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Abstract The reduced peripheral system was introduced by Milnor [18] in the 1950s for the study of
links up to link-homotopy, that is, up to homotopies leaving distinct components disjoint; this invariant,
however, fails to classify links up to link-homotopy for links of four or more components. The purpose of
this paper is to show that the topological information which is detected by Milnor’s reduced peripheral
system is actually 4-dimensional. The main result gives indeed a complete characterization of links
having the same reduced peripheral system, in terms of ribbon solid tori in 4–space up to ribbon link-
homotopy. The proof relies on an intermediate characterization given in terms of welded diagrams up to
self-virtualization, hence providing a purely topological application of the combinatorial theory of welded
links.

Introduction

It is known since Dehn’s work in 1914 that the capacity of the fundamental group of

link complements to separate links can be improved by looking at some specific elements;
the right and left trefoils, although having isomorphic groups, can be distinguished by

their meridian-longitude pairs. But it is only in the 1950s that Fox formalized the notion

of peripheral system for links, which is the fundamental group endowed with the data,
for each component of a link L in S3, of a pair of elements {mi,li} of π1(S

3 \L)—
a meridian and a preferred longitude—that generates the fundamental group of the

corresponding boundary component of S3 \L. Although rather intractable in practice,
the peripheral system is nonetheless an essential link invariant which has been, 15 years

later, proved to be complete by Waldhausen [21]. It is natural to expect that some
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weaker equivalence relations than ambient isotopy could be classified by an appropriate
adaptation of the peripheral system. As early as the 1950s, this has been the strategy of

Milnor in his attempt to classify links up to link-homotopy [18], that is, up to homotopy

deformations during which distinct connected components remain disjoint at all times. In
order to address this link-homotopy classification problem, Milnor introduced the reduced

peripheral system. Roughly speaking, the reduced fundamental group Rπ1(L
c) of a link L

is the largest quotient of the fundamental group of the complement where any generator

commutes with any of its conjugates; if {μi,λi}i is a peripheral system for L, with image
{mi,li}i under the projection onto Rπ1(L

c), then a reduced peripheral system of L is

{mi,liNi}i, where Ni is the normal subgroup of Rπ1(L
c) generated by mi. The reduced

peripheral system, however, only yields a complete link-homotopy invariant for links with
at most three components. The 4-component case was tackled by Levine [16] only 40 years

later, using a smaller normal subgroup for defining the reduced longitudes. As a matter

of fact, there exists a pair of 4-component links, exhibited by Hughes, with equivalent
reduced peripheral systems but which are link-homotopically distinct [13]. It seems still

unknown whether Levine’s [16] peripheral system classifies links up to link-homotopy. In

fact, this classification was achieved by Habegger and Lin by a rather different approach,

which relies on representing links as the closure of string links [12]. Extracted from the
reduced peripheral system, (nonrepeating) Milnor numbers were also introduced in [18];

they are defined, up to some indeterminacy, as the coefficients in the Magnus expansion

of longitudes. Milnor showed that these numbers also classify links with up to three
components, up to link-homotopy. In [8], these numbers were shown to be closely related

to 4-dimensional topology, through the notion of twisted Whitney towers. The purpose of

the present paper is to show that the whole reduced peripheral system actually also arises
from 4-dimensional topology. We make use of the theory of welded links to provide in an

elementary way a 4-dimensional topological characterization of the information captured

by Milnor’s reduced peripheral system:

Main Theorem. Let L and L′ be two oriented links in the 3-sphere. The following are

equivalent:

i. L and L′ have equivalent reduced peripheral systems;

ii. L and L′ are sv-equivalent, as welded links;

iii. Spun•(L) and Spun•(L′) are ribbon link-homotopic, as ribbon immersed solid tori.

Here, welded links are generalized link diagrams, where we allow virtual crossings in
addition to the usual crossings, regarded up to an extended set of Reidemeister moves.

These welded links can be regarded as a generalization of classical links, as there is an

injective map sending the former inside the set of the latter; and the fundamental group
and (reduced) peripheral system actually extend to this larger class of objects. This theory

takes its origins in the late 1990s [10] and has experienced some important developments

in the past decade (see, for instance [4, 5, 6, 7, 9, 17, 20] and references therein). Part
ii then gives a diagrammatic characterization of the reduced peripheral systems of links,

by regarding them as welded links via their diagrams, up to sv-equivalence, which is

the equivalence relation generated by the replacement of a classical crossing involving
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Characterization of the reduced peripheral system of links 2443

two strands of a same component by a virtual one; this stresses, in particular, the fact
that the sv-equivalence is a refinement of link-homotopy for classical links (see Remark

1.6). This characterization actually follows from a more general result, which classifies

all welded links up to sv-equivalence (see Theorem 2.1). Also, it follows that the non
link-homotopic 4-component links exhibited by Hughes in [13] are sv-equivalent; this is

made explicit in Appendix.

