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1. Introduction

One of the goals in the Langlands program is to study analytic properties of automorphic

L-functions. A basic approach to this problem is to find a global integral that represents
the automorphic L-function one would like to study. There are some questions to be

addressed in this approach. First, one needs to show that the global integral is Eulerian.

For this, one usually uses certain multiplicity one results, such as uniqueness of Whittaker

models. To establish the desired properties of the L-functions, one uses the corresponding
properties of an Eisenstein series used in the global integral or some spectral theory

results such as the Poisson summation formula. For reductive groups, the approach of

global integrals is successful in several important cases. The purpose of this article is to
describe a family of global integrals for a class of nonlinear covers of reductive groups.

1.1. Brylinski–Deligne covering groups

Let G be a connected reductive group over a number field F. In [1], Brylinski and Deligne
considered the category of multiplicative K2-torsors on G; these are extensions of G by

the sheaf K2 of Quillen’s K2 group in the category of sheaves of groups on the big Zariski

site of Spec(F ):

1→K2 →G→G→ 1.
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Brylinski and Deligne gave an elegant and functorial classification of this category in terms
of enhanced root-theoretic data, similar to the classification of split connected reductive

groups by their root data.

We now assume that the base field F contains a full set of nth roots of unity. Then at
every local place v, there is a functor from the category of multiplicative K2-torsors G

on G to the category of topological central extensions:

1→ μn →Gv →Gv =G(Fv)→ 1,

which glues to a central extension of the adelic group

1→ μn →G(A)→G(A)→ 1.

The global extension is equipped with a natural splitting G(F )→ G(A). This naturally

leads to the notion of automorphic forms on this class of groups. These topological
central extensions may be considered of ‘algebraic origin’ and can be constructed using

cocycles which are essentially algebraic in nature. This construction does not exhaust all

topological central extensions, but it captures a sufficiently large class of such extensions,
including all interesting examples which have been investigated so far.

1.2. A Langlands program for covering groups

There has been serious progress in extending the Langlands program to the Brylinski–
Deligne extensions. We refer to [13] for a comprehensive discussion of the history of

covering groups. From our point of view, there are several reasons to study automorphic

forms on covering groups. The first is that a Langlands program for covering groups indeed

provides supporting evidence to the Langlands program for linear groups. The second is
to hope that we can relate automorphic forms on covering groups and linear groups

and use this to gain new information regarding linear groups. Indeed, the development

of the Langlands program already uses covering groups. A notable example is the Weil
representations, defined on double covers of the symplectic groups. Another example is

the Rankin–Selberg integral for the symmetric square L-function for GLn, which uses the

theta representations on double covers of general linear groups [2]. The theory of Weyl
group multiple Dirichlet series, which is closely tied to Whittaker coefficients of Eisenstein

series, has important consequences in analytic number theory.

A natural question is to test whether the myriad global integrals for various L-functions

for linear groups have counterparts in the covering case. In the linear case, such a theory
relies heavily on the uniqueness of certain models, in particular the Whittaker model.

The failure of such multiplicity one results in the covering group case causes serious

obstructions to some development for the theory, and it is fundamentally difficult to find
integral representations for L-functions for covering groups.

Nevertheless, there are two recent constructions that set up the first step towards this

area. The first is the calculation of constant terms of Eisenstein series on Brylinski–Deligne
covering groups [10]. A consequence of this calculation is the meromorphic continuation of

many interesting L-functions. Another example is a generalisation of the doubling method

([23, 7]) to covers of symplectic groups [16] (see also [6] for a brief description of the
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method). (Also note that the case of the double covers of symplectic groups was already

considered in the literature; for example, see [9].) In [16], the unfolding argument and

unramified calculation are carried out. As a consequence, the global integral represents
the tensor product L-function for a cover of a symplectic group and a cover of a general

linear group under certain assumptions. It also has the potential to establish a functional

equation for the L-functions obtained.

1.3. The doubling integrals

The doubling integrals grew out of Rallis’s work on the inner products of theta lifts – the

Rallis inner product formula. This gives a global integral for the standard L-function of

a classical group. As a global integral, the doubling integral [23] and its generalisations
[7, 16] enjoy the following nice properties:

(1) It uses the matrix coefficient of a representation π of a classical group G(A). As a
consequence, this construction works for all cuspidal representations of G(A). This

is a special feature of the construction since most of other constructions only work

for some but not all cuspidal representations.

(2) The global integral uses certain unique models for some degenerate representations.

These representations can be viewed as the generalised Speh representations for

covering groups. As we noted above, uniqueness of Whittaker models fails in

general for covering groups. However, it is possible that for some ‘degenerate’
representations on certain covering groups, uniqueness of Whittaker models still

holds. A typical example of this type is the theta representation [17]. Establishing

the existence and verifying the expected properties are in fact the technical heart
of the doubling method.

(3) One can write down a local version of these global integrals and use it to define

local factors. Note that in the Langlands–Shahidi method for covering groups, one

can define the local coefficients matrix instead of local coefficient, but it is not
straightforward to have a definition of local factors. We refer the reader to [15] for

recent progress.

1.4. Main results

The purpose of this article is to explain how to develop the twisted doubling integrals
(see [7, 16]) for Brylinski–Deligne (BD) extensions of connected classical groups. Here,

we use the conceptual description in [5], which works for all classical groups uniformly.

A major part of this article is to explain the necessary (nontrivial) modifications in order
to develop the twisted doubling integrals for covering groups.

We include almost all BD extensions for connected classical groups but have to exclude

some cases of unitary groups for some technical reasons (see Remark 8.9). We can invoke
some neat structures of BD extensions to minimise the use of cocycles as the construction

is functorial in nature. Moreover, we only require the condition μn ⊂F× (instead of μ2n ⊂
F×) in our construction. Once we have the correct setup, working with BD extensions
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allows us to study some basic properties of twisted doubling integrals just in the linear
case. In particular, we carry out the unfolding part following the argument in [5].

The most important part in the setup is to find a suitable BD extension of a large

classical group for the construction to work. This part is proved case by case in Section 10.
This is relatively easy when the category of BD extensions is ‘rigid’. There is additional

complication in the non-simply connected and nonsplit case, with the case of SO2m being

the most sophisticated one.

As we noted above, another ingredient in the twisted doubling integrals is the
construction of some ‘Speh’ type representations as the inducing data of some Siegel

Eisenstein series. We believe that this is a very difficult question for covering groups, and

we only discuss this briefly in Section 11. Indeed, following certain conjectures in [24]
and [14], we suggest that one should construct such representations from representations

of GLk(A), instead of a cover of GLk(A). As a consequence, we expect that the twisted

doubling integrals represent the tensor product L-functions for G×GLk. In the second
factor, we only take a linear group instead of a cover of GLk. This is different from

the L-functions obtained in [10] and [16]. It is an interesting question to relate these

L-functions.

We also note that in [1], BD covers are only studied for connected reductive groups. So
in this article we exclude the orthogonal group Om and consider SOm instead. (Here we

use the term ‘connected classical groups’ for these groups. Note that we do not assume

any condition on the splitness of the classical groups.) We leave other investigations such
as unramified calculations, local and global theory as well as the construction of the

generalised Speh representations to future work.

1.5. Structure of this article

The rest of this article is organised as follows. We first recall some preliminaries

on Brylinski–Deligne covering groups in Sections 2–4. We recall some construction
related to the classical groups in Section 5. Section 6 highlights a family of degenerate

representations on covers of general linear groups. Even if we do not how to construct the

generalised Speh representations for covering groups, we still know the properties that will
be used in the global integrals. We then discuss the basic setup of the twisted doubling

integrals in the linear case in Section 7 and discuss necessary assumptions for covering

groups in Section 8. The long proofs in Section 8 are deferred to Section 10. We then

introduce the global integral and prove a global identity in Section 9. We briefly discuss
the construction of the generalised Speh representations and the L-functions obtained in

Section 11.

1.6. Notation

We now give a list of notation that is commonly used in this article.

• For an algebraic group G over F, we sometimes write G(F ) =G(F ); if F is a local
field, we sometimes write G=G(F ). If F is a global field, we usually write [G] for
G(F )\G(A) where A is the ring of adeles of F and Gv =G(Fv) for a local place v.
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• For an algebraic groupG over F and a field extension L/F , we writeGL :=G⊗F L
to be the base change of G to L.

• J♦: for a subgroup J of G, define J♦ = {(g,g) ∈G×G | g ∈ J}.
• Int(g): for g ∈ G and a subgroup H ⊂ G, the conjugation map induced by g is

denoted Int(g) :H �→ gHg−1.
• For an abelian group A with multiplication, we write [m] for the homomorphism

A→A, x �→ xm.

2. Brylinski–Deligne extensions

Let F be a local or global field of characteristic 0. Let G be a connected reductive
group over F. In this section, we discuss the Brylinski–Deligne extensions of G. The main

references for this section are [1] and [11].

2.1. Some structural facts

Let Fs denote a separable closure of F and Γ =Gal(Fs/F ). Let T be a maximal F -torus

of G. Let

{X, Φ,; Y , Φ∨}

be the resulting (absolute) root system. Here X (respectively, Y ) is the character lattice

(respectively, cocharacter lattice) for (G,T) over Fs. Both X and Y are naturally Z[Γ]-

modules. The group Γ acts on the root system Φ as well. Choose a set Δ ⊂ Φ of simple

roots from the set of roots Φ and Δ∨ the corresponding simple coroots from Φ∨. Write
Y sc ⊂ Y for the sublattice generated by Φ∨. Let B ⊂ GFs

be the Borel (Fs-)subgroup

determined by Δ.

For each α∈Φ, one has the associated root subgroup Uα ⊂GFs
which is normalised by

TFs
. We shall fix a Chevalley system of épinglage for (GFs

,TFs
), so that for each α ∈Φ,

one has an Fs-isomorphism xα :Ga �Uα.

Denote by W =W (G) :=N(TFs
)/TFs

the (absolute) Weyl group of (G,T), which we
identify with the Weyl group of the coroot system.

