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Abstract

Nonexponential asymptotics for solutions of two specific defective renewal equations
are obtained. These include the special cases of asymptotics for a compound geometric
distribution and the convolution of a compound geometric distribution with a distribution
function. As applications of these results, we study the asymptotic behavior of the
demographic birth rate of females, the perpetual put option in mathematics of finance,
and the renewal function for terminating renewal processes.

Keywords: Asymptotics; defective renewal equation; deterministic population model;
compound geometric distribution; heavy-tailed distribution; perpetual put option; renewal
function

2000 Mathematics Subject Classification: Primary 60K05
Secondary 60K10; 60K30

1. Introduction

Throughout this paper, all distributions are supported on [0, ∞). We denote the tail of distri-
bution F by F = 1 − F and the moment generating function of F by mF (s) = ∫ ∞

0 esx dF(x).
For two functions f1 and f2, f1(x) ∼ f2(x) means that limx→∞(f1(x)/f2(x)) = 1 and
f1(x) = o(f2(x)) means that limx→∞(f1(x)/f2(x)) = 0.

We consider the renewal equation

Z(x) = g(x) + α

∫ x

0
Z(x − y) dF(y), x ≥ 0, (1.1)

where α > 0, F(y) = 1 − F(y) is a proper probability distribution function with F(0) = 0,
and g(x) ≥ 0 is locally bounded. The renewal equation is called proper, defective, or excessive,
according to whether α is equal to one, is less than one, or is bigger than one, respectively. In
applications, the typical situation is that an unknown function Z satisfies a renewal equation
of the form (1.1), where g, α, and F are known. Based on this, we want to draw conclusions
about the function Z.

The only solution Z(x) to (1.1) which is vanishing for x < 0 and bounded on finite intervals
is given by

Z(x) = g(x) +
∞∑

k=1

αk

∫ x

0
g(x − y) dF ∗k(y), x ≥ 0, (1.2)
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(see, e.g. Rolski et al. (1999, Lemma 6.1.2)), where F ∗k is the distribution function of the k-fold
convolution of F with itself.

The renewal equation of the form (1.1) arises in many applied probability models, such as
branching processes, queueing theory, insurance ruin theory, reliability theory, demography,
and so on. However, it is rarely soluble in closed form. Hence, there has been great interest in
estimating the solution. The main purpose of this paper is to study the asymptotic behavior of the
solution Z(x) of (1.2) for large x. Set K(λ) = α

∫ ∞
0 eλx dF(x) and l = sup{λ ≥ 0 : K(λ) ≤ 1}.

Since F(0) = 0, we always have l < ∞. Only the following three cases can occur:

(i) l > 0 and K(l) = 1, the ‘Cramér case’,

(ii) l = 0, the ‘heavy-tailed case’,

(iii) l > 0 and K(l) < 1, the ‘intermediate case’.

It turns out that the asymptotic behavior of Z(x) heavily depends on the case which applies.
For case (i), if F is a nonlattice distribution and elxg(x) is directly Riemann integrable, then
the famous Cramér–Lundberg estimate states that

Z(x) ∼
∫ ∞

0 elyg(y) dy

α
∫ ∞

0 yely dF(y)
e−lx ,

(see, e.g. Feller (1971)). Obviously, if α ≥ 1 then we can always find l satisfying condition (i),
but if α < 1 then there may be no such number and, thus, there is no exponential Cramér–
Lundberg estimate for Z(x). Asmussen (1998) investigated the asymptotic behavior of Z(x)

under the conditions that g is integrable, g(x) ∼ b(x) for some subexponential density b, and
F has a subexponential density. Sharp upper and lower bounds on the solution Z(x) to (1.1)
have been derived in various situations; see Willmot et al. (2001) and references therein for
details. In particular, if g(x) = F(x) then (1.2) is a compound geometric distribution which has
been studied by many authors (see, e.g. Embrechts et al. (1979), Embrechts and Goldie (1982),
and Cline (1987)). If g(x) = G(x), a distribution function supported on [0, ∞), then (1.2) is
the convolution of a compound geometric distribution with G. For this case, the asymptotic
behavior and bounds of Z(x) have been studied by Cai and Garrido (2002) and Cai and Tang
(2004).