Part iii gives a topological characterization of the reduced peripheral system, in

terms of 4-dimensional topology. A classical construction dating back to Artin [1]
produces a knotted surface in 4-space from a link in 3-space by spinning it around

some plane. By spinning as well projection rays from the link to the plane, this can

be extended to a map Spun• producing ribbon-immersed solid tori, that is, solid tori in
4-space intersecting along only ribbon singularities. The ribbon link-homotopy for such

objects is a notion of homotopy within the realm of ribbon-immersed solid tori, which

induces a link-homotopy for the boundary, allowing the removal/insertion of such ribbon
singularities inside the same connected component. The reduced peripheral system for

links hence appears in this way as an intrinsically 4-dimensional invariant, rather than

a 3-dimensional one.1 As above, this characterization is obtained as a consequence of

a more general result, characterizing the reduced peripheral system of welded links in
terms of 4-dimensional topology (see Theorem 3.7). It is thus noteworthy that our purely

topological characterization i⇔ iii for classical links is actually obtained as an application

of virtual/welded knot theory.

1. The reduced peripheral system of classical and welded links

1.1. Welded links

In this section, we review the theory of welded links and Gauss diagrams.

Definition 1.1.

• An n-component welded diagram is a planar immersion of n ordered and oriented
circles, whose singular set is a finite number of transverse double points, each
double point being labelled either as a positive or negative (classical) crossing, or
as a virtual crossing :

• We denote by wLn the set of n-component welded diagrams up to planar isotopy,
classical Reidemeister moves R1, R2, and R3, which are the three usual moves of
classical knot theory, and the following welded moves2:

1One might expect for this 4-dimensional incarnation to be in terms of knotted surfaces, we
explain in Section 3.3 why this is not the case.

2Here, OC stands for over-commute, as a strand is passing over a virtual crossing; note that
the corresponding under-commute move is forbidden.
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Elements of wLn are called welded links.

A welded diagram with no virtual crossing is called classical. It is well-known that this

set-theoretical inclusion induces an injection of the set Ln of n-component classical link

diagrams up to classical Reidemeister moves, into wLn; as pointed out in Remark 1.13,
this follows from the fact that the peripheral system is a complete link invariant.

An alternative approach to welded links, which is often more tractable in practice, is

through the notion of Gauss diagrams.

Definition 1.2. An n-component Gauss diagram is the homeomorphism class of an
abstract collection of n ordered and oriented circles, together with disjoint signed arrows

whose endpoints are pairwise disjoint points of these circles. For each arrow, the two

endpoints are called head and tail, with the obvious convention that the arrow orientation
goes from the tail to the head.

To a welded diagram corresponds a unique Gauss diagram, given by joining the two

preimages of each classical crossing by an arrow, oriented from the overpassing to the

underpassing strand and labelled by the crossing sign. See below for an example:

Definition 1.3. Two Gauss diagrams are welded equivalent if they are related by a
sequence of the following welded moves :

where move R3 requires the additional sign condition that ε2ε3 = τ2τ3, where τi = 1 if the
ith strand (from left to right) is oriented upwards, and −1 otherwise.

As the notation suggests, these four moves are just the Gauss diagram analogues, using

the above correspondance, of the three classical Reidemeister moves and the OC move
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for welded diagrams (the Gauss diagram versions of the virtual Reidemeister and Mixed

moves being trivial). As a matter of fact, it is easily checked that welded equivalence

classes of Gauss diagrams are in one-to-one correspondence with welded links.

Remark 1.4. We will make use of the following Slide move

which is easily seen to follow from the R2, R3, and OC moves. Note that this is a Gauss
diagram analogue of the Slide move on arrow diagrams [17].

In a welded diagram, a self-crossing is a crossing where both preimages belong to the
same component.

Definition 1.5. A self-virtualization is a local move SV, illustrated below, which replaces

a classical self-crossing by a virtual one. The sv-equivalence is the equivalence relation on

welded diagrams generated by self-virtualizations

At the Gauss diagram level, a self-crossing is represented by a self-arrow, that is an
arrow whose endpoints lie on the same component, and a self-virtualization move simply

erases a self-arrow.

Remark 1.6. The link-homotopy relation for classical links, as defined by Milnor, is

generated by the self-crossing change, that is, the local move that exchanges the relative

position of two strands of a same component. As the left-hand side of the above picture
suggests, a self-crossing change can be realized by two self-virtualizations, and the sv-

equivalence is thus a refinement of the link-homotopy relation for classical links. In [4],

self-virtualization was proven to actually extend classical link-homotopy for string links,
in the sense that two string-links are sv-equivalent if and only if they are link-homotopic.

Our main theorem, together with Hughes’s [13] counter-examples, shows that such an

equivalence does not hold true for links.

We end this section with a normal form for Gauss diagrams up to self-virtualization.

Definition 1.7. A Gauss diagram is sorted if each circle splits into two arcs, the t- and

the h-arc, containing, respectively, tails only and heads only.

Remark 1.8. Up to OC moves, a sorted Gauss diagram D is uniquely determined by

the data of n words
{∏ki

j=1μ
εij
sij

}
i
in the alphabet {μ±1

1 , . . . ,μ±1
n }, where the letter μ

εij
sij

indicates that the j th head met on Ci when running along its oriented h–arc is connected

by an εij–signed arrow to one of the tails on Csij .
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Figure 1. Tail across head move on Gauss diagrams.