2.2. Multiplicative K2-torsors

The reductive group G defines a sheaf of groups on the big Zariski site on Spec(F ).

Let K2 denote the sheaf of groups on Spec(F ) associated to the K2-group in Quillen’s
K-theory. Then a multiplicative K2-torsor is an extension

1→K2 →G→G→ 1

of sheaves of groups on Spec(F ). We consider the category CExt(G,K2) of such
extensions where the morphisms between objects are given by morphisms of extensions.

Given two such central extensions, one can form the Baer sum: this equips CExt(G,K2)

with the structure of a commutative Picard category.
In [1], Brylinski and Deligne made a deep study of CExt(G,K2) and obtained an

elegant classification of this category when G is a connected reductive group. We first

recall their results.
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2.3. Tori

Suppose that T is an F -torus, with cocharacter lattice Y =Hom(Gm,TFs
) and character

lattice X =Hom(TFs
,Gm).

Proposition 2.1. Let T be a F-torus. The category CExt(T,K2) is equivalent as a

commutative Picard category (by an explicit functor) to the category whose objects are

pairs (Q,E), where

• Q is a Γ-invariant Z-valued quadratic form on Y, with associated symmetric
bilinear form

BQ(y1,y2) =Q(y1+y2)−Q(y1)−Q(y2);

• E is a Γ-equivariant central extension of groups

1→ F×
s →E → Y → 1

whose associated commutator map [−.−] : Y ×Y → F×
s is given by

[y1,y2] = (−1)BQ(y1,y2).

The set of morphisms between (Q,E) and (Q′,E ′) is empty unless Q=Q′, in which
case it is given by the set of isomorphism of Γ-equivariant extensions from E to
E ′. The Picard structure is defined by

(Q,E)+(Q′,E ′) = (Q+Q′, Baer sum of E and E ′).

The isomorphism class of the extension E is completely determined by the commutator

map and hence by the quadratic form Q. The extension E is obtained from T as follows.
Let Fs((τ)) denote the field of Laurent series in the variable τ over Fs. Then one has

1→K2(Fs((τ)))→T(Fs((τ)))→T(Fs((τ))) = Y ⊗ZFs((τ))
× → 1.

The map y �→ y(τ) defines a group homomorphism Y →T(Fs((τ))). Pulling back by this

morphism and pushing out by the residue map

Res :K2(Fs((τ)))→K1(Fs) = F×
s

defined by

Res(f,g) = (−1)v(f)·v(g) ·
(
fv(g)

gv(f)
(0)

)
,

one obtains the desired extension E .

2.4. Simply connected groups

Suppose now that G is a simply connected semisimple group over F. Since G is simply

connected, we have Y sc = Y and Δ∨ is a basis for Y.

Proposition 2.2. The category CExt(G,K2) is equivalent to (as commutative Picard

categories) to the category whose objects are Γ-invariant, W-invariant Z-valued quadratic

form Q on Y and whose only morphisms are the identity morphisms on each object.
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We have the following ([27] Proposition 3.15).

Proposition 2.3. There is a unique W-invariant quadratic form Q on Y, such that

Q(α∨) = 1 for every short coroot α∨ ∈ Y and every integer multiple of this quadratic form

is Γ-invariant.

As a result, whenever we are given such a quadratic form Q on Y, Q gives rise to
a multiplicative K2-torsor GQ on G, unique up to unique isomorphism, which may be

pulled back to a multiplicative K2-torsor TQ on T and hence gives rise to an extension

EQ of Y by F×
s . The automorphism group of the extension EQ is HomΓ(Y ,F×

s ). Following

[1] Section 11 and [11] Subsection 2.4, one can rigidify EQ by giving it an extra structure.

2.5. The Brylinski–Deligne liftings

We assume thatG is simply connected. We also have a fixed Chevalley system of épinglage

for (GFs
,TFs

). In particular, for each α ∈ Φ with associated root subgroup Uα, there is

a fixed isomorphism over Fs:

xα :Ga →Uα ⊂G.

Indeed, one has an embedding over Fs

iα : SL2 ↪→G

which restricts to x±α on the upper and lower triangular subgroups of unipotent matrices.
By [1], one has a canonical lifting

x̃α :Ga →Uα ⊂G.

For t ∈Gm, we set

nα(t) = xα(t) ·x−α(−t−1) ·xα(t) = iα

(
0 t

−t−1 0

)
∈N(TQ)

and

ñα(t) = x̃α(t) · x̃−α(−t−1) · x̃α(t) ∈GQ.

Then one has a map

sα :Tα := α∨(Gm)→TQ

given by

α∨(t) �→ ñα(t) · ñα(−1).

This is a section of GQ over Tα which is trivial at the identity element. This section is
useful in describing the natural conjugation action of N(TQ) on TQ. By [1] Proposition

11.3, one has the nice formula

ñα(1) · t̃ · ñα(1)
−1 = t̃ ·sα(α∨(α(t)−1)). (1)
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We also use the following formula frequently ([10] (2)): for t1,t2 ∈Gm,

sα(α
∨(t1)) ·sα(α∨(t2)) = sα(α

∨(t1t2)) · {t1,t2}Q(α∨). (2)

The collection of sections {sα : α ∈Δ} provides a collection of elements sα(α
∨(a)) ∈TQ

with a ∈Gm and TQ is generated by K2 and the collection of sα(α
∨(a)).

Taking points in F ((τ)), we have the element

sα(α
∨(τ)) ∈TQ(F ((τ))),

which gives rise (via the construction of EQ) to an element

sQ(α
∨) ∈ EQ.

Then we rigidify EQ by equipping it with the set {sQ(α∨) | α∨ ∈Δ∨}: there is a unique

automorphism of EQ which fixes all of these elements.

In the following, we shall fix a choice of the data (GQ,TQ,EQ) for each Γ-invariant,
W -invariant quadratic form Q on Y when G is simply connected.

2.6. Weyl group action on Brylinski–Deligne liftings

Observe that sQ(α
∨) can be defined for every coroot (not necessarily simple coroot). We

would like know how sQ(α
∨) behaves under the action of the Weyl group. Recall that

for every α ∈ Φ, one can choose wα := nα(1) ∈ G(Fs) as a representative of the simple
reflection wα corresponding to α. Let w =wα1

· · ·wα�
be a minimum decomposition of

w; we choose the following representative of w:

w = wα1
· · ·wα�

∈G(Fs).

This is independent of the minimum decomposition of w. We choose w̃α = ñα(1) as a lift

of wα in G(Fs). In any case, the conjugation action of G(Fs) on G(Fs) descends to an
action of G(Fs).

Fix a pair of roots α and β. Then we have a homomorphism

Int(wα)◦xβ = wα ·xβ ·w−1
α :Ga →Uwα(β).

From [3] Subsection 3.2.2, there is a sign εα,β ∈ {±1} associated to the Chevalley system

of épinglage such that

wα ·xβ(t) ·w−1
α = xwα(β)(εα,βt), t ∈Gm.

This implies that for t ∈Gm,

w̃α · x̃β(t) · w̃−1
α = x̃wα(β)(εα,βt). (3)

Lemma 2.4. For t ∈Gm,

w̃α ·sβ(β∨(t)) · w̃−1
α = {εα,β,t}Q(β∨) ·swα(β)(wα(β)

∨(t)).

Proof. The calculation here is identical to [10] Corollary 7.4. For t ∈Gm, we have

w̃α · ñβ(t) · w̃−1
α = (w̃α · x̃β(t) · w̃−1

α )(w̃α · x̃−β(−t−1)w̃−1
α )(w̃α · x̃β(t) · w̃−1

α ).
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By (3), this is

x̃wα(β)(εα,βt) · x̃−wα(β)(−εα,βt
−1) · x̃wα(β)(εα,βt) = ñwα(β)(εα,βt).

From this we deduce that for any t ∈Gm,

w̃α · ñβ(t) · ñβ(−1) · w̃−1
α = ñwα(β)(εα,βt) · ñwα(β)(−εα,β)

= {εα,β,t}Q(β∨)swα(β)(wα(β)
∨(t)).

The last equality follows from [10] (3).

Lemma 2.5. We have the following results.

(1) If 〈α,β∨〉=−1, we have

sQ(α
∨+β∨) = sQ(β

∨) ·sQ(α∨) · εQ(β∨)
α,β .

(2) We have sQ(−α∨) ·sQ(α∨) = 1.

Proof. On the one hand, w̃α · sβ(β∨(τ)) · w̃−1
α = swα(β)(wα(β)

∨(τ)) · {εα,β,τ}Q(β∨). On
the other hand, from (1), we obtain

w̃α ·sβ(β∨(τ)) · w̃−1
α = sβ(β

∨(τ)) ·sα(α∨(α(β∨(τ))−1))

=sβ(β
∨(τ)) ·sα(α∨(τ−〈α,β∨〉)) = sβ(β

∨(τ)) ·sα(α∨(τ)).

Observe that under the map K2(F ) → K1(F ) = F×, Res{εα,β,τ} = εα,β . Now the first
statement follows.

The argument for the second statement is similar. We also need the following

consequences of (2):

sα(α
∨(τ)) ·sα(α∨(τ−1)) ={τ,τ−1}Q(α∨).

sα(α
∨(τ)) ·sα(α∨(τ−2)) =sα(α

∨(τ−1)){τ,τ−2}Q(α∨).

Note that

w̃α ·sα(α∨(τ)) · w̃−1
α = s−α(−α∨(τ)) · εQ(α∨)

α,−α = s−α(−α∨(τ)) · (−1)Q(α∨).

Again, by (1),

w̃α ·sα(α∨(τ)) · w̃−1
α = sα(α

∨(τ)) ·sα(α∨(τ−2)) = sα(α
∨(τ−1)) · {τ,τ−2}Q(α∨).

From these two equations, we deduce that

s−α(−α∨(τ)) · (−1)Q(α∨) = sα(α
∨(τ−1)) · {τ,τ−2}Q(α∨).

