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1. Introduction

One of the goals in the Langlands program is to study analytic properties of automorphic
L-functions. A basic approach to this problem is to find a global integral that represents
the automorphic L-function one would like to study. There are some questions to be
addressed in this approach. First, one needs to show that the global integral is Eulerian.
For this, one usually uses certain multiplicity one results, such as uniqueness of Whittaker
models. To establish the desired properties of the L-functions, one uses the corresponding
properties of an Eisenstein series used in the global integral or some spectral theory
results such as the Poisson summation formula. For reductive groups, the approach of
global integrals is successful in several important cases. The purpose of this article is to
describe a family of global integrals for a class of nonlinear covers of reductive groups.

1.1. Brylinski-Deligne covering groups

Let G be a connected reductive group over a number field F. In [1], Brylinski and Deligne
considered the category of multiplicative Ko-torsors on G; these are extensions of G by
the sheaf Ky of Quillen’s K5 group in the category of sheaves of groups on the big Zariski
site of Spec(F'):

1-Ky—G—G—1.
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Brylinski and Deligne gave an elegant and functorial classification of this category in terms
of enhanced root-theoretic data, similar to the classification of split connected reductive
groups by their root data.

We now assume that the base field F' contains a full set of nth roots of unity. Then at
every local place v, there is a functor from the category of multiplicative Ka-torsors G
on G to the category of topological central extensions:

1= pin — Gy = Gy =G(F,) — 1,
which glues to a central extension of the adelic group
1=, = GA) = G(A) — 1.

The global extension is equipped with a natural splitting G(F) — G(A). This naturally
leads to the notion of automorphic forms on this class of groups. These topological
central extensions may be considered of ‘algebraic origin’ and can be constructed using
cocycles which are essentially algebraic in nature. This construction does not exhaust all
topological central extensions, but it captures a sufficiently large class of such extensions,
including all interesting examples which have been investigated so far.

1.2. A Langlands program for covering groups

There has been serious progress in extending the Langlands program to the Brylinski-
Deligne extensions. We refer to [13] for a comprehensive discussion of the history of
covering groups. From our point of view, there are several reasons to study automorphic
forms on covering groups. The first is that a Langlands program for covering groups indeed
provides supporting evidence to the Langlands program for linear groups. The second is
to hope that we can relate automorphic forms on covering groups and linear groups
and use this to gain new information regarding linear groups. Indeed, the development
of the Langlands program already uses covering groups. A notable example is the Weil
representations, defined on double covers of the symplectic groups. Another example is
the Rankin—Selberg integral for the symmetric square L-function for GL,,, which uses the
theta representations on double covers of general linear groups [2]. The theory of Weyl
group multiple Dirichlet series, which is closely tied to Whittaker coefficients of Eisenstein
series, has important consequences in analytic number theory.

A natural question is to test whether the myriad global integrals for various L-functions
for linear groups have counterparts in the covering case. In the linear case, such a theory
relies heavily on the uniqueness of certain models, in particular the Whittaker model.
The failure of such multiplicity one results in the covering group case causes serious
obstructions to some development for the theory, and it is fundamentally difficult to find
integral representations for L-functions for covering groups.

Nevertheless, there are two recent constructions that set up the first step towards this
area. The first is the calculation of constant terms of Eisenstein series on Brylinski-Deligne
covering groups [10]. A consequence of this calculation is the meromorphic continuation of
many interesting L-functions. Another example is a generalisation of the doubling method
([23, 7]) to covers of symplectic groups [16] (see also [6] for a brief description of the
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method). (Also note that the case of the double covers of symplectic groups was already
considered in the literature; for example, see [9].) In [16], the unfolding argument and
unramified calculation are carried out. As a consequence, the global integral represents
the tensor product L-function for a cover of a symplectic group and a cover of a general
linear group under certain assumptions. It also has the potential to establish a functional
equation for the L-functions obtained.

1.3. The doubling integrals

The doubling integrals grew out of Rallis’s work on the inner products of theta lifts — the
Rallis inner product formula. This gives a global integral for the standard L-function of
a classical group. As a global integral, the doubling integral [23] and its generalisations
[7, 16] enjoy the following nice properties:

(1) It uses the matrix coefficient of a representation 7 of a classical group G(A). As a
consequence, this construction works for all cuspidal representations of G(A). This
is a special feature of the construction since most of other constructions only work
for some but not all cuspidal representations.

(2) The global integral uses certain unique models for some degenerate representations.
These representations can be viewed as the generalised Speh representations for
covering groups. As we noted above, uniqueness of Whittaker models fails in
general for covering groups. However, it is possible that for some ‘degenerate’
representations on certain covering groups, uniqueness of Whittaker models still
holds. A typical example of this type is the theta representation [17]. Establishing
the existence and verifying the expected properties are in fact the technical heart
of the doubling method.

(3) One can write down a local version of these global integrals and use it to define
local factors. Note that in the Langlands—Shahidi method for covering groups, one
can define the local coefficients matrix instead of local coefficient, but it is not
straightforward to have a definition of local factors. We refer the reader to [15] for
recent progress.

1.4. Main results

The purpose of this article is to explain how to develop the twisted doubling integrals
(see [7, 16]) for Brylinski-Deligne (BD) extensions of connected classical groups. Here,
we use the conceptual description in [5], which works for all classical groups uniformly.
A major part of this article is to explain the necessary (nontrivial) modifications in order
to develop the twisted doubling integrals for covering groups.

We include almost all BD extensions for connected classical groups but have to exclude
some cases of unitary groups for some technical reasons (see Remark 8.9). We can invoke
some neat structures of BD extensions to minimise the use of cocycles as the construction
is functorial in nature. Moreover, we only require the condition yu, C F* (instead of pa, C
F*) in our construction. Once we have the correct setup, working with BD extensions
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allows us to study some basic properties of twisted doubling integrals just in the linear
case. In particular, we carry out the unfolding part following the argument in [5].

The most important part in the setup is to find a suitable BD extension of a large
classical group for the construction to work. This part is proved case by case in Section 10.
This is relatively easy when the category of BD extensions is ‘rigid’. There is additional
complication in the non-simply connected and nonsplit case, with the case of SOs,, being
the most sophisticated one.

As we noted above, another ingredient in the twisted doubling integrals is the
construction of some ‘Speh’ type representations as the inducing data of some Siegel
Eisenstein series. We believe that this is a very difficult question for covering groups, and
we only discuss this briefly in Section 11. Indeed, following certain conjectures in [24]
and [14], we suggest that one should construct such representations from representations
of GL;(A), instead of a cover of GL;(A). As a consequence, we expect that the twisted
doubling integrals represent the tensor product L-functions for G x GLj. In the second
factor, we only take a linear group instead of a cover of GLj. This is different from
the L-functions obtained in [10] and [16]. It is an interesting question to relate these
L-functions.

We also note that in [1], BD covers are only studied for connected reductive groups. So
in this article we exclude the orthogonal group O,,, and consider SO,, instead. (Here we
use the term ‘connected classical groups’ for these groups. Note that we do not assume
any condition on the splitness of the classical groups.) We leave other investigations such
as unramified calculations, local and global theory as well as the construction of the
generalised Speh representations to future work.

1.5. Structure of this article

The rest of this article is organised as follows. We first recall some preliminaries
on Brylinski-Deligne covering groups in Sections 2-4. We recall some construction
related to the classical groups in Section 5. Section 6 highlights a family of degenerate
representations on covers of general linear groups. Even if we do not how to construct the
generalised Speh representations for covering groups, we still know the properties that will
be used in the global integrals. We then discuss the basic setup of the twisted doubling
integrals in the linear case in Section 7 and discuss necessary assumptions for covering
groups in Section 8. The long proofs in Section 8 are deferred to Section 10. We then
introduce the global integral and prove a global identity in Section 9. We briefly discuss
the construction of the generalised Speh representations and the L-functions obtained in
Section 11.

1.6. Notation

We now give a list of notation that is commonly used in this article.

e For an algebraic group G over F, we sometimes write G(F) = G(F); if F is a local
field, we sometimes write G = G(F). If F is a global field, we usually write [G] for
G(F)\G(A) where A is the ring of adeles of F' and G, = G(F,) for a local place v.
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e For an algebraic group G over F and a field extension L/F, we write G, :=G®p L
to be the base change of G to L.
J®: for a subgroup J of G, define J® ={(g,9) € GxG|ge J}.
Int(g): for g € G and a subgroup H C G, the conjugation map induced by g is
denoted Int(g) : H > gHg ™.

e For an abelian group A with multiplication, we write [m] for the homomorphism
A— A x— ™.

2. Brylinski—Deligne extensions

Let F' be a local or global field of characteristic 0. Let G be a connected reductive
group over F. In this section, we discuss the Brylinski-Deligne extensions of G. The main
references for this section are [1] and [11].

2.1. Some structural facts

Let F, denote a separable closure of F and I" = Gal(F;/F'). Let T be a maximal F-torus
of G. Let

{(X, 2V, @}

be the resulting (absolute) root system. Here X (respectively, V) is the character lattice
(respectively, cocharacter lattice) for (G, T) over Fs. Both X and Y are naturally Z[I']-
modules. The group I' acts on the root system & as well. Choose a set A C ® of simple
roots from the set of roots ® and AV the corresponding simple coroots from ®V. Write
Y#$¢ CY for the sublattice generated by ®V. Let B C G, be the Borel (Fj-)subgroup
determined by A.

For each o € @, one has the associated root subgroup U, C G, which is normalised by
T r,. We shall fix a Chevalley system of épinglage for (Gp,,TF,), so that for each o € P,
one has an Fi-isomorphism z, : G, ~ U,.

Denote by W = W(G) := N(Tp,)/Tp, the (absolute) Weyl group of (G, T), which we
identify with the Weyl group of the coroot system.

2.2. Multiplicative Ks-torsors

The reductive group G defines a sheaf of groups on the big Zariski site on Spec(F).
Let K5 denote the sheaf of groups on Spec(F') associated to the Ka-group in Quillen’s
K-theory. Then a multiplicative Ks-torsor is an extension

1Ky G—->G—1

of sheaves of groups on Spec(F). We consider the category CExt(G,K3) of such
extensions where the morphisms between objects are given by morphisms of extensions.
Given two such central extensions, one can form the Baer sum: this equips CExt(G,Ko>)
with the structure of a commutative Picard category.

In [1], Brylinski and Deligne made a deep study of CExt(G,K3) and obtained an
elegant classification of this category when G is a connected reductive group. We first
recall their results.
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2.3. Tori
Suppose that T is an F-torus, with cocharacter lattice Y = Hom(G,,,Tr,) and character
lattice X = Hom(Tr,,G,).

Proposition 2.1. Let T be a F-torus. The category CExt(T,Ks) is equivalent as a
commutative Picard category (by an explicit functor) to the category whose objects are
pairs (Q,€), where

e () is a I'-invariant Z-valued quadratic form on Y, with associated symmetric
bilinear form

Bq(y1,y2) = Q(y1 +y2) — Q(y1) — Q(y2);
o & is a I'-equivariant central extension of groups
15F—=>&—-Y =1

whose associated commutator map [—.—]: Y XY — FX is given by

[y1,y2] = (—1)PeWiv2),

The set of morphisms between (Q,€) and (Q',E') is empty unless Q = Q', in which
case it is given by the set of isomorphism of I'-equivariant extensions from & to
E'. The Picard structure is defined by

(Q,E)+(Q",&") = (Q+Q', Baer sum of & and &').

The isomorphism class of the extension £ is completely determined by the commutator
map and hence by the quadratic form . The extension & is obtained from T as follows.
Let F,((7)) denote the field of Laurent series in the variable 7 over Fy. Then one has

1= Ko (Fuo((7) = T(F((7))) = T(Fu((7) =Y @z Fs((r)* = 1.

The map y — y(7) defines a group homomorphism Y — T(F,((7))). Pulling back by this
morphism and pushing out by the residue map

Res: Ko (Fs((1)) — K1 (Fs) = Ff

S

defined by

v(g)
Res(f,g) = (~1)"/)(). (f @ <0>> ’
g’U
one obtains the desired extension &.

2.4. Simply connected groups

Suppose now that G is a simply connected semisimple group over F. Since G is simply
connected, we have Y*¢ =Y and AV is a basis for Y.

Proposition 2.2. The category CExt(G,K3) is equivalent to (as commutative Picard
categories) to the category whose objects are I'-invariant, W-invariant Z-valued quadratic
form @ on Y and whose only morphisms are the identity morphisms on each object.

https://doi.org/10.1017/51474748021000578 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748021000578

Twisted doubling integrals for Brylinski—Deligne extensions of classical groups 1937
We have the following ([27] Proposition 3.15).

Proposition 2.3. There is a unique W-invariant quadratic form @ on Y, such that
Q(aY) =1 for every short coroot oV €Y and every integer multiple of this quadratic form
1s I'-invariant.