Lemma 1.9. Every Gauss diagram is sv-equivalent to a sorted one.

Proof. Start with any given Gauss diagram, and choose any arbitrary order on the circles

to sort them one by one as follows. Using SV moves, remove first all self-arrows from the

considered circle, and then gather all heads located on it using tail across head (TaH)
moves, described in Figure 1. Since there is no self-arrow left on the considered circle, the

two extra arrows appearing in the latter moves won’t have endpoints on the considered

circle, and as their heads, respectively, tails, are adjacent to the already existing arrow

head, respectively, tail, this won’t unsort already sorted components. Note that these two
extra arrows could happen to be self-arrows, but this does not conflict with the sorting

procedure.

1.2. Welded link groups and peripheral systems

Let L be a welded diagram.

Definition 1.10.

• The arcs of L are the maximal pieces of L which do not underpass any classical
crossing. An arc is hence either a whole component or a piece of strand which
starts and ends at some (possibly the same) crossings; it might pass through some
virtual crossings and overpass some classical ones. At the level of Gauss diagrams,
an arc corresponds to portions of circles comprised between two heads.

• The group of L, denoted by G(L), is defined by a Wirtinger-type presentation,
where each arc yields a generator, and each classical crossing yields a relation, as
follows:

Since virtual crossings do not produce extra generators or relations, it is clear that

virtual Reidemeister moves and Mixed moves preserve the group presentation. It is

also easily checked that the isomorphism class of this group is invariant under classical
Reidemeister and OC moves and is thus an invariant of welded links [14, 20]. If L is a

diagram of a classical link L, then G(L) is the fundamental group of the complement

of an open tubular neighborhood of L in S3; in this case, an arc corresponds to the
topological meridian which positively enlaces it. By analogy, arcs of welded diagrams can

be seen as some combinatorial meridians, and we will often blur the distinction between

arcs/meridians of L and the corresponding generators of G(L). We will also regularly, and
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sometimes implicitly, make use of the simple fact that two meridians of a same component
are always conjugate.

Definition 1.11.

• A basing of L is a choice of one meridian for each component of L.
• For each i, the ith preferred longitude of L with respect to the basing {μ1, . . . ,μn} is

the element λi ∈G(L) obtained as follows: when running along the ith component
of L, starting at the arc labelled by μi and following the orientation, write ωε

when passing under an arc labelled by ω at a classical crossing of sign ε, and
finally write μ−k

i , where k is the algebraic number of classical self-crossings in the
ith component.

• A peripheral system for L is the group G(L) endowed with the choice of a basing
and the data, for each i, of the ith preferred longitude.

When L is a classical link, a basing is the choice of a topological meridian for

each component, and the ith preferred longitude represents a parallel copy of the ith

component having linking number zero with it. Hence, the above definitions naturally

generalize the usual notion of peripheral system of links.
Two peripheral systems

(
G,{(μi,λi)}i

)
and

(
G,{(μ′

i,λ
′
i)}i

)
are conjugate if, for each i,

there exists ωi ∈ G, such that μ′
i = ω−1

i μiωi and λ′
i = ω−1

i λiωi. Two peripheral systems

(G,{(μi,λi)}i) and (G′,{(μ′
i,λ

′
i)}i) are equivalent if there exists an isomorphism ψ :G′ →

G, such that
(
G,{(μi,λi)}i

)
and

(
G,{(ψ(μ′

i),ψ(λ
′
i))}i

)
are conjugate.

The following is well-known (see, for example [15, Proposition 6].

Lemma 1.12. Up to conjugation, peripheral systems are well-defined for welded diagrams
and yield, up to equivalence, a well-defined invariant of welded links.

Proof. Suppose that {(μi,λi)}i is a peripheral system of the welded diagram L,

and let μ′
i be another choice of meridian for the ith component, yielding hence

another preferred ith longitude λ′
i. Then, μ′

i = ω−1
i μiωi for some ωi ∈ G(L), and by

definition, λ′
i = ω−1

i (λiμ
k
i )ωiμ

′
i
−k

. But substituting μ′
i for ω−1

i μiωi in λ′
i then gives

λ′
i = ω−1

i λiμ
k
1ωiω

−1
i μ−k

i ωi = ω−1
i λiωi. This proves that the peripheral system of L is

uniquely determined up to conjugation.

Using this fact, it is then an easy exercise to check that equivalence classes of peripheral
systems are well-defined for welded links, that is, that they are invariant under welded

and classical Reidemeister moves. More precisely, by an appropriate choice of basing, one

can check that each classical Reidemeister move induces an isomorphism of the groups of
the diagrams which preserves each preferred longitude; the argument is even simpler for

welded Reidemeister moves.

As an elementary illustration, let us consider two welded diagrams L and L′ which differ
by an R1 move, as shown below. The generators α and β of G(L) shown in the figure

satisfy α = β, so G(L) and G(L′) are clearly isomorphic. Pick β ∈ G(L), respectively,

α ∈G(L′), as meridian for the depicted component of L, respectively, L′.
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Then the corresponding preferred longitude of L is of the form ωαα−k for some ω ∈G(L)

and some k ∈ Z, while the corresponding preferred longitude of L′ reads ωα−k+1, since

L′ contains one less positive self-crossing. Hence, the above isomorphism from G(L) to
G(L′) preserves the peripheral system.

