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NON-TRIVIAL HIGHER HOMOTOPY OF FIRST-ORDER THEORIES

TIM CAMPION AND JINHE YE

Abstract. Let T be the theory of dense cyclically ordered sets with at least two elements. We determine
the classifying space ofMod(T ) to be homotopically equivalent toCP

∞. In particular, �2(|Mod(T )|) = Z,
which answers a question in our previous work. The computation is based on Connes’ cycle category Λ.

Introduction. In the previous work of the authors with Cousins [1], it was shown
that given a complete first-order theory T, the fundamental group of the classifying
space ofMod(T ), the category of models of T with elementary embeddings, is exactly
the Lascar group. The Lascar group was introduced as a model-theoretic Galois
group [7]. Other topological invariants of the classifying space |Mod(T )| beyond the
fundamental group appear to be worthy of exploration. In all the examples appearing
in [1], the homotopy groups in degrees 2 and above were observed to vanish. By
relaxing the restriction to models of theories in other more expressive logics, for
example, abstract elementary classes (AECs), arbitrary homotopy types can be
realized, even for AECs with nice model-theoretic properties [2]. This motivates the
following question:

Question 0.1. Is it true that for every first-order theory T, �2(|Mod(T )|) vanishes?
If not, what is the model-theoretic content of it?

In this short note, we answer the first part of Question 0.1 in the negative. Specif-
ically, for T the theory of dense cyclically ordered sets with at least two elements,
|Mod(T )| � CP

∞. In particular, �2(|Mod(T )|) = Z �= 0. The computation is based
on Connes’ cycle category Λ [4] and the work of Nikolaus and Scholze [9]. The
theory of dense cyclically ordered sets is a canonical example in model theory where
existence of non-forking extensions fails over ∅. In forthcoming work, we will show
that for T stable, �2(|Mod(T )|) is always trivial. Stability can be characterized
axiomatically in terms of forking independence (see, for example, [5, 6]), and
clever usage of these independence axioms will enable us to trivialize the second
homotopy group. This seems to suggest that �2(|Mod(T )|) is related to certain
aspects of forking/dividing. However, the connection is still rather mysterious (see
Remark 2.10). For an introduction to forking and dividing, see [11, Chapter 7].

The contents of this note are as follows. In Section 1, we introduce the category
of cyclically ordered sets, and compute its homotopy type following [9]. In Section 2,
we introduce the theory of dense cyclically ordered sets and its category of models
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DCyc. We show that it is homotopy equivalent to the category of cyclically ordered
sets. Lastly, for a first-order theory T, we have a brief discussion of �2|Mod(T )| with
forking and dividing in model theory.

§1. Nonempty cyclically ordered sets. In this section, we introduce the category
of cyclically ordered sets (Definition 1.1), and compute the homotopy type of the
category thereof (Corollary 1.14).

1.1. Cyclically ordered sets. We introduce cyclically ordered sets from a model-
theoretic perspective (Definition 1.1) and show that this category may alternatively
be defined via an Ind construction (Lemma 1.3).

Definition 1.1. The language of cyclically ordered sets LCyc is the language with
a ternary relation symbol R(x, y, z). A cyclically ordered set is an LCyc-structure
(S,R(x, y, z)) such that the following holds:

Asymmetry: ∀x, y, z, wR(x, y, z) ∧R(x, z, w) → y �= w;
Transitivity: ∀x, y, z, wR(x, y, z) ∧R(x, z, w) → R(x, y,w);
Connectedness: For all distinct x, y, z, R(x, y, z) or R(z, y, x);
Cyclicity: ∀x, y, zR(x, y, z) → R(y, z, x).
An embedding of cyclically ordered sets (or in short, embedding) is an LCyc-

embedding. Namely f : C → D is an embedding of cyclically ordered sets if f is
injective and RC (a, b, c) ↔ RD(f(a), f(b), f(c)). Note that the preservation of R
implies f is injective once C has at least three elements. We introduce notation for
the following categories of cyclically ordered sets:

• Cyc is the category of cyclically ordered sets and embeddings between them.
• Cyc>0 ⊂ Cyc is the full subcategory of nonempty cyclically ordered sets.
• Cycfin

>0 ⊂ Cyc>0 is the full subcategory of finite, nonempty cyclically ordered
sets.

Remark 1.2. It is worth pointing out that the axioms other than Cyclicity
for a cyclically ordered set state that R(x, y, z) is a strict linear ordering on the
complement of x for each x.