In this paper, we investigate the nonexponential estimates of Z(x) for some functions g(x)

in the cases (ii) and (iii), and then discuss applications of these results. In the sequel, we always
assume that α < 1.

2. Preliminaries

A random variable X (or its distribution function F ) is said to be heavy-tailed on the right
if E erX = ∞ for any r > 0. Heavy-tailed distributions have been the focus of study of many
researchers in finance and insurance in recent years; see Embrechts et al. (1997) for a review.

A distribution function F is said to belong to the class L of long-tailed distributions if
limx→∞(F (x − y)/F (x)) = 1 for every y > 0 (or, equivalently, for some y > 0); F is
said to belong to the subexponential class S if limx→∞(F ∗n(x)/F (x)) = n for any n ≥ 2
(or, equivalently, for n = 2); and F is said to belong to the class D of distribution functions
with dominatedly varying tails if lim supx→∞(F (xy)/F (x)) < ∞ for every y ∈ (0, 1) (or,
equivalently, for some y ∈ (0, 1)). It is well known that D ∩ L ⊂ S ⊂ L (see, e.g. Embrechts
et al. (1997)).
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We say that F ∈ S(γ ), γ ≥ 0, if and only if

lim
x→∞

F ∗2(x)

F (x)
= 2mF (γ ) < ∞,

lim
x→∞

F(x − y)

F (x)
= eγy, (2.1)

for all real y. We say that F ∈ L(γ ) if and only if F satisfies (2.1). Note that S(0) = S,
the class of subexponential distribution functions, and L(0) = L, the class of long-tailed
distribution functions. Distributions in S(γ ), γ > 0, are dominated by an exponential, i.e.
limx→∞ eγ xF (x) = 0. One way to construct densities whose distributions are in S(γ ) for
γ > 0 is to multiply densities whose distributions are in S by negative exponentials. A typical
example in S(γ ) is F with F ′(x) ∼ x−be−γ x as x → ∞, with b > 1. We refer the reader to
Chover et al. (1973a), Embrechts and Veraverbeke (1982), Embrechts and Goldie (1982), and
Klüppelberg (1989) for nice reviews of the classes S(γ ) and L(γ ), among others.

We now summarize some of the results about the classes of distributions above which will
be used in the sequel.

Lemma 2.1. For γ ≥ 0, if F1 ∈ L(γ ), F2 ∈ S(γ ), and supx≥0(F1(x)/F2(x)) < ∞, then

F1 ∗ F2(x) ∼ mF1(γ )F2(x) + mF2(γ )F1(x).

Proof. For the case γ = 0, see Embrechts and Goldie (1980); for the case γ > 0, see
Cline (1986).

Remark 2.1. For the case γ = 0, if the boundedness of F1(x)/F2(x) in Lemma 2.1, is
strengthened to the requirement F1(x) = o(F2(x)), then the condition F1 ∈ L can be omitted
(see Embrechts et al. (1979, Proposition 1)).

Lemma 2.2. For γ ≥ 0, if F ∈ S(γ ) then,

(i) for all integers n ≥ 1, limx→∞(F ∗n(x)/F (x)) = n(mF (γ ))n−1,

(ii) for any ε > 0, there exists a finite constant Kε such that

F ∗n(x) ≤ Kε(mF (γ ) + ε)n−1F(x)

for all n ≥ 2 and all x ≥ 0.

Proof. For the proof of the case γ = 0, see Embrechts et al. (1997); for the case γ > 0, see
Chover et al. (1973a), (1973b).