Remark 1.13. The peripheral system of classical links is a complete invariant [21].

Since this invariant extends to welded links, in the sense that the above-defined invariant

coincides with the usual peripheral system for classical links, this shows the known fact
[11, 14] that the natural map from classical links to welded links is injective.

1.3. Reduced group and reduced peripheral system

As before, let us consider a welded diagram L.

Definition 1.14. For a group G given with a finite generating set X, the reduced group of

G, denoted by RG, is the quotient of G by its normal subgroup generated by all elements

[ζ,ω−1ζω], where ζ ∈X and ω ∈G. In particular, we define the reduced group of L as the
reduced group RG(L) of G(L) with respect to its Wirtinger generators.

Note that RG(L) is the largest quotient of G(L) where any meridian commutes with any
of its conjugates. Since any two meridians of a same component are conjugate elements,

it can also be defined as the quotient of G(L) by the normal subgroup generated by the

elements [μi,ω
−1μiω] for all ω ∈G(L), where {μi}i is a fixed basing for L.

Convention. In the rest of this paper, we shall use Greek letters with tilde for elements

in the group of a welded diagram, and use the same letters, but without the tilde, to
denote the corresponding elements in the reduced group. In particular, we respectively

denote by μi and λi the images in RG(L) of any meridian μ̃i and longitude λ̃i in G(L).

Definition 1.15. The reduced peripheral system for L are the data(
RG(L),{(μi,λi.Ni)}i

)
,

associated to a peripheral system
(
G(L),{(μ̃i,λ̃i)}i

)
, where, for each i, λi.Ni denotes

the coset of λi, with respect to Ni, the normal subgroup generated by the ith reduced

meridian μi. Two reduced peripheral systems are conjugate if they come from conjugate

peripheral systems; and they are equivalent if there is a group isomorphism sending one
to a conjugate of the other.

As explained in the Introduction, Milnor introduced the reduced peripheral system for
classical links and showed that it is a link-homotopy invariant. We have the following

generalization.

Lemma 1.16. Up to equivalence, the reduced peripheral system is a well-defined invariant

of welded links up to sv-equivalence.
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Proof. Since equivalent peripheral systems obviously yield equivalent reduced peripheral
systems, it suffices to prove the invariance under a single SV move. Pick a self-crossing s

of some welded diagram L, and denote by Ls the diagram obtained by replacing s by a

virtual crossing:

Consider the three generators α̃,β̃,γ̃ of G(L) involved in s, as shown above. Since the

meridians α̃, β̃, and γ̃ all belong to the same component, there are ω̃,ζ̃ ∈G(L), such that

β̃ = ω̃−1α̃ω̃ and α̃ = ζ̃−1γ̃ζ̃. For L, the Wirtinger relation at s is γ̃ = α̃−1β̃α̃; hence, we

have that γ = α−1ω−1αωα ≡ ω−1αω = β holds in RG(L), which shows that RG(L) is
isomorphic to RG(Ls).

It remains to show that this isomorphism preserves the reduced peripheral system.

Pick α̃ ∈ G(L) as meridian μ̃ for the component of L containing s ; the corresponding
preferred longitude is given by λ̃ = ω̃α̃ζ̃α̃−k for some integer k. Take the meridian μ̃s of

the corresponding component of Ls to be represented by α̃ again, so that the preferred

longitude is given by λ̃s = ω̃ζ̃α̃−k+1. Then the isomorphism RG(L)→RG(Ls) maps μ to
μs, and the equality

λ= ωαζα−k ≡ ω[ζ,α]αζα−k = ωζαζ−1α−1αζα−k = ωζα−k+1 (mod N)

shows that λ.N is mapped to λs.Ns, where N ⊂ RG(L) and Ns ⊂ RG(Ls) denote the
normal subgroups generated by α. This handles one version of the SV move, but the

other one is strictly similar.

Remark 1.17. Since we are overall working modulo the normal subgroup generated by
the meridian α, the above sequence of equalities for the longitude λ could be slightly

simplified. It seems, however, instructive to point out that one only needs to consider this

normal subgroup in the second equality of this sequence; this identifies precisely where
this equivalence is needed to have the desired invariance property.

In particular, the reduced fundamental group is hence invariant under self-

virtualization. Combining this with the sorted form given in Lemma 1.9, we obtain
the following presentation.

Lemma 1.18. The reduced fundamental group RG(L) has the following presentation

RG(L) =
〈
μ1, . . . ,μn

∣∣ [μi,λi], [μi,ω
−1μiω], for all i and for all ω ∈ F (μi)

〉
,

where F (μi) denotes the free group on {μi}i.