We now have

s−α(−α∨(τ)) ·sα(α∨(τ)) = {τ,τ−1}Q(α∨) · (−1)Q(α∨) · {τ,τ−2}Q(α∨).

From this we deduce that

sQ(α
∨) ·sQ(−α∨) = 1.
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We write α∨ as a sum of simple coroots:

α∨ = α∨
i1 + · · ·+α∨

in .

We say that this expression has property (∗) if the following holds:

(∗) : α∨
i1, α

∨
i1 +α∨

2 , · · · , α∨
i1 + · · ·+α∨

in ∈ Φ∨. (4)

Lemma 2.6. Assume that ε
Q(β∨)
α,β = 1 and 〈α,β∨〉=−1 for all α,β. If we write α∨ as a

sum of simple coroots such that property (∗) holds, then

sQ(α
∨) = sQ(α

∨
in) · · ·sQ(α

∨
i2) ·sQ(α

∨
i1).

Proof. This follows from Lemma 2.5 and property (∗) by induction.

2.7. General reductive groups

Let G be a connected reductive group over F, with a fixed Chevalley system of
épinglage for (G,T). Let Xsc ⊂X⊗ZQ be the dual lattice of Y sc. Then the quadruple

(Xsc,Δ,Y sc,Y ) is the root system of the simply connected cover Gsc of the derived group

Gder of G and one has a natural map

q :Gsc →Gder →G.

Let Tsc be the preimage of T in Gsc. It is a maximal F -torus of Gsc with cocharacter

group Y sc ⊂ Y , so that one has a commutative diagram

Tsc Gsc

T G

The restriction Qsc := Q|Y sc gives an element G
sc ∈ CExt(Gsc,K2). It also gives the

extension Esc
Q|Y sc

. For simplicity, we just write EQsc with no confusion caused.

Theorem 2.7. The category CExt(G,K2) is equivalent to the category BD(G,T) whose

objects are triples (Q,E,f), where

• Q : Y → Z is a Γ-invariant W-invariant quadratic form;
• E is a Γ-equivariant extension of Y by F×

s with commutator map [y1,y2] =
(−1)BQ(y1,y2);

• f is a Γ-equivariant morphism from EQsc to E such that the following diagram
commutes:

1 F×
s EQsc Y sc 1

1 F×
s E Y 1

(5)
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The set of morphisms from (Q,E,f) to (Q′,E ′,f ′) is empty unless Q=Q′, in which case

it consists of Γ-equivariant isomorphisms of extensions φ : E → E ′ such that f = f ′ ◦φ.

3. Topological covering groups

We now pass from the algebro-geometric world of multiplicative K2-torsors to the world
of topological central extensions. We first assume that F is a local field. If F is non-

Archimedean, let O denote its ring of integers and let p be the residue characteristic.

3.1. BD covering groups

Start with a multiplicative K2-torsor G on G, with associated BD data (Q,E,f). Since
H1(F,K2) = 0, by taking F -points, we obtain a short exact sequence of abstract groups

1→K2(F )→G(F )→G=G(F )→ 1.

Let μ(F ) denote the set of roots of unity contained in the local field F �=C; when F =C,
we let μ(F ) be the trivial group. Then the Hilbert symbol gives a map

(−,−)F :K2(F )→ μ(F ).

For any n dividing #μ(F ), one has the nth Hilbert symbol

(−,−)n : (−,−)
#μ(F )/n
F :K2(F )→ μn(F ).

By pushing out the exact sequence via the Hilbert symbol K2(F )→ μn(F ), we obtain an

exact sequence of locally compact topological groups

1→ μn(F )→G→G→ 1.

We call this the BD covering group associated to the BD data (Q,E,f,n).

3.2. Unipotent subgroups

Let NG be the set of all unipotent elements of G. Because a BD extension is uniquely
split over any unipotent subgroup, one has unique splittings

x̃α : F → Uα for each α ∈ Φ.

Indeed, as shown in [22] Appendix I and [18] Proposition 2.2.1, there is a unique section

i :NG →G

satisfying the following:

• for each unipotent subgroup U ⊂G, the restriction of i to U =U(F ) is a group
homomorphism;

• the map i is G-equivariant.

3.3. Tori

The following result is a consequence of [1] Proposition 3.13.
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Proposition 3.1. Let L be any field containing F over which T splits. Let T(L) be the

resulting central extension

1→K2(L)→T(L)→T(L)→ 1.

Then the commutator of this extension satisfies

Comm(y1(u1),y2(u2)) = {u1,u2}BQ(y1,y2),

for all y1,y2 ∈Hom(Gm,TL) and all u1,u2 ∈ L×.

We would like to note the following useful observation. IfT=T1×T2, then Y = Y1⊕Y2.
We have the following consequence.

Lemma 3.2. If BQ(y1,y2) = 0 for all y1 ∈ Y1,y2 ∈ Y2, then T 1 and T 2 commute in T .

Proof. This is an immediate consequence of Proposition 3.1.

Let G = G1 ×G2 with maximal torus T = T1 ×T2. Then there is a corresponding

decomposition of cocharacter lattice Y = Y1⊕Y2. Let G ∈CExt(G,K2). This gives Gi ∈
CExt(Gi,K2) for i= 1,2. We have inclusions Gi →G,i= 1,2.

Lemma 3.3. If BQ(y1,y2) = 0 for all y1 ∈ Y1,y2 ∈ Y2, then G1 and G2 commute in G.

Proof. The group G is generated by T and NG. We only have to verify the following:

(1) T 1 and T 2 commute;

(2) T 1 and NG2
commute;

(3) T 2 and NG1
commute;

(4) NG1
and NG2

commute;

The first statement is simply Lemma 3.2. The second follows from the fact that T1 and

NG2
commute in G and the unipotent section is G-equivariant. The rest is similar.

3.4. The tame case

We now discuss the splitting of maximal compact subgroups at unramified places.

Let F be a non-Archimedean field with ring of integers O. Suppose that the group G

has an integral model G over O. The K2-extension G might not be defined over O. If it
is, then there is a natural splitting of G over K =G(O).

The K2-extension G yields a short exact sequence

1→K2(F )→G(F )→G(F )→ 1.

If p � n, then this ‘tameness’ gives an exact sequence

1→K2(O)→K2(F )
Hilbn−−−→ μn → 1.
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This gives a commutative diagram

1 K2(O) G(O) G(O) 1

1 μn G G 1 .

Thus, the central extension 1 → μn → G → G → 1 is endowed with a splitting over the
hyperspecial maximal compact subgroup G(O).

3.5. Adelic BD covering

In this section, F is a global field. For a place v of F, we write Fv for the completion of

F at v.

Starting with a BD extension G over Spec(F ) and a positive integer n such that
|μn(F )| = n, Brylinski and Deligne showed using results of [20] that one inherits the

following data:

• for each place v of k, a local BD covering group Gv of degree n;
• for almost all v, a splitting sv :G(Ov)→Gv;
• a restricted direct product

∏′
vGv with respect to the family of subgroups

sv(G(Ov)), from which one can define

G(A) :=
∏
v

′
Gv/{(ζv) ∈ ⊕vμn(kv) :

∏
v

ζv = 1},

which gives a topological central extension

1→ μn(F )→G(A)→G(A)→ 1,

called the adelic or global BD covering group;
• a natural inclusion

1 μn(Fv) Gv G(Fv) 1

1 μn(F ) G(A) G(A) 1

for each place v of k ;
• a natural splitting

i :G(F )→G(A),

which allows one to consider the space of automorphic forms on G(A).

In this article, we fix an embedding ε : μn → C×. We say a representation π of G(A) is
ε-genuine if μn acts via ε.

We briefly recall how the splitting i is obtained. Let X = Spec(OF ). Let S1 be a finite

set of finite places of F. We assume that S1 is large enough so that the conclusion of [1]
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Lemma 10.6 holds. Write S = S1∪{infinite places}. This gives a central extension

1→H0(X−S1,K2)→ E1 →G(X−S1)→ 1.

For v a place of F, it maps to the local central extension

1→ μn →Gv →Gv → 1.

For an unramified place v, the map factors through a central extension

1→K2(Ov)→G(Ov)→G(Ov)→ 1.

If p � n, the exact sequence

1→K2(Ov)→K2(Fv)→ F×
v → 1

shows that K2(Ov) maps trivially to μn. We obtain a trivialisation of Gv over G(Ov).
We now have a commutative diagram

1 H0(X−S1,K2) E1 G(X−S1) 1

1

∏

v∈S
μv

∏

v/∈S

Gv ×
∏

v∈X−S1

G(Ov)
∏

v/∈S

Gv ×
∏

v∈X−S1

G(Ov) 1

provided that for all v in X − S1, p � n. This holds for S1 is large enough. The first

vertical map, composed with the reciprocity map
∏

ζv with values in μn, vanishes. We
hence obtain

G(X−S1)

1 μn

∏

v/∈S

Gv ×
∏

v∈X−S1

G(Ov)
∏

v/∈S

Gv ×
∏

v∈X−S1

G(Ov) 1

Taking direct limit over S gives the desired natural splitting:

G(F )

1 μn G(A) G(A) 1

4. Pullback, pushout and Baer sum

We now discuss several constructions that give new exact sequences: pullback, pushout

and the Baer sum. In this section, we would like to describe these constructions in terms

of the BD data.
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4.1. Pushout

We now recall the definition of pushout.

Definition 4.1. For a central extension

1→A
i−→ E

p−→G→ 1

and a homomorphism f :A→B of abelian groups, we define

f∗(E) := (B×E)/〈(f(a),i(a)−1) : a ∈A〉.

The maps B → f∗(E),b �→ (b,1) and f∗(E)→G,(b,e) �→ p(e) define an exact sequence

1→B → f∗(E)→G→ 1.

This exact sequence is called the pushout by f.

4.2. Baer sum

Another method to construct new exact sequences is the Baer sum. In this article, we

only consider the Baer sum of n copies of an exact sequence.

Consider an exact sequence

1→A→ E →G→ 1 (6)

with A abelian. By taking the direct sum of n copies of the exact sequence (6), we obtain

1→⊕n
i=1A→⊕n

i=1E →⊕n
i=1G→ 1.