Lemma 1.3. Cyc>0 is an ℵ0-accessible category. The finitely-presentable objects are
the finite cyclically ordered sets. Thus we have an equivalence Cyc>0 � Ind(Cycfin

>0).

Proof. It is clear that directed colimits are given by taking unions. Thus the
finite nonempty cyclically ordered sets are finitely presentable. As every nonempty
cyclically ordered set is the (directed) union of its finite cyclically ordered subsets,
the claim follows. 


Remark 1.4. The above mentioned categoriesCyc>0 andCycfin
>0 are closely related

to the cyclic sets of [4], but there are some differences. The first difference is the site
of definition: Connes’ cycle category Λ is a Reedy category with both “monic” and
“epic” morphisms; our category Cycfin

>0 ⊂ Λ contains only the monomorphisms, as
is more natural in the setting of model theory. The other main difference is that
Connes’ category of cyclic sets is a presheaf category Psh(Λ), whereas our category
of cyclically ordered sets is just the Ind-category Cyc>0 = Ind(Cycfin

>0) ⊂ Psh(Cycfin
>0)

(Lemma 1.3).
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Following this observation, we denote by [n – 1] the cyclically ordered set with n
elements.

1.2. Finite cyclically ordered sets and paracycles. Recall (cf. [9, Appendix B]) that
Connes’ cycle category Λ may be defined as the quotient of the paracycle category
(variously denoted L or Λ∞) by a free categorical action of the categorical group
BZ. In this subsection, we check that Cycfin

>0 is likewise the quotient of the category
PCycfin

>0 of monomorphisms in Λ∞ by the restriction of this categorical action.

Remark 1.5. For us, a categorical group G is a strict group object in the category
of categories. An action of a categorical group G on a category C is meant in the
strict sense—a strictly unital and associative functor G × C → C .

We let BZ denote the categorical delooping of the integers. This is the category
with one object, with morphism setZ, and composition given by addition of integers.
This category is a categorical group, i.e., a strict group object in the category of
categories, in a unique way. As in [9, Appendix B], a BZ action on C amounts to a
Z action on the homsets of C.

Definition 1.6 [3, 9]. A graded poset is a poset equipped with an automorphism.
A paracycle is a graded poset of the form (1/n)Z for some n ≥ 1, where the
automorphism is given by x �→ x + 1. We denote by PCycfin

>0 the category of
paracycles and poset embeddings which respect the automorphism.

The category of graded posets admits an action by the categorical group BZ,
which adds the shift automorphism to any morphism. This restricts to a free action
on PCycfin

>0. There is a canonical functor PCycfin
>0 → Cycfin

>0 sending (1/n)Z to [n – 1].

Remark 1.7. The paracycle category, denoted L by [3] and Λ∞ by [9], is the
category with the same objects as PCycfin

>0 but with morphisms all order-preserving,
automorphism-respecting maps. Connes’ cycle category Λ is then defined to be the
quotient of Λ∞ by the canonical BZ-action.

Remark 1.8. Similarly to the case of Λ∞ [9, Appendix B] PCycfin
>0 is a full

subcategory of the functor category Fun(BZ,Pos), where now Pos is the category of
posets and embeddings between them. As in that case, the action of BZ on PCycfin

>0
is inherited from the action of the categorical group BZ on itself.

Just as the functor Λ∞ → Λ exhibits Λ as the quotient of Λ∞ by the action of
BZ, the same is true of the functor PCycfin

>0 → Cycfin
>0:

Lemma 1.9. The canonical functor PCycfin
>0 → Cycfin

>0 exhibits Cycfin
>0 as the quotient

of PCycfin
>0 by the BZ action. This quotient is preserved by the nerve functor.

Proof. As in [9, Appendix B], theBZ action onPCycfin
>0 amounts to aZ action on

the homsets of PCycfin
>0, given by applying the shift map of the source (equivalently,

of the target) object. Moreover, the quotient by the BZ action is given by
quotienting each homset by this Z action. The map MapPCycfin

>0
((1/m)Z, (1/n)Z) →

MapCycfin
>0

([m – 1], [n – 1]) is clearly surjective. Moreover, two morphisms f, g are

identified under this map if and only if they differ by a shift. Thus this map quotients
by the Z action as desired. As a quotient which is the identity on objects and full,
this quotient is preserved by the nerve functor. 
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Remark 1.10. We might enlarge the category Cycfin
>0 to allow for certain non-

injective maps. One way to do this would be to allow for monotone maps, i.e.,
f : C → D such that RD(f(x), f(y), f(z)) → RC (x, y, z). However, this would
not result in a category equivalent to Connes’ category Λ. For example, there is a
unique monotone map [n] → [0] for each finite cyclically ordered set [n], but in Λ
there are n + 1 distinct morphisms [n] → [0]. It is only the monomorphisms of Λ
which are well-described as maps of structures.