Proof. Suppose first that L corresponds to a sorted Gauss diagram. The Wirtinger-type

presentation for its welded link group provides, for every component Ci, a generator

μi corresponding to the t–arc, and a bunch of generators μj
i lying on the h–arc. Any

of the latter appears in exactly two relations which are of the form μj
i = μ±1

i1
μj−1
i μ∓1

i1

and μj+1
i = μ±1

i2
μj
iμ

∓1
i2

, setting μ0
i := μi =: μri

i where ri is the number of heads on Ci;
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generators μj
i can hence be successively eliminated, ending with relations [μi,λi] only.

Hence, the presentation

G(L) =
〈
μ1, . . . ,μn

∣∣ [μi,λi], for all i
〉
.

Relations [μi,ω
−1μiω] then naturally arise when taking the reduced quotient. The general

case, where L does not necessarily correspond to a sorted Gauss diagram, then follows
readily from Lemmas 1.9 and 1.16.

Remark 1.19. Starting with a sorted Gauss diagram D, Lemma 1.18 provides a
presentation for the associated reduced fundamental group whose generators {μi}i
correspond to the t–arcs, and whose relations make these generators commute with their

own conjugates, as well as with their associated longitude. Moreover, as words in the
generators, these longitudes are directly given by the words associated to D in Remark

1.8. Conversely, any such presentation provides a word representative for each longitude

and hence describes, up to OC moves, a unique sorted Gauss diagram.

Remark 1.20. Lemma 1.18 is to be compared with [19, Theorem 4], where Milnor gives

a similar presentation for the nilpotent quotients of the group of a classical link. Actually,
Milnor’s argument being purely algebraic, the proof of [19, Theorem 4] applies verbatim to

the case of welded links, meaning, in particular, that the nilpotent quotient G(L)/ΓkG(L)

has a presentation
〈
μ1, . . . ,μn

∣∣ ΓkF (μi), [μi,λi] for all i
〉
. In fact, Milnor’s proof can be

adapted with minor adjustments to give an alternative proof of Lemma 1.18.

2. Diagrammatic characterization of the reduced peripheral system

This section is devoted to the proof of the following result, which readily implies the

equivalence i⇔ ii in our main theorem, and which more generally classifies welded links

up to sv-equivalence.

Theorem 2.1. Two welded links are sv-equivalent if and only if they have equivalent

reduced peripheral systems.

For convenience, we will adopt here the Gauss diagram point of view. Fix a number

n ∈N∗ of components, and set F(μi) the free group over elements μ1, . . . ,μn.

Proof. The “only if” part of Theorem 2.1 was proved in Lemma 1.16. Conversely,

let L and L′ be two welded diagrams with equivalent reduced peripheral systems(
RG(L),{(μi,λi.Ni)}i

)
and

(
RG(L′),{(μ′

i,λ
′
i.N

′
i)}i

)
.

We may assume, using Lemma 1.9, that L and L′ are both given by sorted Gauss

diagrams D and D′. Using Remarks 1.8 and 1.19, we may further assume that the λi’s
and the λ′

i’s are represented by the words in, respectively, the μj ’s and the μ′
j ’s, given by

D and D′. Following Remark 1.19, the strategy will be to apply welded and SV moves

on D′ to produce a diagram whose associated presentation for the reduced fundamental
group is the same as the one of D. To keep notation light, we will still denote by D′, μ′

i,

and λ′
i all the sorted Gauss diagrams, generators for the reduced fundamental group, and

representative words for the longitudes, successively obtained after modifications.

https://doi.org/10.1017/S1474748023000543 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748023000543


Characterization of the reduced peripheral system of links 2451

Figure 2. Making the equivalence an isomorphism.

To begin, we first modify D′ so that the isomorphism ψ : RG(L′)→RG(L) sends each

pair (μ′
i,λ

′
i) to (μi,λi). Algebraically, transforming ψ(μ′

i,λ
′
i) into (μi,λi) can be achieved

in two steps:

(1) since ψ(μ′
i) is a conjugate of μi, perform a sequence of “elementary conjugations”,

each replacing both μ′
i and λ′

i by their conjugate by μ′
j
ε
, for some index j �= i and

some sign ε, so that ψ
(
(μ′

i,λ
′
i.N

′
i)
)
= (μi,λi.Ni). Indeed, since, for any words g1

and g2, μ
g1μig2
i and μg1g2

i are equal in the reduced quotient, and λg1μig2
i and λg1g2

i

are congruent modulo Ni, all occurrences of μi in the conjugating element can be

removed;

(2) since ψ(λ′
i) is an element of λi.Ni, multiply λ′

i by an appropriate product of

conjugates of μ′
i
±1

, so that ψ(λ′
i) = λi.

These two steps have to be realized at the diagrammatical level:

(1) for each elementary conjugation, use R2 to add two parallel arrows going from the

j th t-arc to the starting endpoint of the ith t-arc, and then pull the head of the
(−ε)-labelled arrow along the ith t–arc using the TaH move given in Figure 1.