By pushing out the exact sequence via the product map

pr :

n∏
i=1

A→A, (xi) �→
n∏

i=1

xi,

we obtain an exact sequence:

1→A→ pr∗(⊕n
i=1E)→⊕n

i=1G→ 1.

Now we pull back this exact sequence via the diagonal map

d :G→⊕n
i=1G, x �→ (x, · · · ,x)

to obtain

1→A→ d∗(p∗⊕n
i=1E)→G→ 1.

This exact sequence is the Baer sum of n copies of (6).

We now claim that this is also the same as pushing out (6) by the map [n] : A → A,

x �→ xn.
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Lemma 4.2. The following commutative diagram gives an isomorphism of exact
sequences:

1 A [n]∗(E) G 1

1 A d∗(p∗⊕n
i=1E) G 1

Proof. Recall that [n]∗(E) = (A×E)/〈xn,i−1(x) | x ∈A〉 and

p∗(⊕n
i=1E) =A× (⊕n

i=1E)/〈
n∏

i=1

xi,(i
−1(x1), · · · ,i−1(xn)) | (x1, · · · ,xn) ∈ ⊕n

i=1A〉.

We now define [n]∗(E)→ d∗(p∗⊕n
i=1E) by

(a,e) �→ (a,(e, · · · ,e)).

It is straightforward to check that this is well-defined and is an isomorphism of exact
sequences.

4.3. Functoriality of pullback

Let f :G→H be a morphism of connected reductive groups. Let

1→K2 →H→H→ 1

be a multiplicative K2-torsor on H. By pulling back via f, we obtain a multiplicative

K2-torsor on G:

1→K2 → f∗(H)→G→ 1.

For ease of notation, let us write G= f∗(H). Thus, this fits into a commutative diagram

1 K2 G G 1

1 K2 H H 1

and gives a functor

CExt(H,K2)→CExt(G,K2). (7)

At every local place v, the pullback determines the following data:

• At every local place v, we have a commutative diagram

1 μn Gv Gv 1

1 μn Hv Hv 1
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• The commutative diagram is compatible with the lift of unipotent elements. In
other words, the following diagram commutes:

NGv Gv

NHv Hv

• In the tame case, the commutative diagram is compatible with the natural lift of
maximal compact subgroups:

G(Ov) Gv

H(Ov) Hv

We now move to the global setup. So from now on, F is a global field. The local

homomorphisms glue to

∏
v

Gv →
∏
v

Hv.

As fv(sv(G(Ov)))⊂ sv(H(Ov)), we obtain a homomorphism

∏
v

′Gv →
∏
v

′Hv →H(A).

This map factors through

fA :G(A)→H(A).

From the construction of the natural splitting H(F )→H(A), it is not hard to check that
this is compatible with the splitting over rational points. In other words, the diagram

G(F ) G(A)

H(F ) H(A)

commutes.

We now describe the functor (7) in terms of the BD data. Let TG and TH be maximal

F -tori of G and H, respectively. We assume that f(TG) ⊂ TH . The map TG → TH
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induces a map YG → YH , which gives EG as the pullback of EH via YG → YH :

1 F×
s EG YG 1

1 F×
s EH YH 1

. (8)

The homomorphism G→H also determines a map Gsc →Hsc. This gives a map EGsc →
EHsc . It is easy to check that the image of EGsc → EHsc → EH agrees with the image of

EG →EH , which gives a commutative diagram

1 F×
s EGsc Y sc

G 1

1 F×
s EG YG 1

. (9)

Proposition 4.3. With notation as above, the functor (7) can be described in terms of

BD data:

BD(H,TH)→BD(G,TG), (QH,EH,fH) �→ (QG,EG,fG),

where

• QG =QH |YG
;

• EG is given by the top row of (8);
• fG is given by the commutative diagram in (9).

Proof. The quadratic form is determined by the commutator map on TG. The other two
invariants follow from their construction from G directly.

4.4. Functoriality of pushout

The pushout action is functorial, so it can be glued to a construction of sheaves. Let
f ∈ End(K2). Then for a multiplicative K2-torsor G, one can push it out via f to obtain

a new multiplicative K2-torsor. In this article, we consider the following map:

[m] :K2 →K2, x �→ xm

for an integer m. We have a natural mapG→G
�
which fits into the commutative diagram

1 K2 G G 1

1 K2 G
� G 1

This defines a functor

CExt(G,K2)→CExt(G,K2).
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At every local place v, we obtain the following:

• We have the following commutative diagram:

1 μn Gv Gv 1

1 μn G
�

v
Gv 1

.

where the first vertical map is x �→ xm.

• the map NGv
→Gv →G

�

v is the canonical unipotent section for G
�

v;

• in the tame case, the map G(Ov)→Gv →G
�

v is the natural splitting of maximal
compact subgroups.

Globally, we can glue the local maps to obtain a global map. The map G(F )→G(A)→
G

�
(A) is the natural splitting for the multiplicative K2-torsor G

�
.

We now describe the functor CExt(G,K2)→CExt(G,K2) in terms of BD data.

Proposition 4.4. The functor

CExt(G,K2)→CExt(G,K2), G �→G
�

in terms of the BD data is given by

BD(G,T) �→BD(G,T), (Q,E,f) �→ (Q�,E�,f �),

where

• Q� =mQ;
• E� is obtained from E by pushing out via the map [m] : F×

s → F×
s ,x �→ xm;

• f � is obtained by pushing out the commutative diagram in (5) via the map [m].

Proof. The functoriality of Baer multiples G �→G
�
can be found in [28] Theorem 2.2.

Indeed, the quadratic form Q� is determined by the multiplication map on T
�
. The other

two invariants again follow from the construction directly.

Observe that if m≡−1 mod n, then

[m] :K2 →K2, ζ �→ ζm

becomes μn → μn,ζ �→ ζ−1 after taking the Hilbert symbol. Thus,

G
�

v = (μn×Gv)/〈(ζ,ζ) : ζ ∈ μn〉.

We have a commutative diagram

1 μn Gv Gv 1

1 μn G
�

v
Gv 1

,
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where the first vertical map is the inverse map and the second vertical map Gv →G
�

v is

a group isomorphism. This works globally as well.

5. Doubling variables

We now review some definitions related to classical groups that are used in the twisted

doubling integrals. Here we use the conceptual description in [5].

5.1. Classical groups

For the definition of classical groups, we follow the setup in [29].
By an involution of an algebra D whose centre E contains F, we mean an arbitrary

anti-automorphism ρ of D of order 2 under which F is the fixed subfield of E. We denote

the restriction of ρ to E also by ρ. We take a couple of (D,ρ) belonging to the following
five types:

(a) D = E = F and ρ is the identity map;

(b) D is a division quaternion algebra over E = F and ρ is the main involution of D ;

(c) D is a division algebra central over a quadratic extension E of F and ρ generates

Gal(E/F );

(d) D =M2(E), E = F and

(
a b
c d

)ρ

=

(
d −b
−c a

)
;

(e) D =D⊕Dop, E = F ⊕F and (x,y)ρ = (y,x), where D is a division algebra central
over F and Dop is its opposite algebra.

If F is local, we fix a nontrivial additive character ψF of F ; if F is global, we fix a

nontrivial additive character ψF of F\A. If E = F , we set ψ = ψF ; if E/F is an étale

quadratic algebra, we set ψ = ψF ◦ trE/F . The global version is defined similarly. If x is a
square matrix with coordinates in D, then ν(x) ∈ E and τ(x) ∈ E stand for its reduced

norm and reduced trace to the centre E of D.

The rank of D as a module over E is a square of a natural number which will be
denoted by d. We assume D to be division if F is a number field, so that D is of type

(d) (respectively (e)) will appear in our later discussion as a localisation of a global D of

type (b) (respectively (c)).

Let ε be either 1 or −1. We fix once and for all of the triple (D,ρ,ε).
Let W be a free left D-module of rank m. By an ε-skew Hermitian space we mean

a structure W = (W,〈 , 〉), where 〈 , 〉 is an ε-skew Hermitian form on W ; that is, an

F -bilinear map 〈 , 〉 :W ×W →D such that

〈x,y〉ρ =−ε〈y,x〉, 〈ax,by〉= a〈x,y〉bρ, (a,b ∈D; x,y ∈W ).

Such a form is called nondegenerate if 〈x,W 〉= 0 implies that x= 0. We assume that 〈 , 〉
is nondegenerate.

We denote the ring of all D-linear endomorphisms of W by EndD(W ) and set

GLD(W ) = EndD(W )×. Note that GLD(W ) acts on W on the right. We sometimes
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write GLW ;D for GLD(W ) for ease of notation. Let

G= {g ∈GLD(W ) : 〈xg,yg〉= 〈x,y〉 for all x,y ∈W}

be the unitary group of (W,〈 , 〉), which is a reductive algebraic group defined over F. It

is important to realise that G always comes together with a space W and a form 〈 , 〉.
We usually just speak of G and the data W = (W,〈 , 〉) will be implicitly understood.
We write G=G(W) when the dependence of G on W needs to be stressed.

5.2. Doubling homomorphism

Let W = (W,〈 , 〉) be one of the ε-skew Hermitian forms described above. Let k be a fixed

positive integer. We would like to define the following in this section:

(G,G�,k,ι,P,N•
W,k,ψ

•
W,k). (10)

Put W�,k =W⊕2k. We usually write

W�,k =W1,+⊕W2,+⊕·· ·⊕Wk,+⊕Wk,−⊕·· ·⊕W2,−⊕W1,−

to distinguish the copies of W in W�,k. We write an element in W�,k as

(x;y) = (x1, · · · ,xk;yk, · · · ,y1), xi ∈Wi,+, yi ∈Wi,−.

Define an ε-skew Hermitian form 〈 , 〉�,k on W�,k by

〈(x;y),(x′;y′)〉�,k =
k∑

i=1

(〈xi,x
′
i〉−〈yi,y′i〉) (xi,x

′
i ∈Wi,+;yi,y

′
i ∈Wi,−).

