics of
term structure factors while retaining the same risk-neutral dynamics.

The DTAFNS model relies on specific choices of parameters mimicking the AFNS model. Zero-
coupon bond prices under such specific choices are hereby derived. The proofs for the next results
are provided in Appendix A.

Lemma 2.1. For some integer T > 0 and a real number r # 1,

—1 —
L T) = U — , 2.11
LnT)=) r = (2.11)
u=1
-1 T T+1
r—trf+(t —)r
=St = , 2.12
ano=>y T (2.12)
u=1
-1 2,742 2 T+1 2,7 4 2
oy @ =Dt Q2 =2t =Dt =ttt oy
rLT)= urt = . 2.13
SEIEDY T (2.13)
u=1
Proposition 2.1. Consider X € (0, 1) and assume
0 0 O
Q=10 2 —A]. (2.14)
0 0 A
In other words, suppose that the state variables X; have the following risk-neutral dynamics:
(1) (1) Q
X — X 0 0 0 o2 — xV X 0 0 Zi,1
(2 2 — Q
X —X" | =0 » -2 9;@ —xP 4+ 0 Ep 0 Zi1a
(3) (3) 0o 0 A 0 0 z Q
Xy =X oy — X" ¥/ \ 2
Then, the time-t arbitrage-free price of a zero-coupon maturing at T is, fort =0,...,T — 1,
P(t, T) = A; exp [~ AB] Xi], (2.15)

-
wheret=T —t, B, = [B(rl), B(rz), B(IS)] and

1—(1—2)° 1—(1—A)!
POt Skl R e e (N

1
B(T):'L' . > T %

1
log A, = A6, (B — B ) + A07BY + Z A,
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with
3 3
= 3ol
i=1 j=1
t(rt—1)2r -1
%] 1-(1—2)7] 1—-(1—2)7"
v = 222 (1 ( ) . ( ) ,
A? A 1—(1—21)2

22
v = 11(»1)% |:r —2+5(1 =041 —1)+ 251 =-21% Tt —1)

—25((1=24), 7 = 1) =228 ((1 = A), Tt = D+ 224 (1 = 2% T — 1) ]

1 /t(t—1)
v =P =, 8 5, - ( 5

! —;l(u—x),r)),

(13) _

Uz

v

@ = I[M 1= =247 —1)

1{r>1}p1,321,123,3i >

—A+Da(@—2) =1 —AL(1—2),T—1) ]

T—=2—Q2=M(1 =0, =D+ 1 =1)5H((1—-1)% T —1)
)\2

U£2'3) = U?’z) =1a023222 z:3,3<

—a (1= At =D+ (1= & (=227 — 1))
+ Iy .

This entails that spot rates have the form

(1 —(1—A)T)X§2>+ [(1 —(1=-»"H -1

(1)
t, T)=X
Y1) et TA TA T

1
(1- x)”]xﬁ” — 57 logAr.
(2.16)

Remark 2.1. In Proposition 2.1, parameter «9;@ does not appear in the zero-coupon price formula
(2.15) and thus can be set to Qi@ =0.

To obtain risk-neutral dynamics of the form proposed in Proposition 2.1, the following physical
dynamics is considered:

kKip 00 0

KP = O KEZ _)\, S QP = Qép
P

0 0 K33 9%97

which allows meeting the second condition in (2.9) with

vi 0 0
y=|0 »n 0], y= (Kfi - ]1{i>1})\) /Zii i=1,2,3. (2.17)
0 0 V3
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Furthermore, substituting (2.17) in the first equation of (2.9) leads to
0F =27 (k505 + 45,08 =265 ), o =27l

Conversely, physical parameters can be retrieved from risk-neutral parameters through

. A o
K =Lisngh+ Sy i=1,2,3, 65 =005 /Kl 08 = [9;@ = = (K]3P:3 - A)
K32 K33

(2.18)

Remark 2.2. Since K;QI = 0, an alternative specification enforcing "1 1, =0 has been tested, but it

was ultimately not retained due to lower performance. See Appendix E of the Online Appendix
for more details.

Remark 2.3. The DTANFS model of this paper is specified slightly differently than in Hong et al.
(2019). In the latter work, the matrix ¥ is chosen such that factor loadings B; exactly match
these of the Nelson-Siegel model (2.1). Conversely, this paper emphasizes an auto-regressive rep-
resentation of factors, i.e. Equation (2.10), which is the discrete-time counterpart of the diffusive
dynamics of the AFNS model (2.3). Nevertheless, both specifications of the model are quite sim-
ilar conceptually. In Hong et al. (2019), only a recursive representation of A, is provided, which
makes the derivation of the closed-form solution for A; a useful contribution of the present work.

3. Model estimation

This section presents a method to estimate the DTAFNS model using historical spot curves data.
The model is estimated on Canadian interest rate data. The fit performance is analyzed and bench-
marked against the discrete-time Gaussian three-factor model of Augustyniak et al. (2021) and a
version of the Dynamic Nelson-Siegel model of Diebold & Li (2006).

3.1. Estimation framework

Several methods have been considered in the literature to estimate factor models of interest rates,
such as conventional maximum likelihood estimation (Chen & Scott, 1993), maximum likelihood
with Kalman filters (Duan & Simonato, 1999; Lembke, 2006; Park, 2014; Augustyniak et al., 2021),
the method of simulated moments (Dai & Singleton, 2000), or Bayesian approaches (Hong et al.,
2019). In this paper, the Kalman filter approach is applied. Observed spot rates (observable data)
are considered to be a noisy version of the true spot rates (the signal). Setting up the Kalman filter
requires to first derive the recursive Gaussian linear relationship between the observable quantities
and factors driving the signal, which is hereby provided.