Lemma 2.3. (i) (Cline (1987, Theorem 2.13).) Assume that F ∈ L(γ ), γ > 0. Let
{λn} be a sequence of nonnegative coefficients such that λj > 0 for some j > 1 and∑∞

n=0 λn(mF (γ ) + ε)n < ∞ for some ε > 0. Let H = ∑∞
n=0 λnF

∗n. The following
statements are equivalent:

(a) F ∈ S(γ ),

(b) H ∼ cF for c = ∑∞
n=1 nλn(mF (γ ))n−1.
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(ii) (Embrechts et al. (1979, Lemma 3).) Suppose that α ∈ (0, 1) and G is a proper distribution
function on [0, ∞). If F(x) = (1 − α)

∑∞
n=0 αnG∗n(x) then the following assertions are

equivalent:

(c) F ∈ S,

(d) G ∈ S,

(e) F ∼ (α/(1 − α))G.

Lemma 2.4. (Cai and Tang (2004).) If F1, F2 ∈ D ∩ L then

F1 ∗ F2 ∈ D ∩ L and F1 ∗ F2(x) ∼ F1(x) + F2(x).

3. Asymptotic behavior of the solutions

Theorem 3.1. Consider the renewal equation (1.1). Assume that g(x) ≥ 0 is right-continuous
and decreasing to 0. Let G(x) = (g(0) − g(x))/g(0), x ≥ 0.

(i) If F ∈ S, G ∈ S, and supx(F (x)/G(x)) < ∞, then

Z(x) ∼ g(x)

1 − α
. (3.1)

(ii) If F ∈ S and G(x) = o(F (x)), then

Z(x) = o(F (x)). (3.2)

(iii) If γ > 0, αmF (γ ) < 1, F ∈ S(γ ), G ∈ S(γ ), and supx(F (x)/G(x)) < ∞, then

Z(x) ∼ αg(0)(mG(γ ) − 1)

(1 − αmF (γ ))2 F(x) + g(x)

1 − αmF (γ )
. (3.3)

(iv) If γ > 0, αmF (γ ) < 1, F ∈ S(γ ), G ∈ S(γ ), and G(x) = o(F (x)), then

Z(x) ∼ αg(0)(mG(γ ) − 1)

(1 − αmF (γ ))2 F(x). (3.4)

Proof. (i) Observe that G is a proper distribution function on [0, ∞) satisfying G(0) = 0
with right-tail G(x) = g(x)/g(0), x ≥ 0. It follows from (1.2) that Z(x) can be expressed as

Z(x) = g(0)

1 − α

∫ x

0
G(x − y) dU0(y)

= g(0)

1 − α
(G ∗ U0(x) − U0(x)), (3.5)

where

U0(x) = (1 − α)

∞∑
n=0

αnF ∗n(x).

By Lemma 2.3(ii) or Cai and Tang (2004, Proposition 1.1(c)),

U0(x) ∼ α

1 − α
F(x),
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which implies that U0 ∈ S, since S is closed with respect to tail equivalence (see, e.g.
Teugels (1975)). Using Lemma 2.2(ii) and the condition supx(F (x)/G(x)) < ∞, we find that
supx(U0(x)/G(x)) < ∞. Thus, it follows from Lemma 2.1 that G ∗ U0(x) ∼ G(x) + U0(x),
which, together with (3.5), gives

Z(x)

G(x)
= g(0)

1 − α

(
G(x) + U0(x) + o(G(x) + U0(x))

G(x)
− U0(x)

G(x)

)

= g(0)

1 − α

(
1 + o(G(x) + U0(x))

G(x) + U0(x)

(
1 + U0(x)

G(x)

))

→ g(0)

1 − α
.

Since g(x) = g(0)G(x), (3.1) follows.

(ii) The condition G(x) = o(F (x)) implies that G(x) = o(U0(x)) since U0(x) ∼
(α/(1 − α))F (x). If F ∈ S then, by Lemma 2.1 and Remark 2.1 or using Cai and Garrido
(2002, Theorem 3.3), we have G ∗ U0(x) ∼ U0(x), which gives (3.2) by using (3.5).

Similarly, (3.3) and (3.4) follow from Lemma 2.1 and the fact that (by Lemma 2.3(i))

U0(x) ∼ α(1 − α)

(1 − αmF (γ ))2 F(x),

which implies that U0 ∈ S(γ ) since S(γ ) is closed with respect to tail equivalence (see
Embrechts and Goldie (1982, Theorem 2.7)). This ends the proof of Theorem 3.1.