Let G�,k denote the unitary group of (W�,k,〈 , 〉�,k).

For W� =W+⊕W−, let

W∇ = {(x,−x) ∈W+⊕W− : x ∈W}

be the graph of minus the identity map from W to W and

WΔ = {(x,x) ∈W+⊕W− : x ∈W}

be the graph of the identity map. Given x ∈W , we write

xΔ = (x,x) ∈WΔ and x∇ = (x,−x) ∈W∇.

We have the following observations:

(1) For each i, W�
i =Wi,+⊕Wi,− =WΔ

i +W∇
i . Both WΔ

i and W∇
i are totally isotropic

in W�,k.

(2) The space WΔ is isomorphic to W as vector spaces via

WΔ �W, (x,x) �→ x.

The space W∇ is identified with W via (x,−x) �→ 2x. Thus, we can view G(W)

as a subgroup of GLD(WΔ) or GLD(W∇) and identify HomD(W∇
i ,W∇

j ) with

EndD(W ).
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Define

WΔ,k =WΔ
1 ⊕·· ·⊕WΔ

k , W∇,k =W∇
1 ⊕·· ·⊕W∇

k .

Both spaces are totally isotropic in W�,k and W�,k =WΔ,k+W∇,k. This is a complete

polarisation of W�,k. Unless otherwise specified, we write P=P(WΔ,k).
We first construct a Fourier coefficient for the group G�,k. We choose the following flag

of totally isotropic subspaces in W�,k:

0⊂W∇
k ⊂W∇

k−1⊕W∇
k ⊂ ·· · ⊂W∇

2 ⊕·· ·⊕W∇
k . (11)

Let P•
W,k =M•

W,k ·N•
W,k be the corresponding parabolic subgroup. Then

M•
W,k �GLD(W∇

k )×·· ·×GLD(W∇
2 )×G(W�

1 ).

The character is defined on the group N•
W,k.

We reindex the flag in (11) as

0⊂ Y1 ⊂ ·· · ⊂ Yk−1

and extend it to

0⊂ Y1 ⊂ ·· · ⊂ Yk−1 ⊂ Y ⊥
k−1 ⊂ ·· · ⊂ Y ⊥

1 ⊂W�,k.

Note that except for Y ⊥
k−1/Yk−1 = W�

1 , the quotient between two successive terms is

isomorphic to either WΔ or W∇. For convenience, we write Y0 = 0 and Yk := Y ⊥
k−1.

To describe the character of N•
W,k(F )\N•

W,k(A), we have to specify elements

Ai ∈HomD(Yi/Yi−1,Yi+1/Yi)� EndD(W∇), i= 1, · · · ,k−2,

and

Ak−1 ∈HomD(Yk−1/Yk−2,Y
⊥
k−1/Yk−1)�HomD(W∇,W�).

We choose A1, · · · ,Ak−2 to be the identity map in EndD(W∇). The map

Yk−1/Yk−2
Ak−1−−−→ Y ⊥

k−1/Yk−1
Ak−−→ Y ⊥

k−2/Y
⊥
k−1

is translated from

W∇ →W+⊕W− →WΔ, x∇ �→ (2x,0) �→ 2xΔ.

Note that Ak ◦Ak−1 is an isomorphism.
An element u ∈N•

W,k(F )\N•
W,k(A) induces

ui : (Yi+1/Yi)⊗ (F\A)→ (Yi/Yi−1)⊗ (F\A).

Then we define

ψ•
W,k :N•

W,k(F )\N•
W,k(A)→ C, u �→ ψ

(
k−1∑
i=1

τ(ui ◦Ai)

)
.
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Given (g1,g2) ∈G×G, we define its action on W1,+⊕W2,+⊕·· ·⊕Wk,+⊕Wk,−⊕·· ·⊕
W2,−⊕W1,− via

(x1, · · · ,xk;yk, · · · ,y2,y1)(g1,g2) = (x1g1, · · · ,xkg1;ykg1, · · · ,y2g1,y1g2).

This extends to an action of G×G on W�,k and gives a map

ι= ιk :G×G→G�,k.

It is in fact a homomorphism and, in particular, the images of these two copies of G

commute in G�,k. It is straightforward to check that ι(G×G) lies in the stabiliser of

ψ•
W,k in G�,k.

Recall that for a subgroup J of G, we define J♦ = {(g,g) ∈G×G | g ∈ J}. We have the

following results from [5].

Lemma 5.1 ([5] Lemma 5.1). We have ι(G×G)∩P= ι(G♦).

Lemma 5.2 ([5] Lemma 5.2). The modular quasicharacter δι(G×G);N•
W,k

(ι(g1,g2)) = 1

for any g1,g2 ∈G.

5.3. The case of special orthogonal groups

We now discuss the case of special orthogonal groups. Since the group O(W ) is

disconnected, to consider multiplicative K2-torsors, it would be better to consider its

connected component SO(W ). We now explain the modifications in order to develop the
twisted doubling integrals. For the group O(W ) and a fixed positive integer k, we have

defined a list of input (G,G�,ι,P,N•
W,k,ψ

•
W,k). We now explain how to define it for the

group SO(W ).
The doubling homomorphism ι :O(W )×O(W )→O(W�,k) restricts to

ι : SO(W )×SO(W )→ SO(W�,k).

Note that P,N•
W,k ⊂SO(W�,k). Thus, we can still use ψ•

W,k andN•
W,k to define a Fourier

coefficient of an automorphic form on SO(W�,k)(A). Thus, we take

(SO(W ),SO(W�,k),ι,P,N•
W,k,ψ

•
W,k)

to be the input in the case of special orthogonal groups. To unify our discussion, if

G= SO(W ), then we take G�,k = SO(W�,k).
The case of inner forms of orthogonal groups can be treated similarly.

6. Degenerate representations

The purpose of this section is to discuss a family of representations that are used in

the global zeta integrals. These can be viewed as the analog of the generalised Speh
representations in the covering group setup. As indicated in [5], in order to prove the global

identity, one only has to use information on Fourier coefficients of these representations.

We will discuss the conjectural construction of such representations in Section 11.
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6.1. Degenerate Whittaker models

We first recall the definition of degenerate Whittaker models. One can attach a degenerate

Whittaker model for a Whittaker pair (see [12, 21]). Given an admissible representation

π, an important question is to find the largest nilpotent orbits that support degenerate

Whittaker models for π. Locally, this determination is related to other nilpotent invariants
such as the wavefront set. We refer the reader to the introduction of [12] for a

comprehensive account of discussion.

In this article, we consider only a subclass of degenerate Whittaker models for
GLn,D. As explained in [5] Subsection 2.4, this is sufficient for determining nilpotent

invariants and fits into our examples later. As unipotent subgroups split canonically over

covering groups, these notions transfer from the linear case to the covering group case
automatically. In the following, we only define these in the linear case.

Let R = F if F is a local field and R = A/F if F is a number field. Fix a nontrivial

additive character ψF :R→C×. Let D be a central division algebra as in Subsection 5.1.

Let W be a free left D-module of rank m and consider the group GLD(W ). Recall that
we sometimes write GLW ;D for GLD(W ) for ease of notation. Let

Y : 0⊂ Y1 ⊂ Y2 ⊂ ·· · ⊂ Yk ⊂W

be a flag of distinct subspaces of W. We sometimes write Y0 = {0} and Yk+1 = W for
convenience. The stabiliser of Y is a parabolic subgroup P(Y) =M(Y) ·N(Y) with Levi

component M(Y). Then as algebraic groups,

N(Y)ab ∼=
k∏

i=1

HomD(Yi+1/Yi,Yi/Yi−1), u �→ (ui)
k
i=1.

To give a character of N(Y)(R), we specify an element in

A= (A1, · · · ,Ak) ∈
k∏

i=1

HomD(Yi/Yi−1,Yi+1/Yi).

More concretely, given such an A, we define a character ψA of N(Y)(R) by

ψA(u) = ψ

(
k∑

i=1

τ(ui ◦Ai)

)
.

Here, ψ = ψF ◦ trE/F .

Assume now we have a pair (N(Y),ψA). Globally, for an irreducible automorphic

representation π of GLW ;D(A), we define the (N(Y),ψA)-Fourier coefficient of φ ∈ π as

φN(Y),ψA(g) =

∫
[N(Y)]

φ(ug)ψA(u) du.

Locally, we consider the space HomN(Y)(F )(π,ψA) of (N(Y),ψA)-functional for an

admissible representation π of GLW ;D(F ).
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6.2. Representations of type (k,m)D

The purpose of this section is to introduce the notion of representations of type (k,m)D,

both locally and globally. These representations are supported on a suitable nilpotent
orbit and admit unique models of degenerate type. In the linear case and when D is a

field, the generalised Speh representations are examples of such representations.

In this section, we assume that dimDW = km.

Definition 6.1. We say a pair (N(Y),ψA) is in the orbit (km)D if Y is of the form

0⊂ Y1 ⊂ ·· · ⊂ Yk−1 ⊂W

and for i= 1, · · · ,k−1, dimD Yi =mi and Ai is an isomorphism.

The stabiliser of a coefficient in the orbit (km)D is isomorphic to GLm,D.

Definition 6.2. We say a pair (N(Y),ψA) lies in an orbit higher than (km)D if

Ai+k−1 ◦ · · · ◦Ai �= 0

for some i.

Note that this implies that there are at least k proper subspaces in the flag Y.

Definition 6.3. We say a representation θ of a local group GLW ;D is of type (k,m)D if
the following two conditions hold:

(1) For a pair (N(Y),ψA) that lies in the orbit (km)D,

dimHomN(Y)(θ,ψA) = 1.

(2) For any pair (N(Y),ψA) that lies in an orbit higher than (km)D,

dimHomN(Y)(θ,ψA) = 0.

Remark 6.4. By Frobenius reciprocity, HomN(Y)(θ,ψA)�HomGLW ;D
(θ, Ind

GLW ;D

N(Y) (ψA)).