Assume that on each time t a set of M annualized continuously compounded spot rates with
fixed times-to-maturity #ny, ..., s are observed, which are denoted by the column vector

V() = (Gt t +n1), . Pt t+ 1)) T

Define also the corresponding model-implied spot rate vector

V() = (y(ts £+ 1), e Yt t+100))
where (2.16) leads to

~1 1
y(t, t+n)= — log A, + ;BIXt- (3.1)

The relationship between observed and model-implied spot rate is assumed to be

Y(t) =y(t) + mt
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where {171}th1 is a multivariate Gaussian white noise with diagonal variance-covariance matrix H.
Furthermore, for simplicity, all values on the diagonal of matrix H are assumed to be identical and
equal to some parameter 4. This leads to

y()=a+BX; +n, (3.2)
where
a=(—logA L joga ! (3.3)
=\ia og mo o TR ogAu, ) .
T
Bgll) BI(12) 3513)
,Bn = > > >
non n
T
B=(Buys--->Bun) - (3.4)
Furthermore, the transition equation describing the dynamics of the latent factors X; is obtained
from (2.8):
Xi+1 =b+DX; + &1, (3.5)
where
b=«"0", D=1-«¥, &=3%7" (3.6)

The sequence {ét}tT= | is therefore a multivariate Gaussian white noise with covariance matrix
Q=13pI. (3.7)

The representation (3.2)-(3.5) of state space variables allows estimating the DTAFNS model
using a Kalman filter. The general Kalman filter algorithm is presented in Appendix D of the
Online Appendix. The Kalman filter allows deriving the log-likelihood of observed spot rate
curves for a candidate set of parameters. Algorithm 1 indicates steps to calculate the log-likelihood
function in the context of the DTAFNS model. In this algorithm, p denotes joint density func-
tions. In the present work, the implementation of the Kalman filter is performed with the
R package FKF. Moreover, to find maximum likelihood estimates of the parameters, consis-
tently with Augustyniak et al. (2021), an optimization of the likelihood is conducted with the
R package Rsolnp (Ghalanos & Theussl, 2015) applying the nonlinear augmented Lagrange mul-
tiplier optimization method of Ye (1987). The optimization is performed under the following
constraints:

Zii>0, h>=0, —1=<pij<14j=123 A€(01).

Additional constraints could be applied to enforce the positive semi-definiteness of matrices
¥ and p, but optimization results obtained with our dataset satisfy such constraints without
explicitly specifying them to the optimizer.

The smoothed state density is the density of time-t factors conditional on all observations from
the sample, namely p(X;|3(1), ..., ¥(T)). Such distribution is multivariate Gaussian with mean
Xy 1 and covariance matrix Py 7. Such mean and variance are obtained with the Kalman smoother
algorithm (Shumway & Stoffer, 2017) which is also shown in Algorithm 1.

3.2. Model estimation and analysis
This section presents the DTAFNS model estimation using historical Canadian spot rate data.
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Algorithm 1 Kalman filter algorithm for the calculation of likelihood function and smoothed
state densities

Input: Initial values X1)o € R3, Py € R3*3, parameters h, X, QQ, P, ¥, = and spot rate dataset

y(t),t=0,...,T.
Outputs: Log-likelihood L() = log(p(Y(T), y(T — 1), ..., y(1))) and smoothed density
moments x4, Py, t=1,...,T.

Calculating the log-likelihood:
Calculate a,b, D, Q and B with (2.18), (3.3), (3.3), (3.6), (3.7) and Proposition 2.1.
forte{l,.., T} do

Calculate p(y(£)|y(1), ..., Y(t — 1)):

y(t) < a+ Bxy—1

> < BPy_1B" +H

PIDIF), - Yt — 1)) ~ NG(B), )

Calculate x;|; and Py

Xejt < Xeje—1 + P BTE () — §(1)
Pyt < Pyjp—1 — Pt|t—1BTi;IBPt|t—1
3_Ct+1|t <~b + DJ_Ct|t

Piyye < DPy DT +Q

L) < YL, log p(§()I9(1), ..., 9(¢ — 1))

Calculating the smoothed state density:
forte{T—1,...,1} do

Jo < PyDTP}

X1 <= Xt + J (X1 — Xet11t)s
Pyr < Py + J;(Pryrjr — Pegrp)]) -

3.2.1. The dataset

To estimate the model, end-of-month Canadian spot rate curves from January 1986 to January
2022 (434 months) are considered. Such yield curves are provided publicly on the website of the
Bank of Canada® and are constructed through an exponential smoothing methodology described
in Bolder et al. (2004). 33 spot rate tenors are considered, which include short-end maturities of
3,6, and 9 months and all integer times-to-maturity from 1 to 30 years.>

3.2.2. Estimated parameters and performance

Table 1 gives estimates of DTAFNS model parameters obtained with Algorithm 1 which applies the
Kalman filter. Factor 1 innovations are negatively correlated with these of the two other factors,
which are positively correlated between themselves. The negative correlation between the level
factor X1) and the slope and curvature factors X?) and X® tends to reduce the frequency of
very large or low values of the short rate r;. Furthermore, it implies that when the long-term
rates increase through higher values of X(1), the slope given by —X® also tends to go up. Thus,
movements in the long-end of the curve are not necessarily matched by movements of a similar

2Source: https://www.bankofcanada.ca/rates/interest-rates/bond-yield-curves/.
3For all years up to 1990 inclusively, times-to-maturity between 26 years and 30 years are missing in the dataset and are
therefore not considered.
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Table 1. Maximum likelihood estimates of the DTAFNS model parameters

i «h Vi i oF o2 Xi1lo 2 h
1 0.0075 27923 0.0027 0 0 0.0491
2 0.0288 1.2016 0.0045 0.0301 0.0633 0.0391 0.0233 3.76 x 1076
3 0.0354 1.7167 0.0070 0.0505 0.0766 0.0291
1 —0.6303 —0.4097 4.45x10~° 0 0
p= | —0.6303 1 02993 | py— 0 4.45x1076 0
—0.4097 0.2993 1 0 0 4.45%10~°

Notes: Maximum likelihood parameter estimates for the DTAFNS model presented in Section 2.2 obtained with the Kalman filter (see Algorithm 1).
The data sample includes Canadian end-of-month yield curves from January 1986 to January 2022. x; 1o refers to element j of the vector xyjo.

Short rate

— — Factor1 - = - Factor2 e« « « Factor3

0.05 —

0.00 —

1990 1995 2000 2005 2010 2015 2020

Figure 1. Model-implied factors and short rate time series.
Notes: Time series of DTAFNS model-implied factors which correspond to the smoothed state inferences

Ep[xii) ly(1), y(2), ...,jA/(T):|, i=1,2,3 provided by Algorithm 1, and implied short rates obtained by summing smoothed values
of the first two factors. The model is estimated on the end-of-month Canadian spot rate curves extending from January
1986 to January 2022.

magnitude and direction in the short-end. The hump in the curve reflected by X® also tends to
decrease during periods of increasing of long-term spot rates. The speed of reversion KE-’P;- is much
lower for the first factor (i = 1) than for the other two, which is not surprising due to the overall
rates level having had a clear lasting downward trend in the historical sample, representing close-
to-non-stationary behavior. Finally, the estimation implies a long-term average of short rates of
6F = 0.0301 under physical dynamics.