As a result, whenever we are given such a quadratic form @ on Y, @ gives rise to
a multiplicative Ks-torsor GQ on G, unique up to unique isomorphism, which may be
pulled back to a multiplicative Ks-torsor TQ on T and hence gives rise to an extension
&g of Y by F*. The automorphism group of the extension &g is Homp (Y, F<). Following
[1] Section 11 and [11] Subsection 2.4, one can rigidify £g by giving it an extra structure.

2.5. The Brylinski—Deligne liftings

We assume that G is simply connected. We also have a fixed Chevalley system of épinglage
for (Gr,,Tp,). In particular, for each o € ® with associated root subgroup Uy, there is
a fixed isomorphism over Fj:

To: G, — U, CG.
Indeed, one has an embedding over Fj
to SL2 — G

which restricts to x4, on the upper and lower triangular subgroups of unipotent matrices.
By [1], one has a canonical lifting

For t € G,,, we set

and

Then one has a map

given by
aV (t) = Tig(t)  fia (—1).

This is a section of G¢ over T, which is trivial at the identity element. This section is
useful in describing the natural conjugation action of N(Tg) on Tq. By [1] Proposition
11.3, one has the nice formula

(1)t (1) 7 =t sa(a” (a(t) ™). (1)
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We also use the following formula frequently ([10] (2)): for t1,t2 € Gy,
500 (11)) 50 (0 (£2)) = sl (t1£2)) - {11,212, 2)

The collection of sections {s, : @ € A} provides a collection of elements s, (a"(a)) € Tq
with a € G,, and Ty, is generated by Ko and the collection of s, (aV(a)).
Taking points in F'((7)), we have the element

sa(a”(7)) € To(F((r),
which gives rise (via the construction of £g) to an element
sQ (av) S EQ.

Then we rigidify &g by equipping it with the set {sg(a¥) |« € AV}: there is a unique
automorphism of £g which fixes all of these elements.

In the following, we shall fix a choice of the data (Gg,Tq,Eq) for each I'-invariant,
W -invariant quadratic form @ on Y when G is simply connected.

2.6. Weyl group action on Brylinski—Deligne liftings

Observe that sg(a") can be defined for every coroot (not necessarily simple coroot). We
would like know how sg(a") behaves under the action of the Weyl group. Recall that
for every a € ®, one can choose w, :=n4(1) € G(Fs) as a representative of the simple
reflection w,, corresponding to a. Let w = w,, - W,, be a minimum decomposition of
w; we choose the following representative of w:

W= Wq, W, € G(Fs).

This is independent of the minimum decomposition of w. We choose W, = fio(1) as a lift
of w, in G(Fy). In any case, the conjugation action of G(F,) on G(F;) descends to an
action of G(Fj).

Fix a pair of roots a and . Then we have a homomorphism

Int(wy) 0Xg = Weu - TH -w;l Gy — Uwa(,@)'

From [3] Subsection 3.2.2, there is a sign €, g € {£1} associated to the Chevalley system
of épinglage such that

wa~z5(t)~w;1 :xwa(/@)(emgt), te @G,,.
This implies that for ¢ € G,,,
W Tp(t) 05" = Twe(p)(€apt)- 3)
Lemma 2.4. Forte G,
o 55(8Y (1)) 05" = {ea 397 500, (5) (Wa(8) (1))-
Proof. The calculation here is identical to [10] Corollary 7.4. For t € G, we have

W - 11p(t) -y = (0o - Tp(t) -y ") (e F_p(—t~ )iy ) (Do - Tp(t) -y ").
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By (3), this is
Tw, (8) (ea,gt) . ﬂsza(ﬂ)(—ﬁx,/at_l) -fw&(g) (Ea,@t) = Ny, 8) (ea”gt).
From this we deduce that for any t € G,,,
Wo - Ap(t) - Rip(—1) o = T, (5)(€a,51)  Tiw,, () (€0, 5)
= {ea,s:t} 27 sw, () (Wa(B)" (1))

The last equality follows from [10] (3). O
Lemma 2.5. We have the following results.

(1) If {a,B8Y) = —1, we have

sla? +8Y) =sq(8")-sq(a) -3y ).
(2) We have sg(—a¥)-sg(a¥)=1.

Proof. On the one hand, we - s3(8Y(7)) - W3 " = Sw.(5)(Wa(B)" (7)) - {€a. 5,7}, On
the other hand, from (1), we obtain

Wa 558" (T)) Wy ! —S,B(ﬂv( ))-sala” (a(BY()™)
=s5(8"(7)) - sala" (77 *7)) = 55(8Y(7)) - sala” (7).

Observe that under the map Kg( ) = Ki(F) =F*, Res{eq,p,7} = €a 3. Now the first
statement follows.

The argument for the second statement is similar. We also need the following
consequences of (2):

Note that
o sa(0 (1)) g = 5a(~0¥ (1) 2C) = s-a(—a¥ (1) - (~1)%.
Again, by (1),
Do sa(@” (1)) " = 5a(a(7)) - sa (@ (77%) = sa(a (r71)) - {r,7 2}

From these two equations, we deduce that
s-a(=a(7) (1)) = sa(a¥(77h) {772y
We now have
5-a(=0" (1)) sa(a¥(7)) = {7,771} (-1 {7,772y
From this we deduce that

sg(a’)-sq(—a’) =1. O
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We write oV as a sum of simple coroots:

in”

We say that this expression has property (x) if the following holds:

(%) oy, @ +ag, -, @+ o) €DV (4)

il’

Lemma 2.6. Assume that eg’(gv) =1 and {a,8Y) = —1 for all a,B. If we write &V as a
sum of simple coroots such that property (x) holds, then

sq(a’) =sq(ay)---sq(al,)-sq(a))).

Proof. This follows from Lemma 2.5 and property (x) by induction. O

2.7. General reductive groups

Let G be a connected reductive group over F, with a fixed Chevalley system of
épinglage for (G,T). Let X*¢ C X ®7Q be the dual lattice of Y*¢. Then the quadruple
(X3°,AY5°Y) is the root system of the simply connected cover G*¢ of the derived group
G of G and one has a natural map

q:G* = G = G.

Let T*¢ be the preimage of T in G*¢. It is a maximal F-torus of G*¢ with cocharacter
group Y*¢ CY, so that one has a commutative diagram

TSC > GSC

|

T———G

The restriction Q% := Q|y- gives an element G~ € CExt(G*°,K5). It also gives the
extension Eg'lysc. For simplicity, we just write £gse with no confusion caused.

Theorem 2.7. The category CExt(G,K3) is equivalent to the category BD(G,T) whose
objects are triples (Q,E,f), where

o Q:Y —7Z is a I'-invariant W-invariant quadratic form;

o & is a T-equivariant extension of Y by FX with commutator map [y1,y2] =
(_1)BQ(1/17Z/2);

o fis a I'-equivariant morphism from Egse to € such that the following diagram

commutes:
1 FSX EQ se Ys¢ 1
1 Fx & Y 1
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The set of morphisms from (Q,E,f) to (Q',E',f") is empty unless Q = Q’, in which case
it consists of T'-equivariant isomorphisms of extensions ¢ : E — &£’ such that f = [’ o ¢.
3. Topological covering groups

We now pass from the algebro-geometric world of multiplicative Ks-torsors to the world
of topological central extensions. We first assume that F is a local field. If F' is non-
Archimedean, let O denote its ring of integers and let p be the residue characteristic.

3.1. BD covering groups

Start with a multiplicative Ks-torsor G on G, with associated BD data (Q,&, f). Since
HY(F,K3) =0, by taking F-points, we obtain a short exact sequence of abstract groups

1 - Ky(F) = G(F) = G=G(F)—1.

Let u(F) denote the set of roots of unity contained in the local field F' # C; when F =C,
we let u(F) be the trivial group. Then the Hilbert symbol gives a map

(= =)F  Ka(F) = p(F).
For any n dividing #u(F'), one has the nth Hilbert symbol
(==t (=)™ Ko (F) = ().

By pushing out the exact sequence via the Hilbert symbol Ko(F') — py, (F'), we obtain an
exact sequence of locally compact topological groups

1=, (F)—G—G—1.

We call this the BD covering group associated to the BD data (Q,&, f,n).

3.2. Unipotent subgroups

Let Ng be the set of all unipotent elements of G. Because a BD extension is uniquely
split over any unipotent subgroup, one has unique splittings

Fo: F— U, for each a € ®.
Indeed, as shown in [22] Appendix I and [18] Proposition 2.2.1, there is a unique section
i:Neg—G
satisfying the following:

e for each unipotent subgroup U C G, the restriction of i to U = U(F) is a group
homomorphism;
e the map 7 is G-equivariant.

3.3. Tori

The following result is a consequence of [1] Proposition 3.13.
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Proposition 3.1. Let L be any field containing F over which T splits. Let T(L) be the
resulting central extension

1 - Ko(L) = T(L) — T(L) — 1.
Then the commutator of this extension satisfies
Comm(yy (u1),ya(u2)) = {ug,ug}PeW1¥2),
for all y1,y2 € Hom(G,,,,T1) and all uy,us € L*.

We would like to note the following useful observation. If T =T X T3, then Y =Y; ®Y5.
We have the following consequence.

Lemma 3.2. If Bo(y1,y2) =0 for all y1 € Y1,y2 € Ya, then T, and Ty commute in T.

Proof. This is an immediate consequence of Proposition 3.1. O

Let G = G x G with maximal torus T = Ty x f[é Then there is a corresponiing
decomposition of cocharacter lattice Y =Y, ®Ys. Let G € CExt(G,K3>). This gives G; €
CExt(G;,K3) for i = 1,2. We have inclusions G; — G,i = 1,2.

Lemma 3.3. If Bg(y1,y2) =0 for all y1 € Y1,y2 € Ya, then G1 and G2 commute in G.

Proof. The group G is generated by T and Ng. We only have to verify the following:

1) Ty and T commute;

) T1 and Ng, commute;
3) Ty and Ng, commute;
4) Ng, and Ng, commute;

The first statement is simply Lemma 3.2. The second follows from the fact that 77 and
Ng, commute in G and the unipotent section is G-equivariant. The rest is similar. [

3.4. The tame case

We now discuss the splitting of maximal compact subgroups at unramified places.

Let F be a non-Archimedean field with ring of integers O. Suppose that the group G
has an integral model G over ©. The Kj-extension G might not be defined over O. If it
is, then there is a natural splitting of G over K = G(O).

The Ks-extension G yields a short exact sequence

1= K(F)— G(F)— G(F)— 1.
If ptn, then this ‘tameness’ gives an exact sequence

1 - Ka(0) = Ko(F) 22 41— 1.
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This gives a commutative diagram

1 — K3(0) —— G(0) G(0) 1
1 Hn G G 1 )

Thus, the central extension 1 — p, = G — G — 1 is endowed with a splitting over the
hyperspecial maximal compact subgroup G(O).

3.5. Adelic BD covering
In this section, F' is a global field. For a place v of F, we write F), for the completion of
F at v

Starting with a BD extension G over Spec(F) and a positive integer n such that
|tin (F)| = n, Brylinski and Deligne showed using results of [20] that one inherits the
following data:

for each place v of k, a local BD covering group G, of degree n;

for almost all v, a splitting s, : G(O,) — Gy;

a restricted direct product H; G, with respect to the family of subgroups
$,(G(0Oy)), from which one can define

G(8) =] Go/{(G) € Dopnke) : T [ o =1},

which gives a topological central extension
1= u,(F) — G(A) = G(A) — 1,

called the adelic or global BD covering group;
e a natural inclusion

1 —— pa(F) G, G(F,) —1
1 —— un(F) G(A) GA) —1

for each place v of k;
e a natural splitting

i: G(F)— G(A),
which allows one to consider the space of automorphic forms on G(A).

In this article, we fix an embedding € : u,, — C*. We say a representation 7 of G(A) is
e-genuine if p,, acts via e.

We briefly recall how the splitting ¢ is obtained. Let X = Spec(Op). Let S; be a finite
set of finite places of F. We assume that S is large enough so that the conclusion of [1]
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Lemma 10.6 holds. Write S = S; U {infinite places}. This gives a central extension
1 - HY(X -51,Ks) = E; = G(X —5;) — 1.

For v a place of F, it maps to the local central extension

1=ty — Gy — Gy — 1.
For an unramified place v, the map factors through a central extension

1 - Ky(0,) = G(0,) = G(0,) — 1.