An element in the latter space is called a (N(Y),ψA)-model for θ. For a representation

θ of type (k,m)D, we write WhN(Y),ψA(θ) for the image of a nonzero map in

HomGLW ;D
(θ, Ind

GLW ;D

N(Y) (ψA)).

Definition 6.5. We say an irreducible automorphic representation θ of GLW ;D(A) is of

type (k,m)D if the following conditions hold:

(1) The representation supports a nonzero (N(Y),ψA)-Fourier coefficient such that the

pair is in the orbit (km)D.

(2) For any pair (N(Y),ψA) that lies in an orbit higher than (km)D, the (N(Y),ψA)-

Fourier coefficient vanishes identically.

(3) The local component θv is a representation of type (k,m)D for every place v.

We also say that the nilpotent orbit attached to θ is (km)D if only parts (1) and (2) hold.
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6.3. Invariance under stabiliser

This section is a straightforward adaption of [5] Subsection 2.4.2 to the case of covering

groups. We collect necessary results but omit the proofs.

We now assume that dimDW = km and the representation θ of GLW ;D is of type

(k,m)D. We consider the following situation:

0⊂ Y1 ⊂ ·· · ⊂ Yk−1 ⊂W

such that dimD Yi =mi, A2, · · · ,Ak−1 are isomorphisms and the rank of A1 is a> 0 (which
might not be of full rank).

The Fourier coefficients defined by such a pair enjoy an extra invariance property. We

start with the case of a=m. Recall that the stabiliser StA of a pair (N(Y),ψA) that lies
in the orbit (km)D is isomorphic to GLm,D. We start with the local version.

Lemma 6.6 ([5] Lemma 2.14). Let θ be an irreducible ε-genuine admissible representation
of GLW ;D(F ) that is of type (k,m)D.

(1) The stabiliser StA acts on HomN(Y)(θ,ψA) via an ε-genuine character χθ : StA(F )→
C×.

(2) For f ∈WhN(Y),ψA(θ),

f(gh) = χθ(g)f(h)

for g ∈ StA(F ) and h ∈GLW ;D(F ).

Here is the global version.

Lemma 6.7 ([5] Lemma 2.15). Let θ be an irreducible unitary ε-genuine automorphic
representation of GLW ;D(A). Then there is a character χθ : StA(F\A)→ C× such that,

for any φ ∈ θ,

φN(Y),ψA(gh) = χθ(g)φ
N(Y),ψA(h)

for any g ∈ StA(F\A) and h ∈GLW ;D(A).

We now consider the case a <m. Define SA to be the subgroup of M(Y):

N(Ker(A1))×{1}× · · ·×{1} ⊂GL(Y1)×GL(Y2/Y1)×·· ·×GL(W/Yk−1).

Here, N(Ker(A1)) is the unipotent radical of the parabolic subgroup of GL(Y1) stabilising

Ker(A1). Then the unipotent group SA is in the stabiliser of the pair (N(Y),ψA). (Note

that SA is not the full stabiliser.) The Fourier coefficient φN(Y),ψA(g) is left-invariant

under [SA].

Proposition 6.8 ([5] Proposition 2.17). For φ ∈ θ,

φN(Y),ψA(gh) = φN(Y),ψA(h)

for any g ∈ SA(F\A) and h ∈GLW ;D(A).
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Remark 6.9. To further develop the local and global theory of the twisted doubling
integrals, we need finer properties of these representations. For instance, multiplicativity

of γ-factors corresponds to the properties of representations of type (k,m)D with respect

to parabolic induction. As we do not require these properties in the present article, we
leave them to a future article.

7. Basic setup in the linear case

We now review the basic setup of the twisted doubling integrals from [5] Section 6.

Write P=M ·N. Then P (F )\G�,k(F ) can be identified with the flag variety Ω(W�,k) of
maximal totally isotropic subspaces of W�,k. (In the case of special orthogonal groups,

this corresponds to a subset of Ω(W�,k).) The identification is given by γ �→WΔ,kγ. We

write L=WΔ,kγ.

We define the following subset of G�,k(F ):

Ω1 = {γ ∈G�,k(F ) : ψ•
W,k|[γ−1Nγ∩N•

W,k]
�= 1}.

If γ ∈G�,k(F )−Ω1, then ψ•
W,k|[γ−1Nγ∩N•

W,k]
=1. The character ψ•

W,k induces a character

on a unipotent subgroup of [γ−1Nγ\γ−1Pγ] which is isomorphic to a general linear group
over D. It is defined by the following pair:

([γ−1Nγ∩N•
W,k\γ−1Pγ∩N•

W,k],ψ
•
W,k). (12)

We define

Ω2={γ ∈G�,k(F )−Ω1 : (12) is given by a pair that lies in an orbit higher than (km)D}.

Both Ω1 and Ω2 are double cosets in P (F )\G�,k(F )/N•
W,k(F ) and we have a nice

geometric interpretation of Ω1∪Ω2.

Lemma 7.1 ([5] Subsection 6.1). With notation as above,

Ω1∪Ω2 = {γ ∈G�,k(F ) : L∩Yk−1 = {0}}.

Proof. The only new case is the case of special orthogonal groups, which follows from

the case of orthogonal cases.

Let G̃�,k(F ) =G�,k(F )− (Ω1∪Ω2) and consider P (F )\G̃�,k(F )/N•
W,k(F ). It is stable

under the right action of ι(G×G)(F ).
The results in [5] Subsection 6.2 can be summarised as follows:

Proposition 7.2 ([5] Subsection 6.2). We have the following:

(1) The double coset P (F )\G̃�,k(F )/ι(G×G)N•
W,k(F ) is finite.

(2) For an ι(G×G)(F )-orbit in P (F )\G̃�,k(F )/ι(G×G)N•
W,k(F ), one can choose a

representative γ such that
• The Fourier coefficient in (12) is of the form studied in Subsection 6.3. The

value a can be determined explicitly by γ. If a < m, let Sλ denote the subgroup
SA in Subsection 6.3.
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(3) The stabiliser R− in {1}×G of each representative in (2) contains the unipotent

radical N− of a parabolic subgroup of {1}×G as a normal subgroup.

(4) If a <m, then N− is nontrivial and the projection of {1}×N− to M is a subgroup
of Sλ. In this case we say that this orbit is negligible.

(5) If N− is trivial, we call this orbit the main orbit. The representative of the main

orbit can be chosen to be the identity element. The stabiliser of the identity element

in ι(G×G)(F ) is P (F )∩ ι(G×G)(F ) = ι(G♦)(F ).

Proof. The only case to check is the case of special orthogonal groups or its inner forms.

It can be deduced from the orthogonal group case by noting that there is a bijection

between

P (F )\Õ(W�,k)(F )/ι(O(W )×O(W ))N•
W,k(F )

and

P (F )\S̃O(W�,k)(F )/ι(SO(W )×SO(W ))N•
W,k(F ).

8. Assumptions in the covering group case

We now discuss the necessary modifications in the case of covering groups. In order to

keep the length of this section reasonable, we defer some of the proofs to Section 10.

From now on, we consider G to be one of the following groups:

(1) Sp(W ) or its inner forms;

(2) SO(W ) with dimW even or its inner forms;

(3) SO(W ) with dimW odd and dimW ≥ 3;

(4) U(W ).

For each group in the list and a fixed integer k, we have a list of input

(G,G�,k,ι,P,N•
W,k,ψ

•
W,k) from the previous section.

Remark 8.1. The group SO1 is trivial, so all of the results in this section are trivial in
this case. We will exclude this case. (We still need to consider this case locally in order

to discuss multiplicativity, for example.)

Let n be a fixed positive integer. Let G ∈ CExt(G,K2) which is classified by the

BD data (Q,E,f) given a choice of a maximal F -torus T. In the case of unitary
groups, U(W )Fs

� GLdm,Fs
. We also assume that quadratic form Q in the BD data

is decomposable. (This means that if we write Y = Y1 ⊕Y2 according to T = T1×T2,

then Q can be written as the direct sum of Q|Y1
and Q|Y2

.) This assumption will greatly
simplify the situation. We will discuss more on this in Remark 8.9.

Lemma 8.2. Assume that D is a field and dimDW > 1. Then 2 |Q(α∨) where α∨ is a

coroot in the Siegel parabolic subgroup of G.
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This result will be proved case by case in Section 10. In the unitary case, this result is
not true without the decomposable assumption.

Let nQ = n/gcd(n,Q(α∨)) where α∨ is a coroot in the Siegel parabolic subgroup of

GFs
. In the case G=U1, the quadratic form is Q(e∨1 ) = a. We define nQ = n/gcd(n,2a).

Without loss of generality, we assume that nQ is either n or n/2.

Let G�,knQ ∈ CExt(G�,knQ,K2). The pullback of G�,knQ via the doubling

homomorphism

ι :G×G→G�,knQ

gives two multiplicative K2-torsors on G:

1→K2 →G− → ι(1×G)→ 1

and

1→K2 →G+ → ι(G×1)→ 1.

A priori, these two multiplicative K2-torsors may not be isomorphic. In fact, a simple

calculation on the quadratic form suggests that they are not isomorphic unless knQ = 1.

In any case, what we need is the following result.

Theorem 8.3. For G ∈ CExt(G,K2), there exists G�,knQ ∈ CExt(G�,knQ,K2) such

that G− �G and G+ is the pushout of G by the endomorphism [2knQ−1] :K2 →K2.

This theorem is proved as a special case of Corollary 10.6.
Let G�,knQ be a multiplicative K2-torsor given by the theorem. We simply write G=

G− and G
�
=G+. Then these two extensions fit into the following commutative diagram:

1 K2 G ι(1×G) 1

1 K2 G
� ι(G×1) 1

Here, the leftmost vertical map is [2knQ−1] :K2 →K2. We fix a morphism G→G
�
once

and for all.
The decomposable assumption in the unitary case significantly simplifies our argument

since the following result is true. This will be proved in Proposition 10.7.

Lemma 8.4. The multiplicative K2-torsors G
�
and G commute in G�,knQ .