Fig. 1 shows the smoothed value (the smoothed distribution expected value) of latent factors
provided by the Kalman smoother procedure described in Algorithm 1. The black curve is the
short rate implied by the model which is obtained by summing the smoothed values of the first
two factors, consistently with (2.7). The decreasing trend of the short rate throughout the data
sample is recovered by the downward trend of Factor 1. Conversely, Factor 2 and Factor 3, driving
the slope and humps in the curve respectively, exhibit more stationary fluctuations.

To assess the ability of the DTAFNS model to match observed short- and long-term spot rates
of the term structure, time series of observed spot rates of three-month and 10-year tenors are
compared to the model-implied spot rates for the same tenors. Such time series are provided
in Fig. 2. The model can be seen to adequately match short- and long-term rates throughout
the entire sample, as differences between the model-implied and observed spot rates are very
small.
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Figure 2. Model-implied and observed spot rate time series for 3-month and 10-year tenors.

Notes: Time series of observed 3-month (short-term) and 10-year (long-term) maturity spot rates (dotted curves), with cor-
responding spot rates implied by the fitted DTAFNS model. The dataset considered is the end-of-month Canadian spot rate
curves extending from January 1986 to January 2022.

3.3. Performance assessment and benchmarking

This section analyzes the adequacy of the fit and the predictive performance of the DTAFNS model
through benchmarking.

3.3.1. Benchmarks

The discrete-time Gaussian three-factor model of Augustyniak et al. (2021), subsequently referred
to as the DG3 model, and a version of the dynamic Nelson-Siegel (DNS) model introduced by
Diebold & Li (2006) are benchmarks considered in this study for comparison of performance
results. See Appendix B for a formal specification of these two models. The main differences
between DG3 and the DTAFNS model are that (i) the latent factors in the former only regress
on themselves instead of allowing cross-factor auto-regressions, (ii) the DTAFNS has a short rate
equal to the sum of two of the factors instead of the three as in the benchmark, and (iii) the
DTAFNS has a fixed structure for the matrix ¥ driving the auto-regression intensity, unlike
the Augustyniak et al. (2021) model allowing optimizing such quantities. Regarding the sec-
ond benchmark, unlike in the DTAFNS model, the DNS model does not include a deterministic
adjustment term in spot rates to rule out arbitrage opportunities. Additionally, a nested version
of the DTAFNS model which sets all correlation parameters to zero, i.e. p;j =0, i,j=1,2,3, is
also considered for benchmarking purposes. This benchmark, which is denoted by the acronym
DTAFNS-U, is used to evaluate the impact of the innovation correlations on performance. Table 2
shows parameter estimates for the DTAFNS-U model, which are slightly different but qualitatively
similar to these of the DTAFNS model presented in Table 1.

3.3.2. Goodness-of-fit of the model and forecasting ability

To assess the model’s ability to adequately fit the observed data, we compare the log-likelihood
of the DTAFNS, the DTAFNS-U, the DG3 and the DNS models. Two types of log-likelihoods are
computed: an in-sample version obtained by fitting the models to the entire dataset, and an out-of-
sample version which is obtained by considering an expanding window sequential approach. For
the latter, in the first iteration, data from January 1986 up to the end of 2016 is considered as a first
training set, and data from 2017 is considered as a test set. In any following iteration, the training
sets are expanded by one year and the test year moves to the year following that of the previous
iteration. The last iteration has a test set including data for both 2021 and 2022 since the dataset
only includes data for January in 2022. The aggregated out-of-sample log-likelihood is obtained
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Table 2. Maximum likelihood estimates of the DTAFNS-U model parameters

i «h Vi i oF 02 Xi1l0 2 h
1 0.0075 2.7250 0.0021 0 0 0.0502
2 0.0288 1.0161 0.0038 0.0343 0.0653 0.0403 0.0227 3.81x10°°
3 0.0354 1.8645 0.0059 0.0523 0.0775 0.0303
100 4x1078 0 0
p=|0 10| p= 0 4x10~° 0

0 01 0 0 4x10-°

Notes: Maximum likelihood parameter estimates for the DTAFNS-U model obtained with the Kalman filter. The DTAFNS-U is identical to
the DTAFNS model except that the term structure innovations are uncorrelated, i.e. the matrix p is set to the identity matrix. The data sample
includes Canadian end-of-month yield curves from January 1986 to January 2022. X; 1|0 refers to element i of the vector xo.

Table 3. Log-likelihood of the DTAFNS model and its benchmarks

Out-of-sample

Model 2017 2018 2019 2020 2021-2022 Aggregated In-sample
DTAFNS 2,034 2,001 2,035 2,015 2,183 10,268 65,702
[T 2003 B 1976 B 2’015 B 2’001 S 2335 [ 10,330 e, 65,430 .
DG3 2,012 1,978 2,024 2,027 2,200 10,241 66,069
e ,.1’9,85,. - ”1‘,98‘2 B ,.1’9,.93,. . ,2.’0,0.1 e 2,163 e ,1.0’1.24,. B ‘64,610‘

Notes: Comparison of the log-likelihood of the DTAFNS model of Section 2.2 and of the DG3 and DNS benchmarks described in Appendix B. The
data sample is the Canadian end-of-month yield curve. The in-sample dataset starts in January 1986 and ends in January 2022. The out-of-sample
estimation procedure uses an expanding window approach described in Section 3.3.2. The aggregated out-of-sample log-likelihood is ultimately
obtained by summing the log-likelihood for all test years.

by summing these associated with all test sets. Table 3 provides the results. The best-performing
model in terms of aggregate log-likelihood over the full sample is the DTAFNS-U. However, when
looking at year-by-year performance, the DTAFNS outperforms the DTAFNS-U for the three first
years, while only underperforming the latter for the last year. Moreover, the DTAFNS beats both
the DG3 and DNS benchmarks out-of-sample for all years except for the DG3 in years 2020 and
2021-2022. While the in-sample log-likelihood of the DG3 is higher than that of the three other
competing models, such better fit does not translate to better (out-of-sample) predictive ability.
These tests imply that either the DTAFNS or the DTAFNS-U should be favored over the DG3 and
DNS benchmarks.