If p1n, the exact sequence

12 Ky(0,) 2 Ka(F,) = F =1

shows that Ko(O,) maps trivially to u,. We obtain a trivialisation of G, over G(O,).
We now have a commutative diagram

11— HO(X — S1,K>) o G(X-8) — 51

J l

1w Gy x G(O, [1Gox I G(Ov) N
1 veES Y UI;IS 116)1(_[—51 ( ) - vgS veEX—S1 1

provided that for all v in X — Sy, ptn. This holds for S; is large enough. The first
vertical map, composed with the reciprocity map [[¢, with values in p,, vanishes. We
hence obtain

G(X —-51)
Gy X G(O, [TIGox I G(Oy)
1 Hin 'Ul;[S ue)l(_l—sl ( ) vgS vEX—S1 1

Taking direct limit over S gives the desired natural splitting:

1 fin G(A) GA) ———1

4. Pullback, pushout and Baer sum

We now discuss several constructions that give new exact sequences: pullback, pushout
and the Baer sum. In this section, we would like to describe these constructions in terms

of the BD data.
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4.1. Pushout

We now recall the definition of pushout.

Definition 4.1. For a central extension
1-ALELG -1
and a homomorphism f: A — B of abelian groups, we define
fo(B) = (Bx B)/{(f(a),i(a) ™)) :a € A),
The maps B — f.(E),b+— (b1) and f.(E) — G,(be) — p(e) define an exact sequence
1-B— f.(E)>G—1

This exact sequence is called the pushout by f.

4.2. Baer sum

Another method to construct new exact sequences is the Baer sum. In this article, we
only consider the Baer sum of n copies of an exact sequence.
Consider an exact sequence

15A—-E—-G—1 (6)
with A abelian. By taking the direct sum of n copies of the exact sequence (6), we obtain
l-ol A=l \E—-a G- 1.

By pushing out the exact sequence via the product map
n n
pr:HA—)A, (a:i)»—>Ha:i,
i=1 i=1
we obtain an exact sequence:
12 A—pr,(®F)— ol G—1.
Now we pull back this exact sequence via the diagonal map
d:G— el G, x (2, ,2)
to obtain
1-A—-d" (p.®E)—>G—1.

This exact sequence is the Baer sum of n copies of (6).
We now claim that this is also the same as pushing out (6) by the map [n]: A — A,
Tz
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Lemma 4.2. The following commutative diagram gives an isomorphism of exact

sequences:
1 A [n]«(E) G 1
1 A d*(p.®" 1 E) G 1

Proof. Recall that [n].(E) = (Ax E)/{z",i~!(z) |z € A) and
P+(®i B) = A (@?zlE)/<Hl"iv(fl($1), i (@) | (2, n) € B A).

We now define [n].(E) — d*(p. &7, E) by
(a7e) = (U,, (6, T 76))'
It is straightforward to check that this is well-defined and is an isomorphism of exact

sequences. O

4.3. Functoriality of pullback
Let f: G — H be a morphism of connected reductive groups. Let

1-Ky—H—-H->1

be a multiplicative Ks-torsor on H. By pulling back via f, we obtain a multiplicative
Ks-torsor on G:

1—-Ky— f*(H) —» G — 1.

For ease of notation, let us write G = f*(H). Thus, this fits into a commutative diagram

1 Ko G G 1
1 Ko H H 1
and gives a functor
CExt(H,K>) — CExt(G,K»). (7)

At every local place v, the pullback determines the following data:

e At every local place v, we have a commutative diagram

1 Hon G, Gy 1
1 Fn H, H, 1
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e The commutative diagram is compatible with the lift of unipotent elements. In
other words, the following diagram commutes:

Ne, — G,

.

Ny, ——— H,

e In the tame case, the commutative diagram is compatible with the natural lift of
maximal compact subgroups:

We now move to the global setup. So from now on, F' is a global field. The local
homomorphisms glue to

11G. =17
As fi,(55(G(Oy))) C s,(H(O,)), we obtain a homomorphism

16 —1]'H.—HA).

v

This map factors through
fa:G(A) = H(A).

From the construction of the natural splitting H(F) — H(A), it is not hard to check that
this is compatible with the splitting over rational points. In other words, the diagram

commutes.
We now describe the functor (7) in terms of the BD data. Let T and Ty be maximal
F-tori of G and H, respectively. We assume that f(T¢g) C Ty. The map Tg — Ty
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induces a map Yg — Yy, which gives Eg as the pullback of £y via Yo — Yg:

1 F SX Ea Yo 1
1 F SX Ey Yy 1

(®)

The homomorphism G — H also determines a map G*¢ — H*“. This gives a map Egsc —
Ense. It is easy to check that the image of Egsc — Egse — £y agrees with the image of
Ec — €y, which gives a commutative diagram

1 Fr Egse Ya© 1
1 FS>< Ea Yo 1

(9)

Proposition 4.3. With notation as above, the functor (7) can be described in terms of
BD data:

BD(HvTH)%BD(GvTG% (CgHa(‘:I'Ivfl'I)'_> (QG?gGvfG)7

where

Qe =Qulvy;
o &g is given by the top row of (8);
o [ is given by the commutative diagram in (9).

Proof. The quadratic form is determined by the commutator map on T¢. The other two
invariants follow from their construction from G directly. O

4.4. Functoriality of pushout

The pushout action is functorial, so it can be glued to a construction of sheaves. Let
f € End(Kj5). Then for a multiplicative Ko-torsor G, one can push it out via f to obtain
a new multiplicative Ko-torsor. In this article, we consider the following map:

[m] : Ko — Ko, A

for an integer m. We have a natural map G — é“ which fits into the commutative diagram

1 K, G G 1
1 K, éh G 1

This defines a functor

CExt(G,K,) — CExt(G,K»).
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At every local place v, we obtain the following;:

e We have the following commutative diagram:

1 im G, G, 1
1 fim a G 1

where the first vertical map is = — z™.
e the map Ng, — G, — @E) is the canonical unipotent section for éi;

e in the tame case, the map G(O,) = G, — éi is the natural splitting of maximal
compact subgroups.

Globally, we can glue the local maps to obtain a global map. The map G(F) — G(A) —

éh(A) is the natural splitting for the multiplicative Ka-torsor éb.
We now describe the functor CExt(G,K2) - CExt(G,Kj3) in terms of BD data.

Proposition 4.4. The functor
CExt(G,K») — CExt(G,K»), GG
in terms of the BD data is given by
BD(G.T)— BD(G,T),  (QEf)— (Q4E% ),

where

o Qh = mQ;
o &% s obtained from & by pushing out via the map [m]: FX — FX x> 2™;
o fb is obtained by pushing out the commutative diagram in (5) via the map [m)].

Proof. The functoriality of Baer multiples G + G" can be found in [28] Theorem 2.2.

Indeed, the quadratic form Q! is determined by the multiplication map on Th. The other
two invariants again follow from the construction directly. O

Observe that if m = —1 mod n, then
m]: K =Ko, (= (™
becomes (i, — i, — ¢! after taking the Hilbert symbol. Thus,
o= (1 X G0 C € ),

We have a commutative diagram

1 Hn év G, 1
1 in a G 1
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where the first vertical map is the inverse map and the second vertical map G, — @i is
a group isomorphism. This works globally as well.

5. Doubling variables

We now review some definitions related to classical groups that are used in the twisted
doubling integrals. Here we use the conceptual description in [5].

5.1. Classical groups

For the definition of classical groups, we follow the setup in [29].

By an involution of an algebra D whose centre E contains F, we mean an arbitrary
anti-automorphism p of D of order 2 under which F' is the fixed subfield of E. We denote
the restriction of p to E also by p. We take a couple of (D,p) belonging to the following
five types:

(a) D=FE =F and p is the identity map;
(b) D is a division quaternion algebra over E' = F' and p is the main involution of D;

(¢) D is a division algebra central over a quadratic extension E of F' and p generates
Gal(E/F);

(d) D=My(E), E=F and (CCL Z)p:(_dc —ab>;

() D=D®D°? E=F&F and (z,y)” = (y,x), where D is a division algebra central
over F' and D°P is its opposite algebra.

If F is local, we fix a nontrivial additive character ¢ of F; if F is global, we fix a
nontrivial additive character ¥p of F\A. If E = F, we set ¢y = ¢p; if E/F is an étale
quadratic algebra, we set 1) = r otrg,p. The global version is defined similarly. If = is a
square matrix with coordinates in D, then v(x) € E and 7(z) € E stand for its reduced
norm and reduced trace to the centre £ of D.

The rank of D as a module over F is a square of a natural number which will be
denoted by d. We assume D to be division if F' is a number field, so that D is of type
(d) (respectively (e)) will appear in our later discussion as a localisation of a global D of
type (b) (respectively (c)).

Let € be either 1 or —1. We fix once and for all of the triple (D, p,¢).

Let W be a free left D-module of rank m. By an e-skew Hermitian space we mean
a structure W = (W,(, )), where (, ) is an e-skew Hermitian form on W; that is, an
F-bilinear map (, ) : W x W — D such that

(z,y)" = —€(y,z), (az,by) = a(z,y)b’, (a,b € D; z,y € W).

Such a form is called nondegenerate if (x, W) = 0 implies that z = 0. We assume that (, )
is nondegenerate.

We denote the ring of all D-linear endomorphisms of W by Endp(W) and set
GLp(W) = Endp(W)*. Note that GLp(WW) acts on W on the right. We sometimes
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write GLy,p for GLp(W) for ease of notation. Let
G ={g9 € GLp(W): (xg,yg) = (z,y) for all z,y € W}

be the unitary group of (W,(, )), which is a reductive algebraic group defined over F. It
is important to realise that G always comes together with a space W and a form (, ).
We usually just speak of G and the data W = (W,(, )) will be implicitly understood.
We write G = G(W) when the dependence of G on W needs to be stressed.

5.2. Doubling homomorphism

Let W= (W,(, )) be one of the e-skew Hermitian forms described above. Let k be a fixed
positive integer. We would like to define the following in this section:

(GaGD’k7L7P7N;v,k71/}1./v,k)~ (10)
Put WHF = W2k We usually write
WEE—W, oW, @ OWy , OWi_ @ ®Wo_ Wy _
to distinguish the copies of W in W25, We write an element in W5 as
(T5y) = (T1, k5 Yy Y1), x, €Wy, yi €Wy .

Define an e-skew Hermitian form ( , )&% on W5* by

k
(@39), (20 ))PF = " (waal) = (wirh) (@) € Wi sy, € Wi o).

i=1

Let GP* denote the unitary group of (W5* (| )B:5),
For WH =W, @W_, let

WY ={(z,~z)eW aW_:2eW}
be the graph of minus the identity map from W to W and
WA ={(z,z) eW, OW_:2€ W}
be the graph of the identity map. Given x € W, we write
2 = (r,x) €W and 2V = (z, —2) e WV.
We have the following observations:

(1) For each i, W2 =W, L @W; _ = WA +WY. Both W2 and WY are totally isotropic
in Wk,
(2) The space W2 is isomorphic to W as vector spaces via
WA ~W, (z,2) — x.

The space WV is identified with W via (z, —z) + 2x. Thus, we can view G (W)
as a subgroup of GLp(W?#) or GLp(WV) and identify Homp (WY, W) with
Endp (W).
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Define
WA’k:WlAéBm@WkA, Wv’k:WFGBw@WkV.

Both spaces are totally isotropic in W5* and Wk = WAk L WV-k This is a complete
polarisation of W™F, Unless otherwise specified, we write P = P(W*/F).

We first construct a Fourier coefficient for the group G2-*. We choose the following flag
of totally isotropic subspaces in WHk:

0CWy cwy ,eWy Cc--CWy @ oWy. (11)
Let Py, , = M3, ;.- N3y, ;. be the corresponding parabolic subgroup. Then
M3y, . =~ GLp(WY) x -+ x GLp(Wy ) x G(WY).

The character is defined on the group NJ,, ;.
We reindex the flag in (11) as

ocyyCc---CYr_1
and extend it to
0ocYiC-—-CYp Y, c-cytcwbk

Note that except for Y,j_ /Y1 = WF, the quotient between two successive terms is
isomorphic to either W2 or WV. For convenience, we write Yy =0 and Y}, := Yk{ 1-
To describe the character of N3, ; (F)\Ny,, ;. (A), we have to specify elements

A € Homp(Y;/Y;_1,Yi41/Y:) ~Endp(WVY),  i=1,--- k-2
and
Ap_q € HOHID(kal/ykfg,ykjll/ykfl) ~ HOHID(WV,WD).

We choose Aj,---,Ax_ to be the identity map in Endp(WV). The map

Ap_ A
kal/ykfz L> Ykil/ykfl —k> Yk£2/yk£1

is translated from
WY sWooW_ W2, 2V (22,0) — 222,

Note that Ay o Ag_1 is an isomorphism.
An element u € N3, , (F)\N3,, ; (A) induces

ui: (Yig1/Ys) @ (F\A) — (Y3/Yio1) @ (F\A).
Then we define

k-1
Uk Ny (F)\Njy 1 (A) = C, ursy) (ZT(UiOAi)> .

i=1
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Given (g1,92) € G X G, we define its action on Wy ®Wo L & Wi 1 Wi _ B --- &
WQV_ @WL_ via

(T1s Tk Y5 Y2,91)(91,92) = (T191, TG YRGLs 5 Y291,Y102)-
This extends to an action of G x G on W=* and gives a map
t=1,:GxG— G-,

It is in fact a homomorphism and, in particular, the images of these two copies of G
commute in GP*. Tt is straightforward to check that +(G x G) lies in the stabiliser of
Py, in GEE.