A consequence of this lemma is that we have a doubling homomorphism of multiplicative
K2-torsors (instead of a map of sets):

G
�×G→G�,knQ .

By composing it with the fixed morphism G→G
�
, we obtain a homomorphism

ι :G×G→G�,knQ,
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which fits into the following commutative diagram:

1 K2×K2 G×G G×G 1

1 K2 G�,knQ G�,knQ 1
.

Here the first vertical map is given by

K2×K2 →K2, (x,y) �→ x2knQ−1y.

8.1. The local doubling homomorphism

We now discuss the local and global consequences using results from Section 4. The

homomorphism

ι :G
�

v ×Gv →G
�,knQ
v

is a lift of the local doubling homomorphism ι : Gv ×Gv → G
�,knQ
v . Here are the

consequences:

• The images of Gv and G
�

v commute in G
�,knQ
v .

• We have a commutative diagram

1 μn×μn Gv ×Gv Gv ×Gv 1

1 μn G
�,knQ
v G

�,knQ
v 1

where the first vertical map is given by

μn×μn → μn, (ζ1,ζ2) �→ ζ−1
1 ζ2.

Lemma 8.5. We have the following:.

(1) For a unipotent subgroup U of G,

iu(ι(g1,g2)) = ι(iu(g1),iu(g2))

for g1,g2 ∈U(Fv).

(2) Let F be a non-Archimedean field. Assume that p � n. We have

sv(ι(g1,g2)) = ι(sv(g1),sv(g2))

for g1,g2 ∈G(Ov).

Proof. These are simply consequences of the results in Section 4.
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8.2. Splitting over the diagonal copy

We now discuss an important consequence of Lemma 8.4. We write (G×G)v to be the

pullback of G
�,knQ
v via ι :Gv ×Gv →G

�,knQ
v .

Lemma 8.6. With the above assumptions, there is a natural splitting G♦
v → (G×G)v.

Proof. We know that the homomorphism

Gv ×Gv → (G×G)v →G
�,knQ
v

restricts to μn×μn → μn,(ζ1,ζ2) �→ ζ−1
1 ζ2. Thus, we obtain

(G×G)v = (Gv ×Gv)/μ
♦
n .

This implies that the image of G
♦
v ⊂Gv×Gv in (G×G)v is G

♦
v /μ

♦
n �G♦

v . Thus, we have

a natural splitting G♦
v → (G×G)v.

8.3. The global doubling homomorphism

The local doubling homomorphism glues to

ιA :
∏
v

Gv ×
∏
v

Gv →
∏
v

G
�,knQ
v .

As ιv(sv(G(Ov))×sv(G(Ov)))⊂ sv(G
�,knQ(Ov)) for almost all v, we obtain a homomor-

phism

ιA :
∏
v

′ Gv ×
∏
v

′ Gv →
∏
v

′ G
�,knQ
v →G�,knQ(A).

This map factors through

ιA :G(A)×G(A)→G�,knQ(A).

To summarise, we have obtained a global doubling homomorphism so that

• the restriction to μn×μn is given by

ιA : μn×μn → μn, (ζ1,ζ2) �→ ζ−1
1 ζ2.

• this map is a lift of the linear doubling homomorphism G(A)×G(A)→G�,knQ(A).
• this map is also compatible with the local doubling homomorphism.

The section over the rational points is also compatible with the doubling homomor-

phism.

Proposition 8.7. We have a commutative diagram

G(F )×G(F ) G(A)×G(A)

G�,knQ(F ) G�,knQ(A)
.

https://doi.org/10.1017/S1474748021000578 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000578


1962 Y. Cai

Proof. This is again a consequence of the results in Section 4.

We can also check that the cover splits over ιA(G(A)♦).

Lemma 8.8. There is a natural map G(A)→ (G×G)(A)→G�,knQ(A).

Proof. This is trivial from the local result Lemma 8.8.

Remark 8.9. An important consequence of Lemma 8.4 is that we have G×G/μ♦
n �

G×G. Given an ε-genuine representation π and an ε−1-genuine representation π′, their
tensor product descends to a representation of G×G.

We briefly explain what would happen when Lemma 8.4 does not hold. We no longer
have a homomorphism G×G→G×G. Thus, given two automorphic representations of

G(A), one cannot directly construct an automorphic representation of G×G(A). Instead,

one has to use a version of metaplectic tensor product, as in [19, 25, 26]. In this article,
we do not plan to treat such cases. Moreover, the diagonal copy might not split.

9. The twisted doubling integrals

We can now present the global twisted doubling integral.
Notation: we use notation [G] for G(F )\G(A) for a multiplicative K2-torsor of G. For

a unipotent subgroup N⊂G, let [N ] =N(F )\N(A). Recall that we always identify [N ]

with the subgroup iu([N ]) of [G].

9.1. Petersson inner product

Let π be an irreducible ε-genuine cuspidal automorphic representation of G(A) realised

on a space Vπ ⊂ L2
ε(G(F )\G(A)), where we fix an embedding π ↪→ Vπ ⊂ A(G(A)). The

contragredient representation π∨ is ε−1-genuine and is realised on the complex conjugate

Vπ of Vπ. The Petersson pairing P = Pπ : Vπ �Vπ → C is defined by

Pπ(ξ1 � ξ2) =
1

n

∫
G(F )\G(A)

ξ1(g)ξ2(g) dg.

The integrand is trivial on both μn and G(F ) and the pairing is G(A)-invariant.

The Petersson inner product admits a slightly different formula. The function ξ1 �ξ2 ∈
π� π∨ is a function on G(A)×G(A) which is trivial on μ♦

n . Thus, this descends to a

function on G×G(A), which will be denoted as ξ1 � ξ2. By Lemma 8.8, the image of

G(A) under G(A)×G(A)→G×G(A) is G(A). It is easy to check that

Pπ(ξ1 � ξ2) =

∫
G(F )\G(A)

ξ1 � ξ2((g,g)) dg.

9.2. Metaplectic restricted tensor product

We now recall the notion of meteplectic restricted tensor product. Notation: π = ⊗̃′
vπv.

We can view π as a representation of
∏′

vGv via the projection map
∏′

vGv →G(A). The
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space of the representation stays the same. Thus, we can write π as a restricted tensor
product π =⊗′

vπv, where πv is an admissible representation of Gv.

We fix isomorphisms Vπ � ⊗̃′
vπv and Vπ � ⊗̃′

vπ
∨
v .

Lemma 9.1. We can choose a standard local pairing Pπv
: πv �π∨

v → C at every local

place v in order that

Pπ(ξ) =
∏
v

Pπv
(ξv)

for all ξ =⊗vξv ∈ Vπ �Vπ, where Pπv
(ξ0,v) = 1 for almost all sv(Kv)×sv(Kv)-invariant

vectors ξ0,v ∈ πv �π∨
v used to define the restricted tensor products.

Proof. Let πv be an ε-genuine representation of Gv. The action on π∨ is given via

〈ξv,π∨
v (g)ξ

∨
v 〉= 〈πv(g

−1)ξv,ξ
∨
v 〉.

Thus, π∨
v is an ε−1-genuine representation of Gv. Recall that HomGv

(πv,πv) = C. This

implies that HomGv
(πv �π∨

v ,C) = C.

The Petersson inner product defines a G(A)-equivariant pairing on global representa-
tions

π�π∨ → C.

This (abstract) pairing is also
∏′

vGv-equivariant. One can argue as in the linear case to

prove the result (see [4] Subsection 3.5 for an analogous argument).

9.3. Eisenstein series

We now describe the Eisenstein series that appear in the global construction. Let θ be an
irreducible unitary automorphic representation of GLkmnQ,D(A) of type (knQ,m)D. We

define the normalised global induced representation I(s,θ) = Ind
G�,kmnQ (A)

P (A)
(θ · νs). Here

ν is defined as P (A)→ P (A)→M(A)→ C×.
For any holomorphic section φ̃(s) of I(s,θ), we write φ(s)(g) = φ̃(s)(g;1) to be

the value at the identity. We form the associated Eisenstein series E(φ(s)) on

G�,kmnQ(F )\G�,kmnQ(A) by

E(φ(s))(g) =
∑

γ∈P (F )\G�,kmnQ (F )

φ(s)(γg).

The Eisenstein series converges for �s� 0. By the theory of Eisenstein series, it can be

continued to a meromorphic function in s on all of C satisfying a functional equation.

We now discuss the extra invariance property in this setup. Notation: we write N•
W =

N•
W,knQ

⊂G�,kmnQ and ψ•
W = ψ•

W,knQ
for ease of notation.

Let

f (s)(g) = f
(s)
φ (g) :=

∫
[N•

W∩P ]

φ(s)(ug)ψ•
W(u) du=

∫
[N•

W∩P ]

φ̃(s)(g;u)ψ•
W(u) du.
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The pair (N•
W ∩P,ψ•

W |[N•
W∩P ]) gives a Fourier coefficient in the orbit ((knQ)

m)D and

ι(G♦) lies in the stabiliser. For fixed g, the function u �→ φ(s)(ug) on (N•
W ∩P )(A) is

an element of θ ·νs. Thus, one can view f (s)(g) as a (knQ,m)D-coefficient of an element

in θ ·νs.

Lemma 9.2. There exists a character χθ : [G]→C× such that for ι(g,g) ∈ ι(G(A)♦) and

h ∈G�,kmnQ(A),

f (s)(ι(g,g)h) = χθ(ν(g))f
(s)(h).

Proof. Recall that the homomorphism

G
♦
(A)→G(A)×G(A)→G�,kmnQ(A)

is trivial on μn and thus descends to

G♦(A)→G�,kmnQ(A).

This indeed gives a homomorphism

G♦(A)→ P (A)→M(A).

The image of G♦(A) lies in the stabiliser of the Fourier coefficient. Thus, the Fourier

coefficient is left-equivariant under a character χθ; in other words,

f (s)(ι(g,g)h) = χθ(ν(g))f
(s)(h),

for ι(g,g) ∈ ι(G(A)♦) and h ∈G�,kmnQ(A).