To further analyze the predictive ability of the competing interest rate models, Appendix C pro-
vides descriptive statistics on out-of-sample point forecasts of spot rates for various tenors. The
difference between the performance of the DTAFNS model and that of benchmarks seems overall
marginal, with slightly higher (lower) performance exhibited by the DTAFNS for long (medium)
tenors. Therefore, our analyses indicate that point forecasting performance of the various mod-
els is somewhat similar, but the distributional predictive ability of the DTAFNS model is slightly
superior.

To visualize the ability of the DTAFNS model and benchmarks to replicate observed yield
curves, Fig. 3 presents the realized spot curves and model-implied counterparts for four selected
dates. These four days are the same that are considered in Augustyniak et al. (2021) to display
fitting performance, namely December 29, 2006, December 31, 2008, June 30, 2016 and October
31, 2018. Such dates exhibit several spot curve shapes: flat, upward sloping or humped. The figure
shows that the DTAFNS and all three benchmarks are able to reproduce observed yield curves
reasonably well.
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Figure 3. Model-implied and observed yield curves.

Notes: Realized and model-implied spot rate curves on the four following dates: December 29, 2006, December 31, 2008,
June 30, 2016 and October 31, 2018. Dotted black line: observed spot rates. Full green line: DTAFNS model-implied curve.
Dashed blue line: DG3 benchmark implied curve. Red dotted-dashed line: DNS benchmark implied curve. Pink dotted-
dashed line: DTAFNS-U benchmark implied curve. The observed data are end-of-month Canadian spot rates provided by
the Bank of Canada.

3.3.3. Frequency of negative values

A drawback associated with the use of the Gaussian distribution within interest rate models is the
possibility of producing negative short rates. Although negative rates have been observed in some
European markets, such phenomenon almost did not occur in North America. To investigate the
propensity of the DTAFNS model and its benchmarks to generate negative interest rates, 200,000
five-year monthly paths are simulated under the physical measure with the estimated parame-
ters drawn from Tables 1, 2, B.1 and B.2, respectively, and starting values for factors being their
smoothed values on January 2022. Note that the sample period used for the development of the
model excludes interest rate hikes that occurred after January 2022. The January 2022 starting
point for the simulation therefore explains the large proportion of simulated negative rates.

Table 4 reports (i) the proportion of simulated observations below the thresholds 0, —0.01,
—0.02, or —0,03, and (ii) the proportion of paths with at least one observation below such
thresholds. The DTAFNS model significantly reduces such proportions when compared with the
DTAFNS-U, the DG3, and the DNS models, which is desirable.

4. An application to mixed fund modeling

One of the main building blocks of the mixed fund (a fund containing both fixed income and
equity) model of Augustyniak et al. (2021), which is used for variable annuity pricing, is the
underlying factor-based DG3 interest rate model. Since the DTAFNS model is shown herein to
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Table 4. Probability of observing negative short rates with the DTAFNS model or its benchmarks

Model Proportion of months Proportion of paths with at least one month
<0 < —0.01 < —0.02 < —0.03 <0 < —0.01 < —0.02 < —0.03
DTAFNS 0.177 0.057 0.015 0.003 0.644 0.299 0.106 0.029
DTAFNS-U 0.227 0.097 0.037 0.012 0.714 0.419 0.206 0.085
DNs e 0240 R 0082 B 0022 B 0005 B 0730 B 0379 I 0142 I .0.‘0.4.0,.

Notes: Within 200,000 five-year monthly simulated paths of the DTAFNS model and the DG3 and DNS benchmarks described in Appendix B, the
proportion of (i) simulated months with short rates being smaller than, respectively, 0, —0.01, —0.02 and —0.03, and (ii) simulated paths with at least
one month below such thresholds are reported. Model parameters are drawn from Tables 1, 2, B.1, and B.2, respectively, with starting values of the
factors being their smoothed values on January 2022.

improve predictive performance over the DG3 benchmark, it is relevant to adapt the Augustyniak
et al. (2021) mixed fund model by replacing the DG3 model with the DTAFNS model.

4.1. Rolling bond fund returns

The dynamics of the mixed fund model of Augustyniak et al. (2021) involves a regression on
movements of interest rate factors, among other quantities. The inclusion of such regressors is jus-
tified by an analysis of returns of a rolling bond fund, which are shown to depend on such drivers.
Therefore, to adapt the Augustyniak et al. (2021), the rolling bond fund dynamics is derived under
the DTAFNS dynamics.

Consider a fund containing a single zero-coupon of time-to-maturity 7 that is rolled-over on

each period. Denoting its time-t + 1 log-return by R | (2.15) leads to

t+1°

(t) P(t+1,t+l’)

R =log| ————
b+l g( P(t,t+ 1)

=logA;_1 —logA; — ABl1xt+1 + ABIXt

3
=logA;—1 —logAr — A Y (B {7, — BOX("). (4.1)
i=1

Moreover, recalling that r¢ =X§1) +X§2) and using (2.14), (2.18), Lemma A.2 and (4.1), the
excess return can be expressed as

R(T)

3
) — Ary=logA,_; —logA; =AY (B(;’_IX") — (B — 1)X§l))

t+1
i=1

3
+a Y x?—a(xP+x?)
i=1

3
=log A1 —logAr — A Y (BY X1, - (B, (1-«2)
i=1

~lmy(1 =07 X7) + Ax

3

—log A1 —logA, — A BY (Xﬁﬁl - (1 — KS) Xf’)) +AQ= =2 x®,
i=1

(4.2)
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Mimicking Augustyniak et al. (2021) by considering a portfolio consisting of M positions
with weights w1, . . ., @y (where Z]Ail wj = 1) that are rolled-over on bonds with fixed time-to-
maturities 71, . . ., s, the log-return of the rolling bond fund between times f and ¢ + 1, denoted
by +1’ is approximately characterized by

R®

B —Ar~ o R 4+ oyR™ — Ar

t+1

M -
_ ij@ogmj_l ~logAy — A ngz (30, - (1-8) x)

j=1 i=1

+A(1-q —x)ffl)xﬁ”)

- ]2\4: wj(logAg-1 ~logAg) — A" f: o (x, - (1-x3) x)

j=1 i=1 j=1

i(1— (1 =257 x2. (4.3)

||Mg

Relationship (4.3) will serve as the basis to model the fixed income part of the mixed fund in the
proposed model. The key difference with the Augustyniak et al. (2021) model is the presence of

the last term proportional to X§3) in (4.3), which is not present in their work.