Recall that for a subgroup J of G, we define J = {(g,9) € Gx G | g € J}. We have the
following results from [5].

Lemma 5.1 ([5] Lemma 5.1). We have (G x G)NP = 1(G?).

Lemma 5.2 ([5] Lemma 5.2). The modular quasicharacter 0,(gxayns, , (t(91,92)) =1
for any g1,92 € G. ’

5.3. The case of special orthogonal groups

We now discuss the case of special orthogonal groups. Since the group O(W) is
disconnected, to consider multiplicative Ks-torsors, it would be better to consider its
connected component SO(W). We now explain the modifications in order to develop the
twisted doubling integrals. For the group O(W) and a fixed positive integer k, we have
defined a list of input (G,GD,L,P,N;V)]C,’L/);VJC). We now explain how to define it for the
group SO(W).

The doubling homomorphism ¢ : O(W) x O(W) — O(W™F) restricts to

1:SO(W) x SO(W) — SO(WHF).

Note that P,IN3,, , C SO(W™F). Thus, we can still use Y3y, and NY,, ;- to define a Fourier
coefficient of an automorphic form on SO(W™F)(A). Thus, we take

(SO(W),SO(W%),., PN}, 1,03y 1)

to be the input in the case of special orthogonal groups. To unify our discussion, if
G =SO(W), then we take GP* = SO(WH-F).
The case of inner forms of orthogonal groups can be treated similarly.

6. Degenerate representations

The purpose of this section is to discuss a family of representations that are used in
the global zeta integrals. These can be viewed as the analog of the generalised Speh
representations in the covering group setup. As indicated in [5], in order to prove the global
identity, one only has to use information on Fourier coefficients of these representations.
We will discuss the conjectural construction of such representations in Section 11.
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6.1. Degenerate Whittaker models

We first recall the definition of degenerate Whittaker models. One can attach a degenerate
Whittaker model for a Whittaker pair (see [12, 21]). Given an admissible representation
7, an important question is to find the largest nilpotent orbits that support degenerate
Whittaker models for 7. Locally, this determination is related to other nilpotent invariants
such as the wavefront set. We refer the reader to the introduction of [12] for a
comprehensive account of discussion.

In this article, we consider only a subclass of degenerate Whittaker models for
GL,, p. As explained in [5] Subsection 2.4, this is sufficient for determining nilpotent
invariants and fits into our examples later. As unipotent subgroups split canonically over
covering groups, these notions transfer from the linear case to the covering group case
automatically. In the following, we only define these in the linear case.

Let R=F if F is a local field and R =A/F if F is a number field. Fix a nontrivial
additive character ¢p : R — C*. Let D be a central division algebra as in Subsection 5.1.
Let W be a free left D-module of rank m and consider the group GLp (). Recall that
we sometimes write GLyy,p for GLp(W) for ease of notation. Let

y:.ocvicy,c---CcYpyCcW

be a flag of distinct subspaces of W. We sometimes write Yy = {0} and Yy =W for
convenience. The stabiliser of ) is a parabolic subgroup P(Y) = M(Y) - N(Y) with Levi
component M()). Then as algebraic groups,

k
N()® = [[Homp (Yig1/Yi,Yi/Yic1),  wes (wi)h,.

i=1
To give a character of N(Y)(R), we specify an element in

k
A= (Ay,-,Ay) € [ [Homp (Yi/Yio1,Yis1/Yi).

i=1

More concretely, given such an A4, we define a character ¢4 of N(Y)(R) by

k
Yalu)=1p (ZT(uioAi))

i=1

Here, w :¢F OtI'E/F.
Assume now we have a pair (N(Y),1)4). Globally, for an irreducible automorphic
representation m of GLyy.p(A), we define the (N(Y),9.4)-Fourier coefficient of ¢ € 7 as

¢N(yLwA(g):: ]/ d(ug)pa(u) du.
[N(Y)]

Locally, we consider the space Hompyyyp)(m,¥a) of (N(Y),¥4)-functional for an
admissible representation 7 of GLyy.p(F).
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6.2. Representations of type (k,m)p

The purpose of this section is to introduce the notion of representations of type (k,m)p,
both locally and globally. These representations are supported on a suitable nilpotent
orbit and admit unique models of degenerate type. In the linear case and when D is a
field, the generalised Speh representations are examples of such representations.

In this section, we assume that dimp W = km.

Definition 6.1. We say a pair (N()),1).4) is in the orbit (k™)p if Y is of the form
ocvrc---CcY 1 CW
and fori=1,---,k—1, dimpY; = mi and A; is an isomorphism.
The stabiliser of a coefficient in the orbit (k™)p is isomorphic to GL,, p.
Definition 6.2. We say a pair (N()),14) lies in an orbit higher than (™)p if
Aiyg—10-0A; #0
for some 1.

Note that this implies that there are at least k proper subspaces in the flag ).

Definition 6.3. We say a representation 6 of a local group GLyy,p is of type (k,m)p if
the following two conditions hold:

(1) For a pair (N(Y),1)4) that lies in the orbit (k™)p,
dimHom y(y)(0,94) = 1.

(2) For any pair (N()),1¥.4) that lies in an orbit higher than (k™)p,
dimHom y (y)(0,%4) = 0.

Remark 6.4. By Frobenius reciprocity, Homy (y)(0,4.4) ~ Homgg, (0, IndNoV}V)'D (Y4))-
An element in the latter space is called a (N()),%.4)-model for §. For a representation
6 of type (k,m)p, we write Why(y),(0) for the image of a mnonzero map in

GLw;
Homgg, (0, Indy 3" (V.4))-

Definition 6.5. We say an irreducible automorphic representation 6 of GLy .p(A) is of
type (k,m)p if the following conditions hold:

(1) The representation supports a nonzero (N ()),1 4)-Fourier coefficient such that the
pair is in the orbit (k™)p.

(2) For any pair (N(Y),1.4) that lies in an orbit higher than (k™)p, the (N(Y),14)-
Fourier coeflicient vanishes identically.

(3) The local component 6, is a representation of type (k,m)p for every place v.

We also say that the nilpotent orbit attached to 6 is (k™ )p if only parts (1) and (2) hold.
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6.3. Invariance under stabiliser

This section is a straightforward adaption of [5] Subsection 2.4.2 to the case of covering
groups. We collect necessary results but omit the proofs.

We now assume that dimp W = km and the representation 6 of @W; p is of type
(k,m)p. We consider the following situation:

ocyvic---CcYiCcW

such that dimp Y; =mi, As, -+, Ap_1 are isomorphisms and the rank of A; is a > 0 (which
might not be of full rank).

The Fourier coefficients defined by such a pair enjoy an extra invariance property. We
start with the case of a =m. Recall that the stabiliser St 4 of a pair (N(Y),104) that lies
in the orbit (k™)p is isomorphic to GL,,, p. We start with the local version.

Lemma 6.6 ([5] Lemma 2.14). Let 0 be an irreducible e-genuine admissible representation
of GLw.p(F) that is of type (k;m)p.

e stabiliser St 4 acts on Hompy ,¥a) via an e-genuine character’y, 1St —

1) Th biliser S H o (0, h 0 St A(F
C*.

(2) For f S WhN(y)va (9),

for g € St 4(F) and h € GLy.p(F).
Here is the global version.

Lemma 6.7 ([5] Lemma 2.15). Let 0 be an irreducible unitary e-genuine automorphic
representation of GLw.p(A). Then there is a character Xy : StA(F\A) — C* such that,
for any ¢ €0,

oA (gh) =X (9)9™ 14 (h)
for any g € StA(F\A) and h € GLw.p(A).
We now consider the case a < m. Define S 4 to be the subgroup of M(Y):
N(Ker(Ay)) x {1} x -+ x {1} € GL(Y1) x GL(Y2/Y1) X - -- x GL(W/Y},_1).

Here, N (Ker(A1)) is the unipotent radical of the parabolic subgroup of GL(Y}) stabilising
Ker(A;). Then the unipotent group S4 is in the stabiliser of the pair (N (Y),14). (Note
that S4 is not the full stabiliser.) The Fourier coefficient ¢™V©)%4(g) is left-invariant
under [S4].

Proposition 6.8 ([5] Proposition 2.17). For ¢ €0,
¢N(1V)7111A (gh) = ¢N()7)»¢A (h)

for any g € SA(F\A) and h € GLy.p(A).
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Remark 6.9. To further develop the local and global theory of the twisted doubling
integrals, we need finer properties of these representations. For instance, multiplicativity
of v-factors corresponds to the properties of representations of type (k,m)p with respect
to parabolic induction. As we do not require these properties in the present article, we
leave them to a future article.

7. Basic setup in the linear case

We now review the basic setup of the twisted doubling integrals from [5] Section 6.
Write P =M-N. Then P(F)\G"*(F) can be identified with the flag variety Q(W5*) of
maximal totally isotropic subspaces of W5, (In the case of special orthogonal groups,
this corresponds to a subset of Q(W™*).) The identification is given by s W2k~ We
write L = W5k~

We define the following subset of GF*(F):

Q) = {yeGHF): U, kll=18anng, 1 7 1)

If v € GPF(F) —Q, then Uy il -1nonng, ) = 1. The character ¢3), ; induces a character
on a unipotent subgroup of [y~ N~\y~! Pv] which is isomorphic to a general linear group
over D. It is defined by the following pair:

(T Ny NSy Y PY NNy Ly k) (12)
We define
Qo ={vy € GP*(F)—Qy:(12) is given by a pair that lies in an orbit higher than (k™)p}.

Both €7 and Qs are double cosets in P(F)\GD”“(F)/N;V’,C(F) and we have a nice
geometric interpretation of 1 Us.

Lemma 7.1 ([5] Subsection 6.1). With notation as above,
QL UQy ={ye GPF(F): LNY,_y = {0}}.

Proof. The only new case is the case of special orthogonal groups, which follows from
the case of orthogonal cases. O

Let GP5(F) = GPF(F) - (1 UQy) and consider P(F)\GP-*(F) /Ny,  (F). Tt is stable
under the right action of (G x G)(F).
The results in [5] Subsection 6.2 can be summarised as follows:

Proposition 7.2 ([5] Subsection 6.2). We have the following:
(1) The double coset P(F)\G™¥(F)/1(G x G)Nyy i (F) is finite.

(2) For an o(G x G)(F)-orbit in P(F)\G*(F)/u(G x G)Nyy (F), one can choose a
representative v such that
e The Fourier coefficient in (12) is of the form studied in Subsection 6.3. The
value a can be determined explicitly by v. If a < m, let Sy denote the subgroup
S 4 in Subsection 6.5.
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(3) The stabiliser R_ in {1} X G of each representative in (2) contains the unipotent
radical N_ of a parabolic subgroup of {1} X G as a normal subgroup.

(4) If a <m, then N~ is nontrivial and the projection of {1} x N~ to M is a subgroup
of Sx. In this case we say that this orbit is negligible.

(5) If N~ is trivial, we call this orbit the main orbit. The representative of the main
orbit can be chosen to be the identity element. The stabiliser of the identity element
in (G x G)(F) is P(F)Nu(Gx G)(F)=1(G°)(F).

Proof. The only case to check is the case of special orthogonal groups or its inner forms.
It can be deduced from the orthogonal group case by noting that there is a bijection
between

P(F)\O(W™F)(F)/L(O(W) x O(W))Nyy, 1. (F)
and

P(F)\SO(W™F)(F)/((SO(W) x SO(W))Nyy 4 (F).

8. Assumptions in the covering group case

We now discuss the necessary modifications in the case of covering groups. In order to
keep the length of this section reasonable, we defer some of the proofs to Section 10.
From now on, we consider G to be one of the following groups:

(1) (W) or its inner forms;
(2) SO(
(3) SO(
(4) U(W).

) with dim W even or its inner forms;

Sp
S
S ) with dim W odd and dimW > 3;

ow
ow

For each group in the list and a fixed integer k we have a list of input
(G,GD’k,L,P,N{/\,’k,w;\,yk) from the previous section.

Remark 8.1. The group SO; is trivial, so all of the results in this section are trivial in
this case. We will exclude this case. (We still need to consider this case locally in order
to discuss multiplicativity, for example.)

Let n be a fixed positive integer. Let G € CExt(G,K3) which is classified by the
BD data (Q,&,f) given a choice of a maximal F-torus T. In the case of unitary
groups, U(W)p, =~ GLgp, ,. We also assume that quadratic form @ in the BD data
is decomposable. (This means that if we write Y =Y; @Y, according to T =T x Ty,
then @ can be written as the direct sum of @y, and Q|y,.) This assumption will greatly
simplify the situation. We will discuss more on this in Remark 8.9.