This yields an equivalent Gauss diagram which is still sorted, and which realizes

the desired elementary conjugation. See the upper half of Figure 2 for an example

where μ′
2 and λ′

2 are conjugated by μ′
3, the components being numbered from left

to right;

(2) to add a conjugate gμ′
i
±1

g−1 of μ′
i
±1

to λ′
i, use repeatedly R2 to add the trivial

word gg−1 to the ith longitude of D′, and then a single SV move to produce the
desired word gμ′

i
±1

g−1. See the lower half of Figure 2 for an example where the

conjugate of μ′
2 by μ′

1
−1

μ′
3 is introduced in λ′

2, the components being numbered

from left to right.
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Figure 3. Conjugating meridian factors in longitudes.

We have thus realized the isomorphism ψ : RG(L′) → RG(L) which sends each μ′
i to

μi, and each λ′
i to λi. As a matter of fact, we can now identify μ′

i with μi. We will now

modify D′ component by component in order to transform it into D. For the ith step, we
first note that λi and λ′

i are equal in RG(L); following the presentation of G(L′) given

by Lemma 1.18 on D′ (as it stands at the end of the (i−1)th step), λi can be obtained

from λ′
i by performing a finite sequence of the following moves:

i. μ±1
j μ∓1

j ↔ 1;

ii. μ±1
j → λ′

j
−1

μ±1
j λ′

j ;

iii. ωμ±1
j → μ±1

j ω, where ω is of the form ζ−1μ±1
j ζ with ζ ∈ F(μi).

Each of these moves can be diagrammatically realized on D′. Relations i correspond

indeed to R2 moves. For Relations ii and iii, we first address the j = i case by noting that

we can actually realize the more general move ωμ±1
i → μ±1

i ω with ω ∈ F(μi), as follows.
Note that the μ±

i term corresponds to a self-arrow: it can hence be removed from one

side of ω and reinserted on the other side using SV moves. Let us now consider Relations

ii and iii with j �= i. For Relations ii, the term μ±1
j corresponds this time to an arrow a

whose tail sits on the j th component; moving this tail along the whole circle component,

against the orientation, does conjugate μ±1
j by λ′

j . Indeed, using TaH moves, the tail of a

will cross every head on its way at the cost of conjugating the head of a with the desired
arrows; see Figure 3 for an example where the μ2 factor in λ′

1 is conjugated by λ′
2, the

components being numbered from left to right.

Finally, Relations iii can be handled exactly as in the proof of [4, Lemma 4.26]. Once

all components have been processed, D′ is transformed into D, showing that L′ = L as
welded links.

3. A topological characterization of the reduced peripheral system

Welded links are closely related to ribbon knotted tori and ribbon solid tori in S4, and

the characterization of classical links having the same reduced peripheral systems given

by Theorem 2.1 can be recasted in terms of 4-dimensional topology.

3.1. The enhanced Spun map

Given a classical link L ⊂ R3, a well-known procedure to construct ribbon knotted tori
in 4-space is to take the Spun of L: consider a plane P which is disjoint from a 3-ball

containing L, and spin L around P inside R4 ⊃R3. The result is a union of knotted tori,

which we denote by Spun(L). If the projection D(L,P) of L onto the plane P is regular,
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then spinning as well the orthogonal projection rays from L to P provides immersed
solid tori whose boundary is Spun(L) and whose singularities are so-called ribbon disks,

corresponding to the crossings of D(L,P). Of course, this ribbon filling depends on the

choice of plane P, and more precisely on the diagram D(L,P), which may be changed
by some sequence of Reidemeister moves. But for each Reidemeister move, there is an

associated singular diagram, that is, a singular plane Ps, and spinning L around Ps

provides some singular ribbon filling which can be infinitesimally desingularized into the

spun of one or the other side of the Reidemeister move. This leads to the following
definitions, which settles a notion of (singular) ribbon solid tori.

Definition 3.1. Let ϕ : M → S4 be an immersed 3-dimensional manifold. Let D be a
connected component of the singular set of ϕ(M) contained in an open 4-ball B ⊂ S4.

We say that D is a ribbon singularity :3

• of type 0 if ϕ−1(B) is the disjoint union B1
B2 of two 3-balls and there is a local
system of coordinates for B ∼=R4, such that⎧⎨
⎩

ϕ(B1) =
{(

t,r cos(s),r sin(s),0
) ∣∣ t,s ∈R,r ∈ [0,2]

}

ϕ(B2) =
{(

0,r cos(s),r sin(s),t
) ∣∣ t,s ∈R,r ∈ [0,1]

} ;

• of type 2 if ϕ−1(B) is the disjoint union B1
B2 of two 3-balls and there is a local
system of coordinates for B ∼=R4, such that⎧⎨
⎩

ϕ(B1) =
{(

t,r cos(s),r sin(s),t2
) ∣∣ t,s ∈R,r ∈ [0,2]

}

ϕ(B2) =
{(

t,r cos(s),r sin(s),− t2
) ∣∣ t,s ∈R,r ∈ [0,1]

} ;

• of type 3 if ϕ−1(B) is the disjoint union B1
B2
B3 of three 3-balls and there is
a local system of coordinates for B ∼=R4, such that⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ϕ(B1) =
{(

t,r cos(s),r sin(s),0
) ∣∣ t,s ∈R,r ∈ [0,2]

}

ϕ(B2) =
{(

t,r cos(s),r sin(s),t
) ∣∣ t,s ∈R,r ∈ [0,1]

}

ϕ(B3) =
{(

t,r cos(s),r sin(s),− t
) ∣∣ t,s ∈R,r ∈

[
0, 12

]}
;

• of type SV if ϕ−1(B) is the disjoint union B1
B2 of two 3-balls, B1 and B2 belong
to the same connected component of M, and there is a local system of coordinates

for B ∼=R4, such that

⎧⎨
⎩

ϕ(B1) =
{(

r,t,s,0
) ∣∣ t,s ∈R,r ∈R−

}

ϕ(B2) =
{(

0,r cos(s),r sin(s),t
) ∣∣ t,s ∈R,r ∈ [0,1],r

} .