Theorem 3.2. Consider the renewal equation (1.1). Suppose that g(x) ≥ 0 with g(0) = 0 is
a right-continuous and nondecreasing function such that limx→∞ g(x) = g(∞) < ∞. Let
P(x) = g(x)/g(∞), x ≥ 0.

(i) If F ∈ S, P ∈ S, and supx(F (x)/P (x)) < ∞, then

Z(∞) − Z(x) ∼ g(∞) − g(x)

1 − α
+ αg(∞)

(1 − α)2 F(x). (3.6)

In particular, if g(∞) = 1 then Z(x) ∼ g(x)/(1 − α) + (α/(1 − α)2)F (x).

(ii) If F ∈ S and P(x) = o(F (x)), then

Z(∞) − Z(x) ∼ αg(∞)

(1 − α)2 F(x).

In particular, if g(∞) = 1 then Z(x) ∼ (α/(1 − α)2)F (x).

(iii) If γ > 0, αmF (γ ) < 1, F ∈ S(γ ), P ∈ S(γ ), and supx(F (x)/P (x)) < ∞, then

Z(∞) − Z(x) ∼ g(∞) − g(x)

1 − αmF (γ )
+ αg(∞)mP (γ )

(1 − αmF (γ ))2 F(x).

In particular, if g(∞) = 1 then

Z(x) ∼ 1

1 − αmF (γ )
g(x) + αmg(γ )

(1 − αmF (γ ))2 F(x).
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(iv) If γ > 0, αmF (γ ) < 1, F ∈ S(γ ), P ∈ S(γ ), and P(x) = o(F (x)), then

Z(∞) − Z(x) ∼ αg(∞)mP (γ )

(1 − αmF (γ ))2 F(x).

In particular, if g(∞) = 1 then Z(x) ∼ (αmg(γ )/(1 − αmF (γ ))2)F (x).

Proof. (i) Clearly, P is a proper distribution function on [0, ∞) satisfying P(0) = 0 with
right-tail

P(x) = g(∞) − g(x)

g(∞)
.

It follows from (1.2) that the solution of (1.1) can be written as

Z(x) = (1 − α)−1g(∞)(P ∗ U0)(x), x ≥ 0, (3.7)

where, as before, U0(x) = (1 − α)
∑∞

n=0 αnF ∗n(x). Thus,

Z(x)

Z(∞)
= (P ∗ U0)(x), x ≥ 0, (3.8)

since Z(∞) = g(∞)(1 − α)−1 by (3.7). As in the proof of Theorem 3.1(i), U0 ∈ S, U0(x) ∼
(α/(1 − α))F (x), and supx(U0(x)/P (x)) < ∞. By Lemma 2.1 we obtain

P ∗ U0(x) ∼ P(x) + U0(x) ∼ P(x) + α

1 − α
F(x),

which, together with (3.8), gives (3.6).
The proof of part (ii) is virtually the same as that of Theorem 3.1(ii). We can prove parts (iii)

and (iv) in a similar way to parts (i) and (ii). This ends the proof of Theorem 3.2.

Remark 3.1. We remark that the condition supx(F (x)/P (x)) < ∞ in Theorem 3.2 is weaker
than the conditions used by Cai and Garrido (2002, Theorems 3.4, 3.5, and 4.1), and the
asymptotic results of the above paper can be deduced from Theorem 3.2.

The following theorem does not assume a domination relationship between F and P .

Theorem 3.3. Suppose that g(x) satisfies the same conditions as in Theorem 3.2. If F, P ∈
D ∩ L, where P(x) = g(x)/g(∞), then

Z(∞) − Z(x) ∼ g(∞) − g(x)

1 − α
+ αg(∞)

(1 − α)2 F(x).

In particular, if g(∞) = 1 then Z(x) ∼ g(x)/(1 − α) + (α/(1 − α)2)F (x).