1.3. The homotopy type of nonempty cyclic sets. In this subsection, we show that
the homotopy types of Cycfin

>0 and Cyc>0 are BS1 = CP∞. The idea is to show that
the homotopy type of PCycfin

>0 is contractible and use that Cycfin
>0 is the (homotopy)

orbits of the latter by the free action of S1 = BZ from Definition 1.6. This method
of proof is well-known [3, 9] in the case of Λ and Λ∞; we verify here that the same
proof works when we restrict to categories of monomorphisms.

We begin by showing that PCycfin
>0 is contractible by comparing it to the

semisimplex category Δinj of nonempty finite linear orders and embeddings between
them. The analog of the following lemma for the inclusion Δ → Λ∞ of the simplex
category into the paracycle category is well-known. The proof for the categories of
monomorphisms is the same (although there is an error in the proof of [9, Theorem
B.3], since the intersection C[t,t+1) ∩ C[s,s+1) is often empty):

Lemma 1.11 [3, 8.5.15], [9, Theorem B.3]. The canonical functor Δinj → PCycfin
>0

is homotopy initial (i.e., it satisfies the dual hypotheses of Quillen’s Theorem A) and
in particular induces a homotopy equivalence of classifying spaces.

Proof. For Quillen’s Theorem A, see [10, Theorem A]. Let (1/n)Z ∈ PCycfin
>0,

and consider the slice category Δinj ↓ (1/n)Z. For any a, b ∈ (1/n)Z with a < b,
consider the full subcategory C[a,b) spanned by those maps f : (1/k)Z → (1/n)Z
such that the image of {0, 1/k, ... , (k – 1)/k} is contained in the half-open interval
[a, b). Observe that every f ∈ C is contained in C[a,a+1) for some a ∈ (1/n)Z. We
will induct on b – a to show that C[a,b) is contractible. In the base case, if b ≤ a + 1,
then C[a,b) is isomorphic to Δinj ↓ [m] where m = n(b – a). So C[a,b) has a terminal
object and hence is contractible. For the inductive step, for any a < b – 1, the square

C[b–1,b–1/n) C[b–1,b)

C[a,b–1/n) C[a,b)

is both a pushout and pullback, even after taking nerves, and it comprises
cofibrations of simplical sets. Thus it is a homotopy pushout. By induction it is
a homotopy pushout of contractible simplicial sets, and hence C[a,b) is contractible
as well, completing the induction. Passing to the (filtered) colimit,∪a<bC[a,b) = Δinj ↓
(1/n)Z, this category is weakly contractible as desired. 


Corollary 1.12 [3, 9]. The category PCycfin
>0 is weakly contractible.

Proof. This follows from Lemma 1.11 and the fact that Δinj is weakly contractible
[8, 1.7.24]. 
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Corollary 1.13 [3, 4, 9]. The category Cycfin
>0 has the homotopy type of BS1 =

K(Z, 2) = CP∞.

Proof. This follows from Corollary 1.12 and Lemma 1.9, since BZ is equivalent
as a topological group to S1. 


Corollary 1.14. The category Cyc>0 has the homotopy type of BS1 = K(Z, 2) =
CP∞.

Proof. This follows from Corollary 1.13 and Lemma 1.3, since for any category
C we have |C| � | Ind(C)| (this follows from Quillen’s Theorem A as for any X ∈
Ind(C), the category C ↓ X is filtered and hence contractible). 


§2. Dense cyclically ordered sets. In this section, we introduce the theory of dense
cyclically ordered sets (Definition 2.1). We then compute the homotopy type of the
category of models thereof (Corollary 2.8).

2.1. Completeness and quantifier elimination.

Definition 2.1. Let T be the theory, in the language of cyclically ordered sets
LCyc, of a dense cyclically ordered set with at least two elements. More explicitly, the
density condition is expressed as the following:

∀x, z (x �= z → ∃y R(x, y, z)).

The following follows from the back-and-forth argument in dense linear orders
without endpoints.

Fact 2.2. T has a unique countable model up to isomorphism, which is Q/Z with
the obvious cyclic ordering given by < in Q. Moreover, T admits quantifier elimination
in LCyc.