Remark 3.2. In all four cases, the ribbon singularity D corresponds to the disk{(
0,r cos(s),r sin(s),0

) ∣∣ s∈R,r ∈ [0,1]
}
. Type 0 corresponds to two solid tubes, one being

smaller than the other, intersecting transversally; these are the usual ribbon singularities.

Type 2 corresponds to two solid tubes, one being smaller than the other, intersecting
tangentially; these occur when spinning a link around a plane on which the link projects

3For the sake of exactitude, we provide here explicit formulas for the singularities, but informal
descriptions follow in Remark 3.2.
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with two tangential strands. Type 3 corresponds to three solid tubes of increasing width,
intersecting simultaneously and transversally; these occur when spinning a link around a

plane on which the link projects with a triple point. Type SV differs from type 0 in that

one preimage of the singular disk lies on the boundary of M instead of its interior, and
in that the two preimages belong to the same solid torus; these occur when performing

the link-homotopy which pushes at once a usual ribbon (self) singularity through the

boundary of M. Note that a type 1 seems to be missing here, which would correspond to

spinning a link around a plane on which the link projects with a cusp, but this does not
introduce any new kind of ribbon singularity.

Definition 3.3. Ribbon solid tori are immersions of a finite number of solid tori in S4

whose singular locus consists of ribbon singularities of type 0. Generalized ribbon solid

tori are immersed solid tori in S4 whose singular locus is made of ribbon singularities
of type 0, 2, and 3. Self-singular ribbon solid tori are immersed solid tori in S4 whose

singular locus is made of ribbon singularities of type 0 and SV.

We say that two (generalized) ribbon solid tori are equivalent if there is a path
among generalized ribbon solid tori connecting them, and we say that they are ribbon

link-homotopic if there is a path among generalized and self-singular ribbon solid tori

connecting them.

Remark 3.4. Note that generalized ribbon solid tori may have singularities between
distinct components, but that the boundary of the solid tori is embedded, while the

boundary of self-singular ribbon solid tori may have double points within a same

component.

Adding the spun of projection rays in the above definition of the Spun map provides a
well-defined map Spun• from classical links to generalized ribbon solid tori. The following

result is the topological characterization of the reduced peripheral system given by the

equivalence i⇔ iii in our main theorem.

Theorem 3.5. Two classical links L and L′ have isomorphic reduced peripheral systems
if and only if Spun•(L) and Spun•(L′) are ribbon link-homotopic.

The proof is given in the next section. As for the diagrammatic characterization given

in Section 2, this will follow from a more general result, Theorem 3.7, characterizing the

reduced peripheral system of welded links in terms of 4-dimensional topology.

3.2. The enhanced Tube map

In this section, we prove Theorem 3.5, using the so-called Tube map. Recall from [20]

that Satoh’s generalization of Yajima’s Tube map is defined from welded links to ribbon
knotted 2-tori, and that for any welded link L, Tube(L) actually comes with a canonical

ribbon filling. In order to fully record this ribbon filling in the Tube map, and to connect

with the Spun• map, we are led to the following notion.
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Definition 3.6. We define generalized welded diagrams as diagrams with cusps and the
following kind of crossings:

Then classical Reidemeister moves are replaced by a path of diagrams going through
the corresponding cusp, tangential or triple point. Other welded moves are still locally

allowed.

We define self-singular welded diagrams as diagrams with the following kind of crossings,

where the two strands involved in a semi-virtual crossing belong to a same component4:

Self-virtualization is defined for generalized welded diagrams as the equivalence relation
generated by the local moves turning a semi-virtual crossing into either a classical crossing,

or a virtual one as follows:

Following [3, Section 3.2], one can then define a map

which, respectively, associates ribbon singularities of type 0, 2, 3, and SV to classical,

tangential, triple, and semi-virtual crossings and connects these various singularities by

pairwise disjoint 3-balls, as prescribed combinatorially by the welded diagram. It is then
a straightforward adaptation of [3, Proposition 3.7] to prove that Tube• is one-to-one.