Proof. The proof is similar to that of Theorem 3.2, but using Lemma 2.4 instead of
Lemma 2.1.

4. Applications

In this section, we study the asymptotic behavior of various renewal equations arising in
applied probability models. Several examples from insurance ruin theory, branching processes,
and queueing theory can be found in Willmot et al. (2001). We first consider an example from
demography.
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Example 4.1. (Deterministic population model.) Let B(t) denote the rate at which females
are born at time t , i.e. B(t) dt is the number of female babies born between times t and t + dt .
Given B(t) for t ≤ 0, project B(t) for t > 0. For this purpose, assume a survival function s(x)

and an age-specific force of birth β(x), x > 0. Thus, s(x) is the probability that a newly born
female survives to age x, and β(x) dt is the number of female babies borne by a parent of age x

in a time interval of length dt . Then B(t) satisfies the following renewal equation (see Gerber
(1979)):

B(t) =
∫ ∞

t

B(t − x)s(x)β(x) dx +
∫ t

0
B(t − x)s(x)β(x) dx. (4.1)

Clearly, (4.1) is of the form (1.1) with g(x) = ∫ ∞
x

B(x−y)s(y)β(y) dy, α = ∫ ∞
0 s(x)β(x) dx,

and

F(x) =
∫ x

0 s(y)β(y) dy∫ ∞
0 s(y)β(y) dy

.

If there exist positive constants ci such that c1 ≤ β(x) ≤ c2 and c3 ≤ B(−x) ≤ c4, for x ≥ 0,
then

c1

c2
≤ F(x)

S(x)
≤ c2

c1

for all x ∈ [0, ∞) and supx≥0(F (x)/G(x)) < ∞, where

S(x) =
∫ ∞
x

s(y) dy∫ ∞
0 s(y) dy

, G(x) =
∫ ∞
x

B(x − y)s(y)β(y) dy∫ ∞
0 B(x − y)s(y)β(y) dy

.

Thus, if S ∈ S(γ ) then F ∈ S(γ ) (see, e.g. Klüppelberg (1988, Theorem 2.1)). If, in addition,
αmF (γ ) < 1, then the conditions of Theorem 3.1 are fulfilled. Consequently, Theorem 3.1
yields

B(x) ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ ∞
x

B(x − y)s(y)β(y) dy

1 − ∫ ∞
0 s(y)β(y) dy

if γ = 0,

(mG(γ ) − 1)
∫ ∞
x

s(y)β(y) dy
∫ ∞

0 B(−y)s(y)β(y) dy

(1 − αmF (γ ))2

+
∫ ∞
x

B(x − y)s(y)β(y) dy

1 − αmF (γ )
if γ > 0.

The second example is from mathematics of finance.

Example 4.2. (Pricing a perpetual put option.) Let S(t) denote the price at time t ≥ 0 of a
non-dividend-paying stock. We assume that the logarithm of the stock price process follows a
process of the form U(t) = u + ct − Z(t), where c > 0 is constant and {Z(t)} is a compound
Poisson process specified by the Poisson parameter λ > 0 and the distribution of the jump
amounts. To simplify notation, we suppose that the latter is continuous with probability density
p(x), x ≥ 0. We further assume that the market is frictionless and risk-neutral, and that there
is a constant risk-free force of interest, r > 0.

We consider a perpetual put option with payoff function �(s) = max(K − s, 0), where K

is the exercise price. We restrict ourselves to options where it is clear a priori that the optimal
exercise strategy is a stopping time of the form TL = inf{t : S(t) < L}. Let

V (s; L) = E[e−rTL�(S(TL)) | S(0) = s], s ≥ L,
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denote the expected discounted value of the payoff if the initial stock price is s and the strategy
TL is applied. Then V (s; L) satisfies the equation (see Gerber and Shiu (1998))

V (s; L) =
∫ ln(s/L)

0
V (se−y; L)h(y) dy +

∫ ∞

ln(s/L)

�(se−y)h(y) dy, s ≥ L,

where

h(y) = λ

c
ey

∫ ∞

y

e−xp(x) dx.