4.2. Risky assets returns

The adaptation of the mixed fund model proposed in this paper keeps the same model for excess
equity returns as in Augustyniak et al. (2021). Returns of g equity assets are represented with the
exponential generalized auto-regressive conditional heteroskedastic (EGARCH) model of Nelson

(1991):

(8) © [ _ Lo ) /()
Ry j— Are=27/hij — Eht,j + VG 2 (4.4)

9~ s 2 ©)
logh) = + o923 + <|z |—T>+ﬁ logh®, ., (4.5)
where (0%, ¥, y, V) are t iated with the conditional volatility. The pro-
O parameters associated wi e conditional volatility. The pro
cess {h(s)} is F-adapted. Parameters A( ) represent equity risk premia. Forj=1,...,q4, Z;S) =
{Z(S) } ,—, are standard Gaussian white noises under P, independent of Z;, where the correlation

between Zi,i) and Zg) is denoted Iy ;.
As in Augustyniak et al. (2021), the following risk-neutral dynamics for the q equity assets is
assumed:

)
Rt+1]

log i = & + (Z@<s> x]@) <s><| 789 _ 39—

1
Ar = ‘5’153‘) + )z, (4.6)

+87 logh®,;,  (47)

)
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T T
where, under the risk-neutral measure Q, {Z%(S)} = {Zg)—i—)\](-s)} are also standard
2 =1 2 t=1

Gaussian white noises for each j=1,...,q, still with a contemporaneous correlation matrix
T
= [Fi,j]?j=1- The independence between the equity innovations {Zg(s)} and interest rate

T
innovations {Z(t@} is assumed to also hold under Q.

4.3. Mixed fund dynamics
To motivate the structure of the proposed mixed fund model, consider a portfolio invested in the

RS

rolling bond fund with weight W and in equity indices with respective weights ,;”, ..

where W + Z;lzl 1;]«(5) = 1. Its excess return would be represented as

q
=(F B 7 (S S
R = aro~ w(RE - an) + 399 (R, - an)
=1

3 q
=T+ W (xfil - (1-@%) X§z>>+ PixD 43 g (Rﬁi’l,j—Art) (4.8)
i=1 j=1

where
M
Yo=W Z w; (logATj_l - logATj> , (4.9)
j=1
M .
Ti=-WA Y a)jB(T;_)_l, i=1,2,3, (4.10)
j=1
M
Pi=WAD w(1-1-1)7"). (4.11)
j=1

Equation (4.8) serves as the conceptual basis for the proposed mixed fund model. However,
instead of relying on (4.9)-(4.11), model parameters can be directly estimated from the data in an
econometric fashion. Indeed, allocations to fixed income and equity assets from the mixed funds
are not exactly identical to those implied by previous assumptions - that is an investment in a
rolling horizon bond fund and in equity indices — and basis risk needs to be taken into account.
Moreover, as in Augustyniak et al. (2021), basis risk is further represented through a noise com-
ponent also following EGARCH dynamics. Mixed fund excess returns are thus assumed to be of

the form
3 q
F i i 3 S S F) ,(F
R, o= 2w (1) 30 (5, an) A,
i—1 j=1
(4.12)
2
log h?) = & 4 P2 4 y(F)<| 20— _) + 8P logh®,, (413)
2

where the basis risk innovation process Z( )={Z§F)}tT:1 is a standard Gaussian white
noise under P, independent of interest rate innovations Z' and equity innovations
Z;S), j=1,...,q. Basis risk volatility parameters (a)(F ), B y(F ), ,B(F )) and linear coefficients

(wo, w1, Yo, Us, wé, I(S), RN W;S)) are model parameters to be estimated.
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The risk-neutral dynamics can also be obtained along the lines of Augustyniak et al. (2021) by

translating basis risk innovations {Z(F)} | by some adapted process {X(F)}tT 01 under Q, inno-
vations {ZQ(F)} {Z(F) + A(F) } form a Gaussian white noise independent of risk-neutral

term structure and equlty innovations {Zp} and {ZQ(S)} _» respectively. The determination

of the process {A( )} 1o Stems from the martingale property that must be satisfied by the mixed
fund value process. Its value, which characterizes the risk-neutral dynamics of the mixed fund, is
provided in the following proposition whose proofis in Appendix A.

Proposition 4.1. The risk-neutral dynamics of mixed fund excess returns are given by

1
RY, — Art=—5<at(F)) +oPel® (4.14)
where
2 3 3
S S S)1.(S
(oﬁ”) EZZ‘//WE”ZHP:I‘FZZ‘//( T RS + 1D, (4.15)
i=1 =1 i=1 k=1
’ 1
N S
¢t5¢0+2¢i(/<89,@ 2021 i 2})+(wzx+w3 X _ Zw( >( 5;),
i=1 j=1
p Q) xa O [0, [0
Q(F) Zi:l ’ Zt—i-ll +Z] lw ht] Zt+1]+ h ZH—I
t+1 - (F)

2
log " = o + o ® (72 2 ) + <|Z;Q(F) — - —) + 8P log P,

N2
(B) = (F)
& nP {¢t+ 2( ) }

and the process {eg(l )} . is a sequence of independent standardized Gaussian variables under Q.
t=

4.4. Estimation of the mixed fund model
The mixed fund model developed above is estimated on real data. The equity model (4.4) and
(4.5) is estimated for two equity assets (g =2), namely the Se&+P/TSX Composite and Se&P 500
stock indices. For the mixed fund model (4.12)-(4.13), we consider the Assumption/Louisbourg
Balanced Fund A.* This is a mixed bond and equity fund composed approximately of 39% of
Canadian fixed income, 36% of Canadian equity, 15% of US equity, and 10% of other products.
Monthly price return data (NAV returns for the mixed fund) in Canadian currency from February
1986 (from February 1996 for the mixed fund) to January 2022 are considered, a span that matches
the term structure data used in earlier sections. Note that for the mixed fund, 14 out of the 326
monthly returns are missing values.

Tables 5 and 6 respectively show maximum likelihood estimated parameter and correspond-
ing standard errors for the equity model (4.4)-(4.5) and the mixed fund model (4.12)-(4.13).°

“https://assumption.lipperweb.com/assumplife/list# FundDetailhttps://assumption.lipperweb.com/assumplife/list#
FundDetail.
>Monthly periods with a missing value for the mixed fund return are discarded in the likelihood calculation.
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Table 5. Bivariate EGARCH equity model parameter estimates

Stock index J AJ.S w}s) otfs) Vj(s) I3,-(S) IR F) 12h5)5,/?
S&P/TSX 1 0.08443 —2.38375 —0.16171 0.38711 0.62836 14.69%
I (002126) s

(0.04390) (0.61691) (0.05631) (0.08286) (0.09706)

Notes: Maximum likelihood estimates and standard errors (in parentheses) of the equity model (4.4)-(4.5). Indices j = 1 and j = 2 are respectively
the S&P/TSX Composite and the S&P 500. The estimation is performed on monthly price return time series extending from February 1986 to January
2022 (432 returns by index).