Lemma 8.2. Assume that D is a field and dimp W > 1. Then 2 | Q(a") where oV is a
coroot in the Siegel parabolic subgroup of G.

https://doi.org/10.1017/51474748021000578 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748021000578

Twisted doubling integrals for Brylinski—Deligne extensions of classical groups 1959

This result will be proved case by case in Section 10. In the unitary case, this result is
not true without the decomposable assumption.

Let ng =n/ged(n,Q(a")) where a" is a coroot in the Siegel parabolic subgroup of
Gr,. In the case G = Uy, the quadratic form is Q(eY) = a. We define ng =n/ged(n,2a).
Without loss of generality, we assume that ng is either n or n/2.

Let GU*e € CExt(GHP*"2 K,). The pullback of GUFne via the doubling
homomorphism

1: G x G — GHFre
gives two multiplicative Ky-torsors on G:
12Ky —=G_ = 1(1xG)—1
and

1-Ky— Gy —1(Gx1)—1.

A priori, these two multiplicative Ks-torsors may not be isomorphic. In fact, a simple
calculation on the quadratic form suggests that they are not isomorphic unless kng = 1.
In any case, what we need is the following result.

Theorem 8.3. For G € CExt(G,Ky), there erists GHkne € CExt(GHFe Ky) such
that G_ ~ G and G is the pushout of G by the endomorphism [2kng —1] : Ko — Ko.

This theorem is proved as a special case of Corollary 10.6.
Let GH-Ane be a multiplicative K-torsor given by the theorem. We simply write G =

G_ and éb = G . Then these two extensions fit into the following commutative diagram:

1 K, (IxG) ——1

R

1 K, (Gx1)——1

Here, the leftmost vertical map is [2kng — 1] : Ko — Ka. We fix a morphism G — G once
and for all.

The decomposable assumption in the unitary case significantly simplifies our argument
since the following result is true. This will be proved in Proposition 10.7.

Lemma 8.4. The multiplicative Ko-torsors éh and G commute in GHFnq

A consequence of this lemma is that we have a doubling homomorphism of multiplicative
Ko-torsors (instead of a map of sets):

G’ x G — GO kng,

By composing it with the fixed morphism G — §h7 we obtain a homomorphism

t:GxG— GHrne,
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which fits into the following commutative diagram:

1—KoxKys — GxG—GxG — 1

| L]

1 K> GQUkng — GD,an EE——

Here the first vertical map is given by

K> x Ko — Ko, (z,y) — x2kne =1y,

8.1. The local doubling homomorphism

We now discuss the local and global consequences using results from Section 4. The
homomorphism

LG x Gy — GPFne

is a lift of the local doubling homomorphism ¢ : G, x G, — GE k19 Here are the
consequences:
. ai —h . O,kng
e The images of G, and G, commute in G, .
e We have a commutative diagram

IL——— i X —> Gy x Gy —> Gy x Gy ———> 1

| L]

1 Hen Gkne —— glhhkne ———

where the first vertical map is given by
P X i = fp, ((1,G) = (G
Lemma 8.5. We have the following:.
(1) For a unipotent subgroup U of G,
iu((91,92)) = t(iu(91),1u(g2))

for g1,92 € U(F,).
(2) Let F be a non-Archimedean field. Assume that ptn. We have

su(t(g1,92)) = t(s0(91):50(g2))
for g1,92 € G(Oy).

Proof. These are simply consequences of the results in Section 4. O
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8.2. Splitting over the diagonal copy
We now discuss an important consequence of Lemma 8.4. We write (G x G), to be the
pullback of G572 via 11 Gy x Gy — GFF".

Lemma 8.6. With the above assumptions, there is a natural splitting GO — (G x G),-

Proof. We know that the homomorphism

Gox Gy — (GxG), - G

restricts to fin X fin = fin, (C1,C2) + ¢ *¢o. Thus, we obtain
(Gx@G),=(GyxGy)/ul.

This implies that the image of éff cG,xG,in(GxQ),is G, /MO ~ GY. Thus, we have
a natural splitting G — (G x G),,. O

8.3. The global doubling homomorphism

The local doubling homomorphism glues to
A Hév X H@v — HGE’]mQ.

As 1,(50,(G(O,)) X 5,(G(0,))) C 5,(GP*72(0,)) for almost all v, we obtain a homomor-
phism

L H G, ><H =T 657" — GBFna(a).

v

This map factors through

ta : G(A) x G(A) — GHFne (A).
To summarise, we have obtained a global doubling homomorphism so that
e the restriction to p, X u, is given by
LAt X i = iy (C1,G2) = G o

e this map is a lift of the linear doubling homomorphism G(A) x G(A) — GPFne (A).
e this map is also compatible with the local doubling homomorphism.

The section over the rational points is also compatible with the doubling homomor-
phism.

Proposition 8.7. We have a commutative diagram

G(F)xG(F) —— > G(A) x G(A)
GBFne(F) GPEna (A)
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Proof. This is again a consequence of the results in Section 4. O

We can also check that the cover splits over 14 (G(A)).

Lemma 8.8. There is a natural map G(A) — (G x G)(A) — GHFne (A).
Proof. This is trivial from the local result Lemma &8.8. O

Remark 8.9. An important consequence of Lemma 8.4 is that we have G x G/uS ~
G x G. Given an e-genuine representation 7 and an e~ !'-genuine representation 7', their
tensor product descends to a representation of G x G.

We briefly explain what would happen when Lemma 8.4 does not hold. We no longer
have a homomorphism G x G — G x G. Thus, given two automorphic representations of
G(A), one cannot directly construct an automorphic representation of G x G(A). Instead,
one has to use a version of metaplectic tensor product, as in [19, 25, 26]. In this article,
we do not plan to treat such cases. Moreover, the diagonal copy might not split.

9. The twisted doubling integrals

We can now present the global twisted doubling integral.

Notation: we use notation [G] for G(F)\G(A) for a multiplicative Ks-torsor of G. For
a unipotent subgroup N C G, let [N] = N(F)\N(A). Recall that we always identify [N]
with the subgroup i, ([N]) of [G].

9.1. Petersson inner product

Let m be an irreducible e-genuine cuspidal automorphic representation of G(A) realised
on a space Vy C L2(G(F)\G(A)), where we fix an embedding 7 < V,; C A(G(A)). The
contragredient representation 7V is e ~'-genuine and is realised on the complex conjugate
V, of V. The Petersson pairing P = P, : VXV, — C is defined by

PaRe) = [ 4@ ds

G(F)\G (&)

The integrand is trivial on both u, and G(F) and the pairing is G(A)-invariant.

The Petersson inner product admits a slightly different formula. The function &; K&, €
7Y is a function on G(A) x G(A) which is trivial on p$. Thus, this descends to a
function on G x G(A), which will be denoted as & X&;. By Lemma 8.8, the image of
G(A) under G(A) x G(A) — G x G(A) is G(A). It is easy to check that

Po(61RE) = / 686 ((9,9)) dg.
G(F)\G(A)

9.2. Metaplectic restricted tensor product

We now recall the notion of meteplectic restricted tensor product. Notation: m = ®;7rv.
We can view 7 as a representation of HL G, via the projection map H; G, — G(A). The
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space of the representation stays the same. Thus, we can write 7 as a restricted tensor
product ™ = ®/,m,, where 7, is an admissible representation of G,,.
We fix isomorphisms V; ~ &) 7, and V; ~ &, 7V,

Lemma 9.1. We can choose a standard local pairing Py, : 7, Km — C at every local
place v in order that

Pr(§) = HPM (&)

for all £ = ®,&, € Vo RV, where Py, (€0,0) =1 for almost all s,(K,) x s,(K,)-invariant
vectors &o,, € m, X7, used to define the restricted tensor products.

Proof. Let 7, be an e-genuine representation of G,. The action on 7V is given via

(€ormy (9)6)) = (mo(971)80,8))-

Thus, 7, is an € !-genuine representation of G,. Recall that Homg (my,m,) = C. This

implies that Homg (7, R, ,C)=C.
The Petersson inner product defines a G(A)-equivariant pairing on global representa-
tions

r®7Y — C.

This (abstract) pairing is also H; G y-equivariant. One can argue as in the linear case to
prove the result (see [4] Subsection 3.5 for an analogous argument). O

9.3. Eisenstein series

We now describe the Eisenstein series that appear in the global construction. Let 6 be an
irreducible unitary automorphic representation of GLgmn,, p(A) of type (kng,m)p. We

O, kmn
define the normalised global induced representation 1(s,0) = Ind%( 8 e (A) (0-v®). Here
v is defined as P(A) — P(A) — M(A) — C*. .
For any holomorphic section ¢(*) of I(s,0), we write ¢(*)(g) = ¢()(g;1) to be
the value at the identity. We form the associated Eisenstein series E(¢(*)) on
GD,kan (F)\GD,kan (A) by

E(¢™))(g) = > ¢ (vg).
YEP(FN\G "2 (F)

The Eisenstein series converges for $ts > 0. By the theory of Eisenstein series, it can be
continued to a meromorphic function in s on all of C satisfying a functional equation.
We now discuss the extra invariance property in this setup. Notation: we write Ny, =
N;V,an c GHFmna and Yy = %‘/\;,an for ease of notation.
Let

F9 )= £ (g) = / ) (ug)diy (u) du = / ) (g )y () du.

[Ny, NP] [Ny,NP]
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The pair (N3, NP, 93, |(ns np)) gives a Fourier coefficient in the orbit ((kng)™)p and
((G?) lies in the stabiliser. For fixed g, the function u+ ¢(*)(ug) on (N, N P)(A) is
an element of #-v°. Thus, one can view f(*)(g) as a (kng,m)p-coefficient of an element
in 0-v°.

Lemma 9.2. There exists a character xg : [G] — C* such that for 1(g,g) € L(G(A)®) and
h € GBFmna (A),
FO(ulg,9)h) = xo(v(9) F) ().
Proof. Recall that the homomorphism
G (A) = G(A) x G(A) — GOFmng (A)
is trivial on u, and thus descends to
GO (A) — GOkmnq (A).
This indeed gives a homomorphism
GO (A) = P(A) — M(A).

The image of G®(A) lies in the stabiliser of the Fourier coefficient. Thus, the Fourier
coefficient is left-equivariant under a character xy; in other words,

£ (g 9)h) = xo(v(9)f ) (h),
for 1(g,9) € L(G(A)?) and h € GH-kmna (A). O

9.4. The global integral

We view xp as a character of G(A) via G(A) — G(A) X% C*, which we still denote as
xo- We define the global integral to be

Z(&1R&,0) = % / xo(v(92)) €1 (g1)62(g2)
[GxQ]
<[ B e tgr.g0))0ivlw) du dgy dge.
(Nyy]
Since 14 (G(F) x G(F)) ¢ GP*mne(F), this integral is well-defined.
Since the two cusp forms are rapidly decreasing on G(F)\G(A) and the Eisenstein series

is only of moderate growth, we see that the integral converges absolutely for all s away
from the poles of the Eisenstein series and is hence meromorphic in s.

Remark 9.3. One can easily check that the integrand as a function of G(A) x G(4), is
trivial on i, X i, and thus can be viewed as a function on G(A) x G(A). The factor 1/n?
will be cancelled out if we write Z(£; K&,,6(%)) as an integral over G(A) x G(A).

Remark 9.4. Observe that the function & K&, is trivial on pu, and thus descends to
a function on G x G. Such functions generate an irreducible cuspidal representation of
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G x G(A), which we denote by 7 X 7V. In the proof of the main global identity below, we
only use the fact that 7 X7V is cuspidal.

9.5. Main global identity
We now state the main global identity.

Theorem 9.5. When Rs >0, Z(& R&,¢00)) equals

% / xo(v(g92)) €1 (91)&2(g2)
GO (F)\(GxG)(A)

v / ) (- 1(g1,92) 3 () du dgy dgo.

(N3, P)(F)\N3, (4)

Proof. The proof is similar to that of [5]. We will give a sketch here.
When Rs > 0, the global integral becomes

Z(& @52#25(5)) = % / xo((g2)) " &1(g1)&2(g2)
[GxQ]
X > &) (yu- 1(g1,92)) ¢y () du dgi dgs.