Replace s by x = ln(s/L) and consider the function W(x; L), defined by W(x; L) = V (s; L).
Then W satisfies the following defective renewal equation:

W(x; L) =
∫ x

0
W(x − y; L)h(y) dy +

∫ ∞

x

�(Lex−y)h(y) dy, x ≥ 0. (4.2)

Clearly, (4.2) is of the form (1.1) with g(x) = ∫ ∞
x

�(Lex−y)h(y) dy, α = ∫ ∞
0 h(x) dx, and

F(x) = (
∫ ∞

0 h(x) dx)−1
∫ x

0 h(x) dx. Let G(x) = g(x)/g(0). If F ∈ S(γ ), γ ≥ 0, then it is
not difficult to verify that

lim
x→∞

F(x)

G(x)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫ ∞
0 �(Le−y)h(y) dy∫ ∞

0 h(y) dy(K − (γL
∫ ∞

0 h(y) dy)/(1 + γ
∫ ∞

0 h(y) dy))
if γ > 0,

∫ ∞
0 �(Le−y)h(y) dy

K
∫ ∞

0 h(y) dy
if γ = 0.

Thus, G ∈ S(γ ) and supu≥0(F (u)/G(u)) < ∞, since S(γ ) is closed with respect to tail
equivalence. Applying Theorem 3.1 yields the following results.

(i) For γ = 0,

W(x; L) ∼
∫ ∞
x

�(Lex−y)h(y) dy

1 − ∫ ∞
0 h(y) dy

, as x → ∞,

or

V (s; L) ∼
∫ ∞

ln(s/L)
�(se−y)h(y) dy

1 − ∫ ∞
0 h(y) dy

, as s → ∞.

(ii) For γ > 0,

W(x; L) ∼ (mG(γ ) − 1)
∫ ∞

0 �(Le−y)h(y) dy
∫ ∞
x

h(y) dy

(1 − mF (γ )
∫ ∞

0 h(y) dy)2

+
∫ ∞
x

�(Lex−y)h(y) dy

1 − mF (γ )
∫ ∞

0 h(y) dy
, as x → ∞,

or

V (s; L) ∼ (mG(γ ) − 1)
∫ ∞

0 �(Le−y)h(y) dy
∫ ∞

ln(s/L)
h(y) dy

(1 − mF (γ )
∫ ∞

0 h(y) dy)2

+
∫ ∞

ln(s/L)
�(se−y)h(y) dy

1 − mF (γ )
∫ ∞

0 h(y) dy
, as s → ∞.
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The last example is from renewal theory.

Example 4.3. (The renewal function for terminating renewal processes.) Let T1, T2, . . . be
a sequence of nonnegative, independent, and identically distributed random variables with
common distribution function F ; we define the renewal counting process

N(t) =
∞∑

n=1

1{T1 + · · · + Tn ≤ t}, t ≥ 0,

where 1 is the indicator function. The function M(t) = E N(t) is called the renewal function.
It gives the expected number of renewals in the interval [0, t]. To avoid trivialities we assume
that the interrenewal distances T1, T2, . . . are not concentrated at zero, that is, F(0) < 1. If
F(∞) < 1 then the resulting renewal process is called terminating or transient. Then M

satisfies (see, e.g. Feller (1971)) the following defective renewal equation:

M(t) = F(t) +
∫ t

0
M(t − x) dF(x), x ≥ 0. (4.3)

Clearly, (4.3) is of the form (1.1) with α = F(∞) and g(t) = F(t). Assume that F ∈ S(γ ),
γ ≥ 0. Then Theorem 3.2 yields

M(∞) − M(t) ∼

⎧⎪⎪⎨
⎪⎪⎩

F(∞) − F(t)

(1 − F(∞))2 if γ = 0,

F (∞) − F(t)

(1 − mF (γ ))2 if γ > 0.

The result for the case γ = 0 can be found in Teugels (1975, Theorem 4); here we have provided
a different proof.
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