Table 6. Mixed fund model parameter estimates

Parameter Vo " v vs A v
Estimate 0.00404 —1.72446 —0.76950 —0.44537 —0.05524 0.40076
T
Parameter P o) of) y B \/W
Estimate 0.13458 —1.03122 —0.09390 0.06653 0.89453 2.61%

Notes: Maximum likelihood estimates and standard errors (in parentheses) of the mixed fund model (4.12)-(4.13). The estimation is performed on
a monthly NAV return time series for the Assumption/Louisbourg Balanced Fund A extending from February 1996 to January 2022 (312 returns).

S

Note that initial variances hf) ;,j=1,2 and hf)F) are also considered as parameters to optimize

)
J

during the estimation. Equity indices are highly correlated with I'; , = 0.753. Furthermore, the
persistence of the volatility for both indices is high and similar, with ,st) = 0.628 for the S&P TSX

Composite and ﬁés) = 0.697 the S&P 500. Furthermore, the presence of a leverage effect is implied

by negative values of a®, j=1,2. For the mixed fund model, all parameter estimates are signif-

icant at the 99% confidence level. Negative values for estimates of coefficient ¥, i =1, 2 reflect
negative correlation between variations of the short rate and returns of the mixed fund. This is
expected due to the fund being partially invested in fixed income, where bond prices are inversely
related to interest rates. Interestingly, the estimate of coefficient 13, a parameter not present in
the Augustyniak et al. (2021) model, is also significant and negative. It implies that mixed fund
returns are negatively related to the humpiness of the term structure (and not only to changes in
humpiness).

The performance of our mixed fund model (4.12)-(4.13) is compared to that of Augustyniak
et al. (2021), which basically imposes the constraint wg =0 and uses the DG3 instead of the
DTAFNS model for the computation of smoothed values for term structure factors X. Our model
has an in-sample log-likelihood of 1038.719, whereas that of the Augustyniak et al. (2021) bench-
mark is 1035.714. Such reported figures are conditional log-likelihood for the mixed fund returns
specification given smoothed values of the term structure factors for each respective models and
equity index returns. Since the use of our mixed fund model does not lead to a deterioration
in fitting performance, and since such model is compatible with the DTAFNS model which has
arguably more favorable properties than the DG3 counterpart, the use of our mixed fund model
shall be preferred over that of Augustyniak et al. (2021).

5. Conclusion

This paper develops a discrete-time version of the arbitrage-free Nelson-Siegel model for dynamic
term structure modeling which is slightly different than but similar to that in Hong et al. (2019).
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A closed-form solution for the price of risk-free zero-coupon bonds is obtained, which makes
it possible to devise a convenient Kalman filter-based joint estimation procedure for physical and
risk-neutral dynamics of factors driving the term structure. The estimation of the model on histor-
ical data for the Canadian spot curve reveal that the model accurately represents term structure
movements and possesses superior distributional predictive power in comparison to some ver-
sion of the dynamic Nelson-Siegel model and to a discrete-time G3 model previously proposed
by Augustyniak et al. (2021), at least for the considered dataset. The discrete-time arbitrage-free
Nelson-Siegel model also has two other advantages over the latter benchmark: it tends to pro-
duce less frequent negative short rates and it provides better interpretability for the three factors
underlying the model. Finally, the mixed fund model of Augustyniak et al. (2021) characterizing
the dynamics of a mutual fund invested in both equity and fixed income is adapted to integrate
the discrete-time arbitrage-free Nelson-Siegel model as its component to depict interest rates
dynamics.

Supplementary material. To view supplementary material for this article, please visit https://doi.org/
10.1017/51748499524000010
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Appendix A. Proofs

In this section, proofs to several results mentioned in the body of the manuscript are provided.
To prove Proposition 2.1, the following lemma is needed.

Lemma A.1. Assume (2.10) holds. For t = ,Tandn= , T —t,

n (n—=1) (n=1)
Xg)-n_X(l) ( KS) +KSQiQ (l _KS) +Z”Zzt+lz ( )
=1

n 3
Q(rQ _ 0 Q\"h
3o - X, 1) (1-«3)" (A1)
=1 j#i

Proof of Lemma A.1: The proof relies on induction. The case n =0 is trivial when using the

convention Z?zl x; = 0 for any sequence of real numbers {x;}.
Then, assume (A.1) holds for some n < T — ¢t — 1. Using (2.10), for any i =1, 2, 3,

3
(1) (1) Q () Q
Xtii-n-i-l _thm + Z Kij (9 Xt+n) + XiiZ g
—

3
() Q «2Q Q ©) Q
_thi-n<1 - Ki,i) K;30;" + Z Kij (9 Xt+n> + il i
J#i
Applying (A.1) in the latter equality yields

n
() () Q n+1 Q,0Q Q (n+1—l) (n+1-1)
Xn =X{ ( Ki,i) +;i0; (1 _Ki,i> i szz( )
=1

n 3
Q _ 40 Q)" 040 Q _ 40
+ZZK1',J (0 _Xt+l 1) (1 _Ki,i> 1191 +ZKZ] (0 _Xt+n)

=1 j#i j#1
Q
+ X 1Zt+n+1 i
n+1 n+1
() Q n+1 Q,Q Q (n+1—l) (n+1-10)
X; (1 —Ki,z> + K30, (1 _Ki,i) ”ZZH-IZ( )
I=1
nt+l 3
Q (]) Q (Vl+1—l)
+ZZK1}J(9 Xt+l 1) (1_ 11) >
=1 j#i
hence completing the induction. O
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Remark A.1. The result of Lemma A.1 is also valid under the P-measure, i.e. when replacing all
Q’s with [P’s in the statement of the lemma and the proof.

Proof of Lemma 2.1: Equation (2.11) is trivial. To show (2.12),

d
u__ “ou
Zur —Zrdrr
u=1 u=1
d 7—1
=ro Zr”
u=1
(I—zrm HA =1+ —r)
B (1—r)?
1 Tl T — 4T
(1—r)?
_r—urt (T~ 1)yt
(1—r)?