[N3,] YEP(F)\GZ e (F)

We can rewrite the integral as a sum over P(F)\GP*""e(F) /(G x G)N,(F). Our goal
is to show that only the double coset P(F')¢(G x G) Ny, (F') supports nonzero contribution.
We first calculate the Fourier coefficient and deduce that

> ¢ (yu-1(g1,92) )3y (u) du

[Ng,] YEP(F\G™ e (F)

B / > > ¢ (37" 1(g1,92) Uy (u) du

[Ng,] veP(FNGTEmm@ (F) /N, (1) 7V €Y~ P(F)INN(F)\N3, (F)

= > / B (- 1(g1,92) 6y (u) du.
VEP(F)\GZF™Q (F) /N3, (F) (N3, =1 Py)(F)\Ng, (A)
(13

For each v € P(F)\G™*™"a(F) /Ny, (F) and h € GH-kmne (A), we write

L(h) = / 6 (yuh )i () du,

(NYy Oy~ Py)(F)\Ny, (A)

Ty (h) = / 6 (yuh)i () du.
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Thus,

L(h) - [ e d
(N3, Ny ~1PAy\Ny, ) (A)

Recall that in Section 7 we defined two subsets Q; and Qo of GEFmme If 4 € O, then
J+(h) contains the following inner integral:

&) (yuh)ipyy (u) du. (14)
[Ng, Ny~ N~]

Note that ¢(*) is left invariant under [N]. Thus, as a function on [N, Ny~ N~], ¢(*) (yuh)
is a constant function. According to the definition of €, the restriction of 3, (u)
to [Ny, Ny~ 'N~v] is a nontrivial character. Therefore, (14) vanishes and so do J.,(h)
and I (h).

If v € Q, then (14) is constant as a function on [Ny, Ny *N7] and J,(h) becomes a
Fourier coefficient of 6 which is given by a pair that lies in an orbit higher than ((kng)™)p.
We now have J,(h) =0 since 6 is a representation of type (kng,m)p. Thus, I,(h) =0
as well.

Therefore, we have shown that (13) equals

Z I,(e(g1,92))
~eP(F)\GZ*™"Q (F) /N3, (F)

and, therefore,

Z(6 R0
1 -1
=3 xo(v(92)) ™ &1(91)€2(92) Z I, ((g1,92)) dg1 dga.
[GxQ) YEP(F\G™H™"Q (F) /Ng, (F)

We now break the sum and exchange it with integration again. This shows that the
above equation equals

1
2 2. K,

FEP(F)\GTF™Q (F) /L(GX G) N, (F)

K, = / xo(v(g1)) " &1 (91)&2(92) 1, (¢(g1,92)) dg1 dga.
LT Y PY I (G G)) (F)\(GXG)(A)

We now apply results in Proposition 7.2. The double coset P(F)\GPFmme(F)/u(G x
G) Ny, (F') is finite and the only open coset is P(F)i(G x G)Ny,,(F). For negligible double
cosets, by Propositions 7.2 and 6.8, we know

Jy((1,92)h) = J5(h)
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for go € N_(A) and h € GH:-Fmne (A). The proof as in [5] Proposition 6.7 shows that
L (u(1,92)h) = I,(h)

for go € N_(A) and h € GH-Fmne(A). Here we need to use Lemma 5.2.
We conclude that for a negligible double coset, the contribution K. contains the inner
integral

This is zero since 7V is cuspidal. Thus, only the main orbit has nonzero contribution. We
have arrived at

Z(6R¥&,00)) = % / xo(v(92)) *€1(91)€2(g2) I1(¢(g1,92)) dg1 dga.
(@xa) (A

GO (F)\ )

This proves the result. O

9.6. Euler product

We can indeed rewrite Z(£; X &,,¢(%)) as an Euler product using uniqueness of (kng,m)p-
models for 6.
Let N, = N3, N\N(WV:*m@). Then for any h € GP*Fmre(A),

&' (u- 1(g1,92)h) 3y (w) du
(N3, nP) (F)\ N3y ()

— / / qzﬁ(s)(uu’-L(gl,g2)h)¢f,\,(uu’) du du’

Ny (A) [Ny,NP]

- / FO - (g1, g2) W) () d

Ny, (A)
- / £ (ug2,92) - (g5 g DR) G () dod
N, (A)
— xo((g2)) / O (- (g3 L gr, 1))y (u) du.

Ny (8)

Observe that we use change of variable and Lemma 5.2 in the third equality and
Lemma 9.2 in the last equality. We also use the fact that the canonical lift of Ny, (A) is
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GPkmna (A)-equivariant. As a consequence, we can write Z(£; K&, ¢(9)) as

L / €1(91)2(2) / FO (- 1(g5 g1, 1))y (u) du dgs dgy

n2
GO\ (GxG)(A) Ny (&)

=— / £1(9291)&2(92) / FO (- (g1, 1))y (u) du dga dgy

N(GXG)(A) Ny (&)

/ /51 9291)&2(92) / F O (u- (g1, 1)¢3y(u) du dgs dgy

G(A w(A)
— - [ Peame) / 7O (- 1(g. 1)y (u) du dg.
G(A) (&)
For decomposable data, it follows from uniqueness of (kng,m)p-models for 6, that

I =TT (90)-

v

If, furthermore, & = ®,&; », then

Z(61R6,0) = [ Zu(&1,0 B0, /1),

where

Nyy

26108 = 5 [ Pur@)Bea) [ £ g0l du do
Gy

10. BD data of pullback

The goal in this section is to prove the unproven results in Section 8.

10.1. Results
Let G be one of the following groups:

(1) Sp(W) or its inner forms;
(2) SO(W) with dimW even or its inner forms;
(3) SO(W) with dimW odd and dimW > 3;
(4) G(w).
Observe that over F, we have to consider the following groups: Sps,,,SO2pm,SO02m+1
and GL,,

Let G € CExt(G,K5) with BD data (Q,&,f). For simplicity, we write G- := G5-1,
Recall that in the unitary group case, we assume that the quadratic form @ in the BD
data is decomposable.
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Definition 10.1. We define the subcategory

CExt(G,K,)? C CExt(G,K,) x CExt(G,Kj)
as follows: a pair (é,él) is in the subcategory if and only if G is isomorphic to G.
Definition 10.2. We define the subcategory

CExt(G,K3)? C CExt(G,K>) x CExt(G,K>)

as follows: a pair (6/75) is in the subcategory if and only if G is isomorphic to the
pushout of G by the map [2k —1].

Definition 10.3. We define the subcategory
CExt(G",K,)»
of CExt(GU,Ky) x --- x CExt(GP,K3) as follows: an object (@,--- ,Gik']) is in the

subcategory if and only if the multiplicative Ky-torsors GI, - - ,GE are isomorphic.

Proposition 10.4. Let GU € CExt(G" K,). The pullback of GU via the doubling
homomorphism ¢ : G x G — G gives two multiplicative Ko-torsors on G:

12Ky — G = 1(I1xG)—1
and
1Ky — Gy — (G x1)—1.
Then the resulting functor
CExt(G",K,) — CExt(G,K;) x CExt(G,K>)
is essentially surjective on CExt(G,Kjz)?.

Proposition 10.5. The pullback via the homomorphism G5 x --- x GH — GPF gives a
functor

CExt(GP* K,) — CExt(G" K,) x --- x CExt(G",K5).

Here, both GP and CExt(GD,Kg) appear k times. This functor is essentially surjective
on CExt(GF,K,)2.

With the above two propositions, we deduce the following fact.

Corollary 10.6. The functor induced by the doubling isomorphism
CExt(G™* K,) — CExt(G,K,) x CExt(G,K)

is essentially surjective on CExt(G x G,Kj)".

Proof. We first consider

GXxG—>Gx--X G7 (91792) = (917927913917 T 791791)'
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Here the target has 2k copies of G. Then we can write ¢ : G x G — GP* as the
composition of

GxG—-5Gx--xG—=GUx...xGH - GP*, (15)
By Propositions 10.4 and 10.5, we can find GH:* so that its pullbacks to each G under
the map
Gx--xG— GHF

are all isomorphic to G. Thus, GE'* pulls back to G for the second copy of G in ¢ :
G xG — Gk,
We now consider the pullback to the first copy. Then (15) restricts to

Gx{1} 2 Gx{1}xGxGx--xG—=GIxGx...xGF = GP*,

We temporarily focus on the second map. By Lemma 3.3, the copies of G commute in
GOk which gives a homomorphism

Gx{1}xGxG--xG— Gk,

The multiplicative Ka-torsor G x {1} x G x G x --- x G obtained by pulling pack along
Gx{1}xGxGx- xG— G

is isomorphic to the pushout of G x {1} x G x G x -+ x G via the product map Kg X -+ x
Kg — KQ. 7

Finally, to obtain the pullback to the first copy of G from GU:*, we need to pull back
G x {1} xG x G x--- x G via the diagonal map

G—)GX{I}XGXGX'“XG, gl*—>(gl,1,gl7gl,~-',g1).
It follows from the definition that éh is the Baer sum of 2k — 1 copies of G. O

Proposition 10.7. In the case of unitary groups, we assume that the quadratic form @
is decomposable. For the multiplicative Ko-torsor GB:k on GBF given by Corollary 10.6,

G and G commute in GO,

Proof. This follows from Lemma 3.3 and a simple calculation on the quadratic form. See
also the details in all of the cases. O

The proof of Proposition 10.5 is similar to (and easier than) Proposition 10.4. So we
will only give the details in the latter case. The proof of Proposition 10.4 will be given
case by case in the rest of this section.

10.2. Strategy of the proofs

In this section, we explain the strategy of the proof of Proposition 10.4 and set up some
notation that is commonly used.

Let T be a maximal F-torus of G. Then +(T x T) C t(G x G) is an F-torus of GY. Let
T 5 (T x T) be a maximal F-torus of GH. Note that T = (T x T) except in the case
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of odd SO(W). Observe that this is not a maximal F-torus in P(W#) but only up to a
conjugation over F,. We still use this nonsplit torus even if GF might be a split group
over F.

The torus T splits over F;. Let Y be the cocharacter lattice of T over Fy. Let YU be
the cocharacter lattice of TH over Fy. Then YP DY @Y. We first fix a Chevalley system
of pinning for (Gp,,Tr,) and then choose one for (G%,T%ﬁ) which is compatible with
1:GxG— G

Notation: the BD data for G are denoted (Q,&, f); to distinguish the BD data for the

two copies of G, we use (Q4,&4,f1) and (Q_,E_,f_) when needed. The BD data for GD
are denoted (QW, &5, fU).

Definition 10.8. We define the subcategory
BD(G,T)* ¢ BD(G,T) x BD(G,T)

as follows: the pair of triples (Q,&,f) and (Q',&’,f’) is in the subcategory if and only if
(Q,E, f) is isomorphic to (Q',&', f").

It is easy to see that Proposition 10.4 is equivalent to the following result.
Proposition 10.9. The functor induced by pulling back via G x G — GU
BD(G",T") - BD(G,T) x BD(G,T)
is essentially surjective on BD(G,T)%.

We will prove this result case by case.

10.3. A useful lemma

Given an exact sequence
15F—&—=Y =1,

we can push out the direct sum of two copies via the product map pr: F} x F}X — F*
to obtain

1= F —pr (@& —-YaY -1
We now give a useful criterion to compare elements in pr, (€ ®E). Recall that
pr(EBE) = F) x (E®E)/((mrxa,a7 Hyay 1) : (w1,29) € F) X F)).
Define
mul: Fx (EBE) — €, (z,e1,62) — zees.
This gives a well-defined map mul: pr, (EDE) — €.

Lemma 10.10. Let (z,e1,e2) and (2',e],e}) be two elements in FX x (EDE). They have
the same image in pr, (E®E) if and only if (e1,e2) and (e},e5) have the same image in
Y &Y and mul(z,er,es) = mul(az’,e),eh).
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Proof. The ‘only if’ part is trivial. We now prove the ‘if’ part. If (ej,es) and
(el,e5) have the same image in Y @Y, then (e},e}) = (e1y1,e2y2) for some y1,y2 € F.X.
The condition mul(x,eq,e5) = mul(z’,e),ey) implies that z = x’'y1y>. This shows that
(z',eh,eh) = (zy; tys ' e1yn,e2y2). The proof is complete. O

10.4. Symplectic groups

We now discuss the case of symplectic groups or their inner forms. This is probably the
easiest case since G is simply connected. A multiplicative Ko-torsor G on G is determined
by a Galois invariant Weyl group invariant quadratic form ¢ on Y. In [27] Proposition
3.15, it is shown that for every integer a, there is a unique such quadratic form on Y such
that its value on a short coroot is a. In other words, we have an equivalence of categories

CExt(G,K,) —» BD(G,T) - Z,

where the last functor sends a quadratic form to its value on a short coroot.
The torus T x T is a maximal F-torus of GH, so TH = T x T. The cocharacter lattice
of TY over F, is YH =Y @Y. The functor

CExt(G",K,) — CExt(G,K,) x CExt(G,K>)
can be described in terms of
BD(G",T") = BD(G,T) x BD(G,T).
In terms of Z — Z X Z, it is simply a — (a,a). Proposition 10.9 follows trivially.

10.5. Special even orthogonal groups and inner forms

We now consider the case of special even orthogonal groups. We start with some basic
results.

10.5.1. Preparation. Let n= (d-dimp W)/2. (The results in this section only involve
multiplicative Ka-torsors. This n has no relation with the degree of the cover. It will not
cause any confusion.) We choose a standard basis of Y = Z" = Span{ey,---,e, } so that
the root lattice is given by

Y= Span{a\l/a Tt ,OZX} = Span{eY - 65/, e 76;/—1 - eXan—l +€X}-
Note that Y*¢ is a sublattice of Y with index 2. A W-invariant quadratic form @ is
determined by its value on a coroot. Let Q(ay) = a.