More precisely, in the terminology of [3], the case d = 2 of Proposition 3.7 states that

Conn map, from 3-ribbons to welded diagrams, is an isomorphism. Here, 3-ribbons are
3-dimensional ribbon balls in B4 attached to ∂B4 by disks (they are to ribbon solid

tori what string-links are to links), and Conn is the inverse function of Tube•, which
associates a welded diagram to any 3-ribbon by encoding the way ribbon singularities
are attached one to the others. The key point is to prove that Conn is injective, and

this is done by considering standard neighborhoods {Ui} for the ribbon singularities, and

showing that, up to isotopy, there is a unique way to embed regular tubes in B4 \ {Ui}
to connect them: the exact same argument applies in the case of generalized ribbon solid
tori.

4Semi-virtual crossings were already introduced in [11] in connection with finite type invariants
of virtual knots.
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As a direct corollary of Theorem 2.1, we obtain the following alternative characterization
of the reduced peripheral system, which holds for all welded links.

Theorem 3.7. Two welded links L1 and L2 have isomorphic reduced peripheral systems

if and only if Tube•(L1) and Tube•(L2) are ribbon link-homotopic.

Theorem 3.5 follows from this result. Indeed, as essentially pointed out by Satoh in [20],

it is clear from the definition of the Spun• map that, if D is a diagram of a classical link

L, the ribbon solid tori Spun•(L) consists of ribbon singularities which are connected by
3-balls as combinatorially prescribed by D : Spun•(L) and Tube•(L) are hence equivalent.

3.3. Link-homotopy of ribbon surfaces in 4-space

The original versions of the Spun and Tube maps produce ribbon 2-tori, which are just
the boundary of some ribbon solid tori, rather than 3-dimensional objects. Obviously,

any ribbon link-homotopy between two ribbon solid tori induces a usual link-homotopy

between their boundaries. Building on this remark, it follows that:

Proposition 3.8. If two classical links L1 and L2 have isomorphic reduced peripheral

systems, then Spun(L1) and Spun(L2) are link-homotopic.

It is hence tempting to hope for the converse to hold true: this would give a topological
characterization of the reduced peripheral system in terms of spun surfaces up to link-

homotopy. However, this is not the case. There is indeed a known global move on welded

links, related to the torus eversion in S4, under which the Spun map is invariant, and this
move transforms every classical link into its reversed image, which is the mirror image with

reversed orientation (see [22] or [2, Proposition 2.7]). Furthermore, it can be checked that

the (reduced) peripheral system of a reversed image is given from the initial one by just

inverting the longitudes. It follows easily from these two observations that, for instance,
the positive and negative Hopf links have nonequivalent reduced peripheral systems,

whereas their spuns are isotopic, hence link-homotopic. As a consequence, keeping track

of the ribbon filling is mandatory to preserve (reduced) peripheral systems, and Theorem
3.5 is in this sense optimal.
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Appendix. Hughes’s counterexample

As mentioned in the Introduction, the fact that the reduced peripheral system of classical

links is not a complete link-homotopy invariant was made explicit by Hughes in [13].

There, a pair of 4-component links is given, which have isomorphic reduced peripheral
systems but are not link-homotopic; this latter fact is proved using Levine’s refinement of

Milnor invariants developed in [16]. These two links, H1 and H2, are given by the closures

of the following pure braids, oriented from left to right:
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Our main theorem implies that, although not link-homotopic, the links H1 and H2 are

sv-equivalent. This fact, however, is rather difficult to verify by hand, and we outline in

this appendix the method that we used for this verification.
We make use of the theory of arrow calculus developed in [17], which is in some sense a

“higher order Gauss diagram” theory. We only give here a quick overview of this theory,

and refer to [17] for precisions and further details. Roughly speaking, a w-arrow for a

diagram L is an oriented interval, possibly decorated by a dot, immersed in the plane so
that the endpoints lie on L; one can perform surgery on L along this w-arrow to obtain

a new diagram as follows:

More generally, one defines w-trees, which are oriented unitrivalent trees defined
recursively by the rules:

There, the dotted parts represent “parallel” subtrees, see [17, Convention 5.1]. Any welded

diagram can be represented as a diagram without any crossing, but with w-trees. For

example, the links H1 and H2 can be represented in this way as the closures of the
diagrams given in Figure 4 (ignoring the integer labels). Note that the presentation for

H2 only differs from that for H1 by the addition of a union Y of Y–shaped w-trees.

It is shown in [17, Sections 4–5] that two dots on a same edge do cancel, and that the
following moves can be performed on w-trees:

Moreover, up to sv-equivalence, it is shown in [17, Section 9] that so-called repeated

w-trees having at least two endpoints on a same connected component can be removed,
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Figure 4. Arrow presentations of Hughes’s links H1 and H2.

and that the following moves can also be performed:

Then, one can start with the diagram for H1 given in Figure 4, pick some w-arrow
endpoint, and slide it all around the component it is attached to, in either direction: by

the above moves, this will create Y -shaped w-trees, which can in turn be “gathered”

at the cost of higher order w-trees. By performing the appropriate sequence of slides

and cancelling inverse pairs and repeated w-trees, one can create the union Y of w-trees
realizing the presentation for H2, thus showing that the two links H1 and H2 are indeed

sv-equivalent. Such an appropriate sequence of slides is indicated in the upper part of

Figure 4: there, an integer label k (respectively, k) near an arrow end indicates k full
turns in the left (respectively, right) direction.
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