We will use DCyc to denote the category of models of T where the morphisms are
elementary embeddings. By quantifier elimination, the arrows are exactly the LCyc-
embeddings. In other words, DCyc is the full subcategory of Cyc>0 whose objects
consist of the dense ones.

2.2. The homotopy type of dense cyclically ordered sets.

Definition 2.3. Given a cyclically ordered set C, let T (C ) = C × {0, 1}. We
identify C with C × {0} ⊆ T (C ); call the inclusion map �C : C → T (C ). Give
T (C ) the cyclic structure where the ordering is such that (c, 1) is placed in
the cut immediately after c with respect to C. More precisely, this means that
R((x, 0), (x, 1), y) for any y distinct from (x, 0), (x, 1). If f : C → D is an
embedding of cyclically ordered sets, T (f) : T (C ) → T (D) is the map that sends
(c, i) to (f(c), i) for i = 0, 1.

The following lemma is immediate.

Lemma 2.4. T (C ) is a cyclically ordered set, and C → T (C ) is an embedding of
cyclically ordered sets. The construction C �→ T (C ) is functorial, and the embedding
C → T (C ) is natural. Moreover, if C is nonempty, thenT (C ) has at least two elements.
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Definition 2.5. For a cyclically ordered set C, define T∞(C ) = ∪nT n(C ) where
the inclusion maps are given by �; continue to call the inclusion � : C → T∞(C ).
T∞(f) is also defined accordingly.

Lemma 2.6. T∞(C ) is a cyclically ordered set, and C → T∞(C ) is an embedding
of cyclically ordered sets. The construction C �→ T∞(C ), f �→ T∞(f) is functorial,
and the embedding � : C → T∞(C ) is natural. Moreover,T∞(C ) is an object in DCyc
if C is nonempty.

Proof. The naturality follows from Lemma 2.4. So it suffices to show that
T∞(C ) is dense. Let x �= y ∈ T∞(C ). By construction, there is n ∈ N such that
x, y ∈ Tn(C ). If there is z ∈ Tn(C ) with R(x, z, y), then we are done. Otherwise,
observe that in Tn+1(C ), R((x, 0), (x, 1), (y, 0)) holds. 


Corollary 2.7. The functor T∞ : Cyc>0 → DCyc and the inclusion functor
i : DCyc → Cyc>0 induce inverse homotopy equivalences after passing to classifying
spaces.

Proof. We have natural transformations � : id ⇒ iT∞ and � : id ⇒ T∞i . 


Corollary 2.8. We have |DCyc| � BS1 = K(Z, 2) = CP∞. In particular, DCyc
is an elementary class whose classifying space is not aspherical.

Proof. BS1 = |Cyc>0| � |DCyc| by Corollary 1.14 and Corollary 2.7,
respectively. 


Remark 2.9. If we tried to include the empty cyclically ordered set into Cycfin
>0,

the functor T∞ would not turn the empty one into a nonempty one. So we wouldn’t
be able to relate our category homotopically to a category where emptiness is ruled
out by the theory.

Remark 2.10. Dense cyclically ordered sets are canonical examples where the
0-definable set x = x forks over ∅. However, the exact relationship between forking
and the higher homotopy remains mysterious. Another canonical example of
forking �= dividing comes from the theory of infinite atomic Boolean algebras T. It
has quantifier elimination in L = {∧,∨,c , 0, 1, (An)n∈N>0} where each An is to be
interpreted as the predicate for n-atoms: the join of n distinct atoms. An element a
is infinite if it is above infinitely many atoms, and coinfinite if ac is infinite. Note that
any a, b that are infinite and coinfinite have the same type over ∅. The predicate
A1(x) does not divide but forks since one can find an infinite and coinfinite element
aA1(x) → x ∧ a = x or x ∧ ac = x and the formula x ∧ a = x divides for any
infinite and coinfinite a. On the other hand, the classifying space of the category
of models of infinite atomic Boolean algebra Mod(T ) is contractible. To see this,
note that there is a functor F from the category of infinite sets with embeddings to
Mod(T ) by sending each set A to Pfin(A) and associate with each map f : A→ B
the map Pfin(A) → Pfin(B) induced by f on the atoms. There is also the “forgetful”
functor U from Mod(T ) to the category of infinite sets by sending each atomic
Boolean algebra to its set of atoms. There are obvious natural transformations from
the identity to UF , and from the identity to FU , so and thus the classifying spaces
of these categories are homotopy equivalent.
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