Finally, to show (2.13),
-1 T—1 d
20U __ A}
; ur =r ; udrr

T—1

dr—tr +(t —1r™

- rdr 1—r)2
B A=rl—tr'+ @@+ D) —-Dr]+2(0 —r)[r—tr +(t — Drt]
= a—ry
Cr=r =+ + (t+ D = Drt = (0 + D(r = Drr?] 4+ 2[7 — or 4 (7 — 1))
B (1—ry
_ —(t =1 r2+Qrr =2t —Dr"' =1t +rr+r
- (1—=rp ' O
Proof of Proposition 2.1: From (2.7), foranyr=1,..., T — ¢,
T—1 T—1 T—1
(1) (2)
Z Tis = Z Kips T Z Xits:
s=0 s=0 s=0

Furthermore, since K% =0forj=1,...,3, Equation (A.1) leads to

s=0 s=0 =1
T—17-1
1
—oxV 43, Z Z ]l{lss}Zgl,l
s=1 =1
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T—17-1
(1)
RSP D) BEAH
=1 s=I
=X + 21, Z (r - l)Zt+11 (A.2)

I=1

Moreover, relying again on Equation (A.1) and recalling that K;% =0,k2 =2 and K;% =—X

>™22 T
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Note that

t—1-1

_ 1\t
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Placing (A.4) in (A.3) yields
T—
1 - )7 1—A—(1—=A)°
ngz e () | CT . Lo
— ) )
I—X)r 1 T—1
+ 222 ZZtHZ + [1 —(1=1" l] Sr)lfl' (A.5)
I=1
Additionally, combining (A.1) with k2 =12 —0and k% = 2 leads to
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Placing (A.6) in (A.5) gives

T—1 _
1 AT 1—(1—x)!
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Note that in the final expression of U(J Y » j=1,2,3, the indicator 1{;-1) could have been

replaced with 17~ since Uéj 3 0.

Lemma A.2. Consider assumptions of Proposition 2.1. Set B(l) B(z) B(3) 0. Then, for i=
1,2, 3 and any integer T > 1,

39—1=3940_“g>_Mﬁﬂﬂ—KV4=BQJU—XM>HY—MtﬂU—KV4-

Proof of Lemma A.2: Based on Proposition 2.1, the case t =1 is trivial. Now consider t > 1.
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Furthermore,
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Finally,
_ _ 3yr—1
B = 1-a=-n - M (t—Da-n""1
B 1—(1—1)7"2 1 2 -2
_(1—,\)( x +1_A—(r—2)(1—k) —(1—=2) )
=BY (1-M+1-1 -0

Proof of Proposition 4.1: Using (2.10), (2.14), (4.6) and (4.12),
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Conditionally upon F;, Rﬁ)l — Ary is therefore Gaussian with variance

2

var?[ R, — An| 7 ] = <a§F>> (A.8)
with at(F) given by (4.15). Enforcing that the discounted mixed fund value is a (Q-martingale
requires

1 =EQ [exp(Rg_)l — Art) |]—'t]
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which leads to
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Finally, due to (A.8), the innovation

3 Q) q &) /1,(8),Q(S) [ 1,(F) ,Q(F)
QF) _ 2 ie1 wizi)izt-i-ll + Zj:l 1/’]' ht,j Zt+1,j+ he " Z

+1 = F
o

Q)

it }tT: | is a standard Gaussian white noise. ]

is standard Gaussian under QQ, and thus {e

Appendix B. Benchmarks

In this paper, the discrete-time Gaussian three-factor model introduced by Augustyniak et al.
(2021) and the dynamic Nelson-Siegel model from Diebold & Li (2006) are considered as
benchmarks for the DTAFNS model. Such benchmarks are presented below.

B.1. Discrete-time Gaussian three-factor model

Augustyniak ef al. (2021) assume that the physical measure P dynamics of the short rate are that
of a discrete-time version of the three-factor Gaussian G3 model:

re=x" 4+ x4+ x9,

XES’)_I = XEI) + Ki (/,Ll — X§1)> + UiZg)_l,

i=1,2,3, (B.1)
where (kj, i, 0;) are the model parameters and {Z§”,Z§2),Z§3’}f=1 is a Gaussian white noise
process with contemporaneous correlation matrix I".

The risk-neutral dynamics of the factors is obtained using a discrete-time version of the

Girsanov theorem. The processes Zi.@ = {Zg}thl, i=1,2,3 defined through Zg_l’i =Zi11,i—

)»,'Xgi), with A; € R, are standard Gaussian white noises under the risk-neutral measure Q, still
with contemporaneous correlation matrix I". Therefore,

X0 =X 4P (1l - x) 40z, =123 (B.2)

i
where

Q Q Kifki

K;© =Ki— OjAi, uo= .
Ki — OjAj

Augustyniak et al. (2021) show that under (B.2), the time-t price of a risk-free zero-coupon bond
paying one dollar at the maturity time T is given by

T—t—1 3
P(t, T)= EQ exp| —A Z re—j = exp <Ar - A Z B(ri)XEi)),
=t i=1
witht =T — tand
A? ’
T Q i
A= T vy =AY (r —B@) ,
i=1
T
o 1 (1 - ;cl@)
BY)=—~ 72 i=1,2,3,
T KQ

i

https://doi.org/10.1017/51748499524000010 Published online by Cambridge University Press


https://doi.org/10.1017/S1748499524000010

Annals of Actuarial Science 29

Table B.1. DG3 model parameter estimates

i Ki Wi oj Aj

1 0.00523 0.01780 0.00538 0.72614
e
o B S

1 0.146 —0.785
r=| 0.146 1 —0.569
—0.785 —0.569 1
Notes: Parameter estimates for the discrete-time G3 model of Augustyniak et al. (2021)
given by Equations (B.1)-(B.2). The maximum likelihood estimation procedure is conducted

with a Kalman filter on the Canadian end-of-month yield curve data extending from January
1986 to January 2022.