Lemma 10.11. We have 2| a.

Proof. We know that Q(a,/_1) = Q(a)) =a. Let Q(e,)) =be Z. As Q(2¢)) = Q(a,,_1) +
Q()), we have 4b = 2a. This implies 2 | a. O
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The torus TZ = T x T is a maximal F-torus of GU. Tts cocharacter lattice over F is
YU =Y, ®Y_. We write

sc __ \Y% \% \% Vv _V \Y%
Y+ - Span{el —C2, €1 T €61 +6n}
sc __ \ \ \ \ \ \%
Y2¢=Span{e, 1 — €y 0, €31~ €3n,€3,1 €3, }
O,sc \% \ \ V.oV \%
Y - Span{61 T €2, €1 — €C2pCop1 + €2n}'

Thus, Y{¢®Y* is a subgroup of Y*¢ of index 2 and e} —ey, ¢ Y@ Y=c.
Let QY be a W-invariant quadratic form on Y.

Lemma 10.12. The restriction of Q2 to Y, @Y_ is a direct sum of two quadratic forms
QR+ B Q- with Q4+ = Q. In particular, we have

Bao((y+,0),(0,y-)) =0

foryr €Y, andy_€Y_.
Conversely, for a W-invariant quadratic form @Q on Y, there is a unique W-invariant
quadratic form QU which restricts to QidQ_onY,pY_.

Proof. The proof is straightforward. O

10.5.2. Construction of BD data. Let G be a multiplicative Ko-torsor on G with
BD data (Q,E,f). We use it to construct a Galois equivariant triple (Q",&5, f19).

Let @ be a Galois invariant W-invariant quadratic form on Y. Define Q¥ = Q@ Q to be
a quadratic form on YJ =Y @Y. This is a W-invariant quadratic form and thus Galois
invariant from the proof of [27] Proposition 3.15.

Second, from the exact sequence for £, we form the exact sequence

1 FXaF 50— YoY=Y"51.
We push it out via the product map pr: F} @ F — F* to obtain

| — > FX@F — £ —— Yy —— 1

L]

1 Fy pr(E£@E) vH 1

The commutator map of the bottom exact sequence is given by [y1,y2] = (fl)BQD(yl’yr").

Set £Y :=pr, (£ @ &). The bottom exact sequence will be the second BD invariant for
G
We also have a natural map pr, (f @ f) : pr,(Eqgee ®Eqse) — pr, (€ ®E) which fits into

]. FSX pr*(ngc @EQSC) _ YSCEBYSC SN 1
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Let G*¢ = Spin,,, -+ G = SO4,,. The multiplicative Ks-torsor of Spin,,, is determined
by a quadratic form Y = Y ¢, which is determined by its values on any simple coroots.
From the map

Spin,,, x Spin,,, = Spin,,,
we obtain the following commutative diagram:
1 —— FoFf —— EQsc DEgse — > Y BY —— 1

| J |

1 I e 5QD,SC —_— s yOse ——3 1

)

where the first vertical map is given by multiplication. By our choice of Chevelley system
of épinglage, under the second vertical map, the image of sgsc (") is sgo..c (") for a root
o in Y. This commutative diagram factors through pushing out by pr: F* @ F.X — F*
and we have the following commutative diagram:

1 Fx pr, (Egse DEQse) —> YBY — 51
1 ]-7’5>< (‘:QELSC — > yhse ———— 1

We now want to construct the third BD invariant. That is, we need to construct a map

1 Fx o yOse 51
1 EXx pr.(E@E) yQ 1

in which the middle map f& extends pr,(Egsc @ Egsc) — pr, (€ E). We also use the
notation f; to denote the map

e—(e, 1)

(‘:Qsc (‘:Qsc @6@50 — pr* ((‘_::Qsc @ ngc) — pl“* (8 ®5)~

Similarly, we define f_.
The map fU is determined by its images on {sgn.c(a¥) |aY € Aln}. Since we require
that

Fsgo.e(@¥)) = fi(sqy(a”))

for a root o in Y€, this trivially determines f~ by fi @ f_ except fD(sQD,SC(eX —eni1))-
We have to choose this value so that

fD(SQDxSC(BX—l +ey)) = [+ (sqse (en—1+en))-
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We find that it would be slightly more convenient to work with the following setup: we
choose fT(sgm..c(ey — ey, 1)) so that

FRsqoec(ef +e3)) = fu(sque(ef +e3)).

Lemma 10.13. If we choose fD(sQD,SC(eY —ey 1)) as the unique element such that its
projection to Y @Y isey —ey,; and mul(f° (sgo.sc(ef —eyi1))) =1, then fD(sQD,SC (e} +
ey)) = fi(sgsc(e) +e¥)). In other words, f5 is an extension of f@ f.

Proof. Recall that
ef ey =(es —e))+(ef —ey )+ (enys—enio)+(enii+en o)+ (ef —eny).

This decomposition satisfies the condition () in (4). By Lemma 2.6 (note that 2| Q(aV)),

SQDvsc(QY +ey) = SQDvsc(EY - 6X+1)5QDS« (emi1+ €x+2)5QDvsc(€X+1 —enyo)

X So0.cc(€f —eyy1)sgn.sc(es —ey).
This implies that f2(sgo..(ey +¢¥)) =
| O O
f (SQD»SC(GY - €X+1))f (8g0.sc (e;z/—&-l + 6%-5—2))]0 (8g0.sc (6X+1 —ey.9))
O O
X [ (sqoee(ey —en 1)) f~ (sqn.ac(e3 —e))
or
|
f (SQD»SC (61/ - 67\1-5-1))]0— (SQSC (ev\f-s-l + €X+2))f— (stc (67\:—&-1 - BX+2))
O
< fo(squse(ef —eni1)) fr(sqe(ey —ef)).
We now calculate its image under mul. We observe that

[ (5= (6X+1 - 6X+2))f— (5@se (e\rlb+1 + e:’L/-‘rQ)) >
1 =1.
m < Fr (s (oY —e¥)) fr (s (&Y +23) !

From our choice of fF(sqo,.c(ey =€), 1)),
mul(f2(sgo..c(ef —ey 1)) = 1.
Using these two facts, together with Lemma 2.5 part (2), we deduce that
mul(f7 (sgn.(ef +e¢3))) = mul(f+ (sgee (1 +e3))).
By Lemma 10.10, this shows that
1500 (eY +e¥)) = Fi (sqee (e} +€3)).

This completes the proof. O

Remark 10.14. It seems that the choice of fD(sQu,sc(e}’ —ey 1)) is quite delicate, but
it is not hard to see that this is almost the only choice. In the next section, we will show
that fO is also Galois invariant by carefully analyzing the Galois action on &.
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10.5.3. Digression on the Chevalley system. To show that fU is I'-equivariant,
we need to have some understanding of the Galois action on £gn..c. The Galois action on
Egn.sc comes from the (possibly nonsplit) maximal F-torus T ¢, We still denote this
action as 0. We now would like to understand o (sgo...(ef — e, ;)) for o €T

We start with some general facts about reductive groups over Fs. Let Aut(Gp,) be the
automorphism group of Gp,. Let Inn(Gp, ) denote the subgroup of inner automorphisms.
Let 7 € Aut(Gp,). Let (B, T) be a choice of Borel subgroup and maximal torus which
gives a based root datum (X,®,A;Y,®V,AV). Then there exists g, € G(Fs) such that
Int(g,)(7B) = B and Int(g,)(7TF,) = Tp,. This induces an automorphism of A. There
is a split exact sequence

1 - Inn(Gp,) = Aut(Gp,) — Aut(A) — 1.

A splitting of this exact sequence is determined by a choice of z,, : G, ~ U, for a € A.

We first would like to understand the action of I' on the root subgroup z, e, ., :
G =Ug ¢, — GMsc. Note that GHP-#¢ — GU restricts to an isomorphism on the root
subgroup U, ¢, ,. We will use the same notation for both root subgroups. It is sufficient
to understand the action of I' on ¢, —¢,,, : G = Uy ¢, — GH.

To have good control on this, we have to relate the Galois action on G x G and GU.
(We can also argue directly for G*¢ x G*¢ and GP5¢))

Recall that G is a subgroup of GLy.p. Fix an isomorphism D ®p Fy ~ My(Fy). Put
z = (é 8) € My(Fs) and set W, := z(W ®p Fy). The restriction g — g|w. gives an
isomorphism of GLy,p(F5s) onto the group GLyw, (F5).

Let (, ), be the restriction of ( , ) on W,. Then (, ), is an Fs-bilinear mapping
with value in the 1-dimensional Fi-vector space zDz” and it is nondegenerate and has
the opposite symmetry as (, ) under interchange of the two variables. The restriction
g+ g|w, gives an isomorphism of G, onto the group G, := G(W,,(, ).). Let T, be the
image of T in G,.

To summarise, we can identify the commutative diagram

GFS XGFS ng

J J

GLw.p,r, x GLw;p,r, —— GLy0,p p,

with

G,.xG, GU

| l

GLw..r, x GLw,.r, ——— GLy0o.p,
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Let G be the F-split group with a maximal split torus T so that the root system of
(G,T) is the same as the root system of (Gr,,Tr,). The group GLw .., is split and
has an F-structure GLyy, .. We realise G as a subgroup of GLyy . Then there exists
h € GLy ., (Fs) such that

h-G.(F,)-h'=G(F,), h-T.(F,)-h~'=T(F,).

From this we can transfer the based root datum for (G,T) to a based root datum of
(G,T). Thus, we obtain a basis of Y from a basis of Y. We write it as (e1,---,ey).
The action of I" on (G, T) gives an action of I" on (G,T):

G(Fs) — G(Fy), g+ (g) :=Int(h)ooolnt(h™1)(g).

The map of := 071 o (Int(h) o g oInt(h™')) € Aut(Gp,). It is easy to see that of =
Int(o(h)h~'). The element of induces an action on the root system of (G,T), which
we again denote as of. Then there exists a lift w, of a Weyl group element w, of (G, T)
such that w,(cT(A)) = A.

A Chevalley system for (G, T.) can also be translated to a Chevalley system for (G,T).
The action of o on the root system of (G, T.) and the pinning can be read from the
action of of on (G,T).

We write the action down more explicitly. Let y : G,, — T, be a cocharacter of T,.
Then the action of ¢ on y is given by

Gn—G,—T. =T, teo (t)=ylo (1) = alylc™(t))).
Let 24 : G4 — U be a root subgroup. Then the action of ¢ on « is given by
G, —G,—Up, -Up, teo )= aza(ot ()= o(zalc™t(t)).
When transferring this action to (G, T), these actions are given by the following:
e y:G,, — T is sent to the element o'(y), defined as
G, — T, ta(y(o™(t)).
o 1,:G,— Uissent to z,1(4), defined as
G, — 0, ts a(za (o™ 1(D))).

In this way, a based root datum for (G,T) determines one for (G,T).

The group G is the connected component of some orthogonal group Qs,. It is not hard
to check that o(h)h=! € Qg,(Fs). As a consequence, the automorphism of the Dynkin
diagram given by w, oo’ is either the identity or the isomorphism permuting e,_1 — e,
and e,_1 +e,. (In other words, triality does not appear in the case of Dy.) In either case,
this isomorphism can be realised by the conjugation given by a lift 7, of a Weyl group
element in GLyy, .

We now have two different pinnings for (G,T). The first is z, : G, — U which is
translated from (G,T). The other is Int(7,ws)© Z4t(q). They might not be the same.
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But we can choose t, € T(F;) such that
Int(t5ToWo ) 0 Tot (0) = Tas o€ A.

This implies that o = Int(w; 17,1t 1).

10.5.4. The action on GY. We now have that
1(h,h) - T2(F,) - o(h,h) ™ € u(h,h) - GE(Fy) - o(h,h)

is TH(F,) ¢ GP(F,) for a maximal split torus T inside a split group G". As in the case
of G, here we realise GP(F,) C GLy0(Fs). We can read the Galois action on (G, 1)
from

ot =Int(u(o(h)h~t,o(h)h™1)) € Aut(GE(Fy)).
This map preserves TH(F,). From our discussion above, we know that
Int(c(o(R)h~ Y, o(h)h 1)) = Int(e(w; ;e L e h).
Lemma 10.15. For any o €T,

UT O$®1—<Bn+1 = Int(L(w;17w;1)) Ox@l_@n+1'

Proof. It is easy to check that Int(c(¢;%t;1)) acts trivially on @e,—e,,,. Moreover,
Int(c(r, 1,7, 1)) acts trivially on @e, e, ,, as well. This completes the proof. O

We translate the above lemma back to the case of (G, T). We deduce that o(z¢, —e,,,) =
Wy O Te, e, ,, for some lift 0, of a Weyl group element W, for (GF,T5). In other words,
the Galois action on e; — e, 11 is the same as the action by some Weyl group element.

Lemma 10.16. For any o €T,
o(sg0ec(e) =€) =W Sgnec(ef —ey 1) W, " = sg0.ec(Wole) —e),1)).

Proof. This follows from Lemma 2.4 and the discussion above. Note that from Lemma

10.11, we always have eQ(g )= 1. O

Lemma 10.17. For o €T, there exists i and a sign such that o(e1 —en41) is of the form
:‘:(61' — en+i) .

Proof. Suppose o(e1) =3_;a;e; for some a; € Z. Since the action of o is the same for
both copies of G, we have o(€,41) =>_; ajent ;. We know

0' 1_6n+1 E CL] €n+j

must be a root of GZ. Thus, it must be of the form 4(e; — e, ;). O
Lemma 10.18. Ifo(e; —eny1) = €; — enti for some i, then

U(SQD,SC (ef = ex-ﬁ-l))/SQD»S“(e\l/ - 67Vz+1) € pr, (Eqse B Eqse),
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and
mul(o(sqo.«c (ef —€;11))/sqoc(ef —enyq)) =1.
Proof. The first statement is straightforward. Using
(e = ervuri) +(ef —ef) = (ef = €X+1) + (eXH - eXJri)
and Lemma 2.6, we have
0 e (6 = €%4) - 506 = €¥) = sgoele) = eXy) - sqnc (€ — )
Now the result follows the fact that mul(sgo...(ef —e))/sgn.ec (€)1 —epyi)) = 1. O

10.5.5. Galois equivariance. We are now ready to prove that fO is Galois equivari-
ant.

Proposition 10.19. We have that
P o(sgaec (@) = a (T (sgo.ac(a))) (16)

fora¥ € Aln and o €T.
Proof. The only nontrivial case is o =€y —ey ;.

Both sides in (16) project to o(a"). Thus, to show (16), it suffices to show that they
are the same under the map mul. It is easy to show that for any o € T,

O
mul(o(f= (sqo. (ef —epy1))) =1L
We now calculate mul( f5 (0(sgo.sc(ef —€y41)))). We have three cases to consider. First,
if o(ey —ey 1) =wWo(eY —€) 1) =—(ef —ey 1), then by Lemmas 2.5 and 10.16,
o(5qonee (e — €111)) = 500w (Wale —€ls1))
= sg0.e(—(ef — €y 41)) = sgn.ee(ey =€)

and this implies that mul(fD(a(sQD,sc(e}/ —eyi1)))) =1
We now assume that o(e; —e,41) = €; — e, for some 4. Then by Lemma 10.18 and
our choice of fD(sQD,Sc(elv —eni1)),

mul(f7 (0 (sgo.(ef — €y 41))) = mul(f2(sgoec(ef —ey1))) = 1.

Finally, we have to consider the case o(e; —enq1) = —(€; — €n44) for some 7 # 1. This
can be proved by combining arguments in the previous two cases. This completes the
proof. O

10.6. Unitary groups

We now consider the unitary group case. Recall that G, = GL,, r,. We choose a standard
basis of Tr, so that Y = Span{eY,---,e,/} with the following set of simple roots:

{ef —eg, ey —en ).
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Let @ be a Weyl invariant quadratic form on Y. Then @ is determined by the following
two integers p and q:

Bg(e),e) =2p, Bg(e/,ef) = q for i # j.
Then for any coroot o, Q(a") = 2p — q. Since we assume that @ is decomposable, we
have ¢ = 0.
The group G has a maximal F-torus TH := T x T. The cocharacter lattice of TH
over F, is Y2 =Y @Y. We choose standard basis so that Y, = Span{e},---,e’} and

Y_ = Span{e,) ,,,---,ey,}. The choice of simple roots is given as above. We choose the
following set of simple roots for GU:

{6\1/ - 6%/, e 76;/71—1 - egn}
Since we assume that ¢ =0, QU is a direct sum Q®Q on Y &Y.
10.6.1. Construction of BD data. Let (Q,&,f) be the Galois equivariant BD data
for G. We now construct a Galois invariant BD data (Q",£5, fF) for GF.

Given a quadratic form @ on Y which is determined by an integer p as above, we define
Q" := Q® Q. The quadratic form is Weyl invariant and Galois invariant.

Remark 10.20. If g # 0, the quadratic form Q@& Q on Y @Y is not W-invariant. We
have to choose a different one. The argument in the rest of section will require some
modification in order to handle this case.

We can again take the direct sum of two copies of £ and push it out via the multiplication
map to obtain

1= FX —pr,(E@E) Y =1

The commutator is [y1,y2] = (—1)BQD(y1’y2). We take £ = pr, (€ @ ), and this is the
second BD invariant.

We can now proceed as in the case of even orthogonal groups. We will not repeat the
definitions of these notations here. We now have to define f& : Egn.sc = Pr (EDE) such
that its composition with the map pr, (Egse B Eqse) — Eqo.sc gives

f+ @f— :pr*(ngc EBgQSC) — pr*((‘:@g)

The map is already determined on the image of pr, (Eqsc ©Eqsc) in Egn.sc. One only has
to determine fD(sQD,SC(eX —ey 1)) so that the map is Galois equivariant.

10.6.2. Galois equivariance. We can verify Galois equivariance using the argument
in Subsection 10.5.5. Here we give another proof using Hilbert’s Theorem 90. We would
like to show that there exists f=(sgo.«(ey —ey,)) such that

FRo(sqo.eclen —en1)) = o (f (sqo.e (e — e 11)))

forall c €T
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For ease of notation, we write a = sqo...(e,, —e, ;1). We take an arbitrary f and define
a function ¢: I' = F* as follows:

oy — Ioo(a))
)= 5G@)

We show that ¢ is a 1-cocycle. In other words, we prove the following result.
Lemma 10.21. For any 01,09 €T,

c(o102) = f(01) - 01(f(02)).
Proof. We write

_ [P(0102(a)) _ fP(0102(a)) 01 (f(02(a)))
o102(fP(a))  o1(fF(o2(a)))  o102(fP(a))

c(o109)

It suffices to show that

fPo103(a)) _ fP(o1(a)
o1(fF(o2(a)))  o1(f(a))

or

fP(0103(a)) _ 01(f"(02(a)))
fP(o1(a)) o1(f2(a))
Note that o9(a)/a projects to Y*¢ @Y *¢. Thus, the left-hand side is
P (o1(02(a)/a) = o1 (f (02(a) /a)).
This proves the result. U

Hilbert’s Theorem 90 says that H!(T,FX) = 1. In other words, a 1-cocycle must be a
coboundary. This means that there exists x € F such that c¢(o) =o(x)/z.
We now define

fP(a) = P (a).
Then
fP(o(a)) = fP(o(a)z = o(f7(a))e(o) & = o(f7(a)a(x) = o (f7(a)).

This implies that f U is -equivariant.

10.7. Special odd orthogonal groups

We now treat the case of G = SOs,, 1. We first begin with some discussion of the BD
data. We can write Y = Span{eY,---,e)} and let

\ \ \% \ \Y%
{61 —€9, €61 _en72€n}

be the coroots of SOg,11. A W-invariant quadratic form @ on Y is determined by its
value on a short coroot. Let Q(ay) = a. As in the even orthogonal case, we can similarly
prove the following.
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Lemma 10.22. We have that 2 | a.

Observe that T x T is an F-torus in GH but not a maximal torus. Let TH > T x T be
a maximal F-torus of GU.
We write Y, = Span{ey,---,ey}, Y_ = Span{e) ,,,--- €3, }. We have

sc __ Vv Vv 2 Vv 2
Y+ - Span{el —€2y 61— 6n’26n}
sc __ \4 \4 vV Vv Vv
Y2 =Span{e, 1 — €, 9, €3, 1 —€3,,2€3,}
O,sc _ v i \ \ \ \
Y - Span{el — €9, ,69, _e2n+1a€2n+e2n+1}'

Let QY be W-invariant quadratic form on Y.

Lemma 10.23. The restriction of Q2 to Y, @Y_ is a direct sum of two quadratic forms

Q+PQ—. And we have Q4 =Q_.
Conversely, given Q = Q4+ = Q_, there is a unique W-invariant quadratic form Q-

which restricts to Q4+ GQ—_ on Y, BY_.

Proof. This is straightforward. O

Let G be a multiplicative Ko-torsor on G with BD data (Q,€,f). We now construct
a BD data (QY,€F, f9) for GF. We only explain the difference in this case but will not
repeat all of the details.

The construction of QU is straightforward since such a quadratic form is determined
by its values on its short coroot.

We now define the second BD invariant. Note that Y5V @Y =Z- €3,41- Consider

EQED(F) xXZ)
with the following multiplication:

(e1,e2,(2,)) - (€, €5, (a',a')) = (1€} eaeh, (e’ (—1)PaD (V0920 Gni) 4y g1,

Here, (y1,y2) is the image of (e1,e2) under £ — Y. This defines an exact sequence
15 FXOF OF »EQ0EQ(FXXL) Y =Y QY@L e, 1 — 1.
Pushing out by the product map pr: FX @ FX @ F) — F) gives
1 FX =9 5yP 51

B,o(y1,92)

One can verify that the commutator map is given by (—1) . We also have a

commutative diagram

]. FSX pI‘),< (ngc GBEQSC) _ YSC@YSC SN 1
1 E@X SD YD 1
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To construct the third BD invariant, one has to construct f5 : Eghse — &Y which
extends the map pr, (Egsc ®Egsc) — EY. We only have to specify the values

FPsqoc(ef —eyi)) and [ (sg0.ec (€3, — €3p41))

so that U is Galois equivariant. To choose the first value, we use the argument presented
in the SOs,, case. The choice for the second value is identical to the unitary case. This
completes the proof.

11. L-functions

So far we only give a global zeta integral which represents an Euler product but have not
said anything regarding the L-functions obtained from the twisted doubling integrals. The
construction relies on the construction of representations of type (k,m)p. In the linear
case, a good source of such representations is the generalised Speh representations. Here
we present a conjectural picture. Further investigations are necessary in order to gain a
complete understanding of the local and global theory.

We make a couple of assumptions to simplify the situation in our discussion. We
assume that D = F, so that only the group GL,, will be involved. We also assume
that the quadratic form @ appearing in the BD data is decomposable. So we will not
have any problems regarding parabolic induction. As we pointed out earlier, to treat the
nondecomposable case, we need to have a suitable version of ‘metaplectic tensor product’.

Fix an integer p. This determines a W-invariant decomposable quadratic form on the
cocharacter lattice for every GL,,. Let ng =n/ged(n,Q(a")) for any oY € AY if m > 2
and ng =n/ged(n,2a) for a = Q(ey) and m = 1. The twisted doubling integral relies
on the following construction of the inducing data in the Eisenstein series. To be more
precise, we would like to have

relr,, (GLy(A)) — 07 (r,m) € I (GLLY,, (A)). (17)

cusp kmng

For every local place v, the local analog is given by

7y €It (GLy,) — 00 (1,,m) € Lr(GLLY ).

gen kmng,v

Here, the superscript © means that only unitary representations are considered and the
subscript gen means generic representations.
We expect the following list of properties:
e The construction is local-to-global compatible: 8" (r,m) = &’ 0 (1,,m) if T =
®! Ty
The representation 6™ (7,m) is of type (kng,m).
For all k,n and the multiplicative Ks-torsor on GLj determined by the integer
p as above, assume that there exists a ‘Shimura-type lift’ from Irr(@,&n)(A)) —
Irr(GL (A)) which is also local to global compatible. If 7 does not lie in the image
of the Shimura lift from ﬁ,(cn )(A) to GLg(A) for any n' | n, then the lift is cuspidal.
If it does, then this can be constructed using residues of Eisenstein series.

This is also discussed in [24] and [14].
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Remark 11.1. We also expect more properties of this construction to be valid. Such
properties are motivated by the local and global theories of the twisted doubling integrals.
For instance, this construction should satisfy a multiplicativity with respect to the
parabolic induction. This will be used in order to establish the multiplicativity of -
factors.

Remark 11.2. Instead of (17), one might consider

7 eI, (GLi(A)) = 67 (7,m) € I (G, (B)),

kmng

given by residues of Eisenstein series. However, the orbit of #(™ (7,m) might not be of
(kng,m) due to the existence of cuspidal theta representations. We refer the reader to [8]
Subsection 3.2 for some discussion on this matter.

As a consequence, we expect that the twisted doubling integrals give an integral
representation for the tensor product L-function for G x GLg. (In the unitary case,
it would be G x Resg,r(GLg).) Our formulation is slightly different from [16]. Also
note that in [10] the Langlands—Shahidi type L-functions appear in the constant terms of
Eisenstein series, in which the tensor product L-function for G x GLj, is obtained for split
classical groups G, among many other interesting L-functions. It would be interesting to
relate the L-functions obtained from these constructions.
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