Table B.2. Dynamic Nelson-Siegel model parameters estimates

i «h Vi i oF 02 Xi1l0 A h
1 0.0090 1.5184 0.0060 0 0.2000 0.1374
2 0.0142 1.1746 0.0062 0.0175 0.1912 —0.0351 0.0069 4.4281 x 10~°
3 0.0226 1.0405 0.0151 0.0686 0.2238 —0.0531
1 —0.8397 —0.9202 4x107¢ 0 0
p=| 08397 1 0.7106 | py o= 0 4x10% 0

—0.9202 0.7106 1 0 0 4x10°8

Notes: Parameter estimates for the dynamic Nelson-Siegel model. The estimation is conducted with the R package Rsolnp. The data sample
consists of Canadian end-of-month yield curve from January 1986 to January 2022.

where 13 is the three-dimensional column vector containing ones as elements and v; isa 3 x 3
matrix whose element on row i and column [, v¥, is

T T
il 0i0] G ol 1= (1_K’Q> (1_'(1(@)
Ul’ Z—Fi’l 'L'—Bl —BY +
‘ KIQKIQ i i 1— (1 — K1Q> (1 — Kl@)

The model is estimated with maximum likelihood using a Kalman filter on the Canadian end-
of-month yield curve data from January 1986 to January 2022. Resulting parameter estimates are
given in Table B.1.

B.2. Dynamic Nelson-Siegel model
To represent the DNS model dynamics, we consider the same model specifica-
tion than for the DTAFNS model, except that we that we use logA; =0 and B; =

1 _ e—)\‘( 1 _ e—)»t T
[r, , - re‘“] in the bond pricing formula (2.15).

A A
A global optimization of the log-likelihood is conducted with the R package Rsolnp on
the Canadian end-of-month yield curve data extending from January 1986 to January 2022.
Corresponding parameter estimates are provided in Table B.2.
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Appendix C. Point prediction performance for spot rates

In this section, we compare the ability of the various considered models to produce accurate point
monthly forecasts for spot rates. Let J(¢, t + 7) be the realized time-¢ spot rates with tenor 7, and
y(t, t + 1) be its associated model-implied forecast produced at time ¢ — 1. Out-of-sample predic-
tions are performed with the expanding window approach detailed in Section 3.3.2, i.e. models are
retrained yearly, with yearly out-of-sample test sets covering the period extending from January
2017 to January 2022. Define the following performance metrics:

T*
1
Mean error'?) =7s Z Gt t+1) =yt t+ 1)),

t=1

T*
1 N -
RMSE® = e > Ot t+1) = Jtt+1))>
t=1

T*
1 Z N ~
t=1

(x)
MAE
rMAE() = ——DIARNS (C.1)
MAE},

where T* is the total number of forecasting days (e.g. in the union of all test sets for out-of-sample
tests) and MAEga is the MAE™) for model M. Tables C.1 and C.2 report the point predictive
performance results in-sample and out-of-sample, respectively. Since DTAFNS and DTAFNS-U
forecasts are extremely close in the in-sample experiment, the DTAFNS-U benchmark is left out
of the out-of-sample test. RMSE and MAE metrics indicate that the point forecasting performance
of the DTAFNS model is quite similar to that of the DG3, the DNS and the DTAENS-U models.
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Table C.1. Performance metrics for in-sample spot rate point predictions

Mean error (in %) RMSE (in %) MAE (in %) rMAE

Tenor (months) DTAFNS DTAFNS-U  DG3 DNS  DTAFNS DTAFNS-U DG3 DNS DTAFNS DTAFNS-U DG3 DNS rMAEprasns.y 'MAEpes  MAEpns

6 0.044 0.049 0.030 —0.007  0.339 0.340 0.337 0.360  0.206 0.207 0.205 0.235 0.996 1.007 0.878
12 O 013 0 023 0.020 —0 004 0.353 0.354 0.351 O 349  0.236 0.235 0.236 0.238 1.001 O 998 0.991
36 e 70 023 - 70 001 e o 005.. . e . 0339 - .O 341 e ..0 325 . o 374. . 0243 R ..O 242 e 0230 . 0272 I 1004 s L 056. e 0894 .
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Notes: Performance metrics for the in-sample point forecasting of spot rates by the DTAFNS model and its three benchmarks. Performance metrics are reported for a selection of 16 tenors (in months) among the
33 available in dataset, while the average row at the bottom considers all tenors available.
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Table C.2. Performance metrics for out-of-sample spot rate point predictions

Mean error (in %)

RMSE (in %)

MAE (in %)

rMAE

Tenor (months) DTAFNS

DG3

DNS

DTAFNS

DG3

DNS

DTAFNS

DG3

rMAEDc.;3

rMAEDNs

6 0.048

12 0.155

36 0.089
60 —0.043

84 —0.186
108 —0.296

132 —0.375
156 —0.433

180 —0.472
204 —0.494

228 —0.498
252 —0.488

276 —0.466
300 —0.433

324 —0.389

348 —0.331

Average —0.286

0.075

0.054
—0.072
—0.192
—0.346
—0.400

—0.443

—0.489

—0.492

—0.481
—0.417

—0.286

0.160

—0.280

—0.473

—0.457

—0.361

0.120

—0.009
—0.137

—0.237
—0.298

—0.337
—0.366

—0.390
—0.408

—0.422

—0.434

—0.445

—0.456

—0.466

—0.476

—0.287

0.166

0.707
0.731

0.661
0.626

0.632
0.652

0.671
0.689

0.701
0.704

0.699
0.684

0.662
0.633

0.599

0.661

0.559

0.712

0.651
0.623

0.631
0.644

0.657
0.671

0.683
0.692

0.694
0.688

0.618
0.577

0.660

0.732

0.673
0.650

0.734
0.742

0.648
0.628

0.640
0.647

0.648
0.648

0.649
0.649

0.649
0.648

0.648
0.649

0.651

0.652

0.658

0.612

0.527
0.472

0.476
0.484

0.491
0.500

0.510
0.517

0.517
0.505

0.485
0.465

0.441

0.415

0.502

0.629

0.609

0.517

0.472

0.477

0.479

0.483

0.493

0.511

0.508

0.496
0.455

0.501

0.630 o

0.477 o

0.505 g

0.478 g

0.426

1.004

1.019

1.000
1.000
1.014

1.026
1.035

1.034
1.024

1.011

0.993
0.979
0.972

0.969

1.003

0.999

0.974

0.986

1.027
0.975
0.975

1.048
1.081
1.103

1.102
1.069

1.021
0.974

0.913

0.848

1.011

0.992

1.009

1.113

Notes: Performance metrics for the out-of-sample point forecasting of spot rates by the DTAFNS model and the DNG3 and DNS benchmarks explained in Appendix B. The expanding window approach
detailed in Section 3.3.2 is used for testing: models are retrained yearly, with yearly out-of-sample test sets covering the period extending from January 2017 to January 2022. Performance metrics are reported

for a selection of 16 tenors (in months) among the 33 available in dataset, while the average row at the bottom considers all tenors available.
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