9.4. The global integral

We view χθ as a character of G(A) via G(A) → G(A)
χθ−→ C×, which we still denote as

χθ. We define the global integral to be

Z(ξ1 � ξ2,φ
(s)) =

1

n2

∫
[G×G]

χθ(ν(g2))
−1ξ1(g1)ξ2(g2)

×
∫

[N•
W ]

E(φ(s))(u · ι(g1,g2))ψ•
W(u) du dg1 dg2.

Since ιA(G(F )×G(F ))⊂G�,kmnQ(F ), this integral is well-defined.

Since the two cusp forms are rapidly decreasing on G(F )\G(A) and the Eisenstein series

is only of moderate growth, we see that the integral converges absolutely for all s away
from the poles of the Eisenstein series and is hence meromorphic in s.

Remark 9.3. One can easily check that the integrand as a function of G(A)×G(A), is

trivial on μn×μn and thus can be viewed as a function on G(A)×G(A). The factor 1/n2

will be cancelled out if we write Z(ξ1 � ξ2,φ
(s)) as an integral over G(A)×G(A).

Remark 9.4. Observe that the function ξ1 � ξ2 is trivial on μn and thus descends to

a function on G×G. Such functions generate an irreducible cuspidal representation of
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G×G(A), which we denote by π�π∨. In the proof of the main global identity below, we
only use the fact that π�π∨ is cuspidal.

9.5. Main global identity

We now state the main global identity.

Theorem 9.5. When �s� 0, Z(ξ1 � ξ2,φ
(s)) equals

1

n2

∫
G♦(F )\(G×G)(A)

χθ(ν(g2))
−1ξ1(g1)ξ2(g2)

×
∫

(N•
W∩P )(F )\N•

W(A)

φ(s)(u · ι(g1,g2))ψ•
W(u) du dg1 dg2.

Proof. The proof is similar to that of [5]. We will give a sketch here.

When �s� 0, the global integral becomes

Z(ξ1 � ξ2,φ
(s)) =

1

n2

∫
[G×G]

χθ(ν(g2))
−1ξ1(g1)ξ2(g2)

×
∫

[N•
W ]

∑
γ∈P (F )\G�,kmnQ (F )

φ(s)(γu · ι(g1,g2))ψ•
W(u) du dg1 dg2.

We can rewrite the integral as a sum over P (F )\G�,kmnQ(F )/ι(G×G)N•
W(F ). Our goal

is to show that only the double coset P (F )ι(G×G)N•
W(F ) supports nonzero contribution.

We first calculate the Fourier coefficient and deduce that∫
[N•

W ]

∑
γ∈P (F )\G�,kmnQ (F )

φ(s)(γu · ι(g1,g2))ψ•
W(u) du

=

∫
[N•

W ]

∑
γ∈P (F )\G�,kmnQ (F )/N•

W(F )

∑
γ′∈γ−1P (F )γ∩N(F )\N•

W(F )

φ(s)(γγ′u · ι(g1,g2))ψ•
W(u) du

=
∑

γ∈P (F )\G�,kmnQ (F )/N•
W (F )

∫
(N•

W∩γ−1Pγ)(F )\N•
W(A)

φ(s)(γu · ι(g1,g2))ψ•
W(u) du.

(13)

For each γ ∈ P (F )\G�,kmnQ(F )/N•
W(F ) and h ∈G�,kmnQ(A), we write

Iγ(h) =

∫
(N•

W∩γ−1Pγ)(F )\N•
W(A)

φ(s)(γuh)ψ•
W(u) du,

Jγ(h) =

∫
[N•

W∩γ−1Pγ]

φ(s)(γuh)ψ•
W(u) du.
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Thus,

Iγ(h) =

∫
(N•

W∩γ−1Pγ\N•
W)(A)

Jγ(uh)ψ
•
W(u) du.

Recall that in Section 7 we defined two subsets Ω1 and Ω2 of G�,kmnQ . If γ ∈Ω1, then

Jγ(h) contains the following inner integral:∫
[N•

W∩γ−1Nγ]

φ(s)(γuh)ψ•
W(u) du. (14)

Note that φ(s) is left invariant under [N ]. Thus, as a function on [N•
W ∩γ−1Nγ], φ(s)(γuh)

is a constant function. According to the definition of Ω1, the restriction of ψ•
W(u)

to [N•
W ∩ γ−1Nγ] is a nontrivial character. Therefore, (14) vanishes and so do Jγ(h)

and Iγ(h).
If γ ∈ Ω2, then (14) is constant as a function on [N•

W ∩γ−1Nγ] and Jγ(h) becomes a

Fourier coefficient of θ which is given by a pair that lies in an orbit higher than ((knQ)
m)D.

We now have Jγ(h) = 0 since θ is a representation of type (knQ,m)D. Thus, Iγ(h) = 0
as well.

Therefore, we have shown that (13) equals∑
γ∈P (F )\G̃�,kmnQ (F )/N•

W(F )

Iγ(ι(g1,g2))

and, therefore,

Z(ξ1 � ξ2,φ
(s))

=
1

n2

∫
[G×G]

χθ(ν(g2))
−1ξ1(g1)ξ2(g2)

∑
γ∈P (F )\G̃�,kmnQ (F )/N•

W(F )

Iγ(ι(g1,g2)) dg1 dg2.

We now break the sum and exchange it with integration again. This shows that the
above equation equals

1

n2

∑
γ∈P (F )\G̃�,kmnQ (F )/ι(G×G)N•

W(F )

Kγ,

where

Kγ =

∫
ι−1(γPγ−1∩ι(G×G))(F )\(G×G)(A)

χθ(ν(g1))
−1ξ1(g1)ξ2(g2)Iγ(ι(g1,g2)) dg1 dg2.

We now apply results in Proposition 7.2. The double coset P (F )\G̃�,kmnQ(F )/ι(G×
G)N•

W(F ) is finite and the only open coset is P (F )ι(G×G)N•
W(F ). For negligible double

cosets, by Propositions 7.2 and 6.8, we know

Jγ(ι(1,g2)h) = Jγ(h)
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for g2 ∈N−(A) and h ∈G�,kmnQ(A). The proof as in [5] Proposition 6.7 shows that

Iγ(ι(1,g2)h) = Iγ(h)

for g2 ∈N−(A) and h ∈G�,kmnQ(A). Here we need to use Lemma 5.2.

We conclude that for a negligible double coset, the contribution Kγ contains the inner

integral

∫
[N−]

ξ2(ug2) du.

This is zero since π∨ is cuspidal. Thus, only the main orbit has nonzero contribution. We

have arrived at

Z(ξ1 � ξ2,φ
(s)) =

1

n2

∫
G♦(F )\(G×G)(A)

χθ(ν(g2))
−1ξ1(g1)ξ2(g2)I1(ι(g1,g2)) dg1 dg2.

This proves the result.

9.6. Euler product

We can indeed rewrite Z(ξ1�ξ2,φ
(s)) as an Euler product using uniqueness of (knQ,m)D-

models for θ.

Let N◦
W =N•

W ∩N(W∇,knQ). Then for any h ∈G�,kmnQ(A),

∫
(N•

W∩P )(F )\N•
W(A)

φ(s)(u · ι(g1,g2)h)ψ•
W(u) du

=

∫
N◦

W(A)

∫
[N•

W∩P ]

φ(s)(uu′ · ι(g1,g2)h)ψ•
W(uu′) du du′

=

∫
N◦

W(A)

f (s)(u′ · ι(g1,g2)h)ψ•
W(u′) du′

=

∫
N◦

W(A)

f (s)(ι(g2,g2) ·u′ · ι(g−1
2 g1,1)h)ψ

•
W(u′) du′

= χθ(ν(g2))

∫
N◦

W (A)

f (s)(u · ι(g−1
2 g1,1)h)ψ

•
W(u) du.

Observe that we use change of variable and Lemma 5.2 in the third equality and

Lemma 9.2 in the last equality. We also use the fact that the canonical lift of N•
W(A) is
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G�,kmnQ(A)-equivariant. As a consequence, we can write Z(ξ1 � ξ2,φ
(s)) as

1

n2

∫
G♦(F )\(G×G)(A)

ξ1(g1)ξ2(g2)

∫
N◦

W(A)

f (s)(u · ι(g−1
2 g1,1))ψ

•
W(u) du dg2 dg1

=
1

n2

∫
G♦(F )\(G×G)(A)

ξ1(g2g1)ξ2(g2)

∫
N◦

W (A)

f (s)(u · ι(g1,1))ψ•
W(u) du dg2 dg1

=
1

n2

∫
G(A)

∫
[G]

ξ1(g2g1)ξ2(g2)

∫
N◦

W(A)

f (s)(u · ι(g1,1))ψ•
W(u) du dg2 dg1

=
1

n

∫
G(A)

P(π(g)ξ1 � ξ2)

∫
N◦

W(A)

f (s)(u · ι(g,1))ψ•
W(u) du dg.

For decomposable data, it follows from uniqueness of (knQ,m)D-models for θv that

f (s)(g) =
∏
v

f (s)
v (gv).

If, furthermore, ξi =⊗vξi,v, then

Z(ξ1 � ξ2,φ
(s)) =

∏
v

Zv(ξ1,v � ξ2,v,f
(s)
v ),

where

Zv(ξ1,v � ξ2,v,f
(s)
v ) =

1

n

∫
Gv

Pv(π(g)ξ1,v � ξ2,v)

∫
N◦

W

f (s)
v (u · ι(g,1))ψ•

W(u) du dg.

10. BD data of pullback

The goal in this section is to prove the unproven results in Section 8.

10.1. Results

Let G be one of the following groups:

(1) Sp(W ) or its inner forms;

(2) SO(W ) with dimW even or its inner forms;

(3) SO(W ) with dimW odd and dimW ≥ 3;

(4) U(W ).

Observe that over Fs, we have to consider the following groups: Sp2m,SO2m,SO2m+1

and GLm.
Let G ∈ CExt(G,K2) with BD data (Q,E,f). For simplicity, we write G� := G�,1.

Recall that in the unitary group case, we assume that the quadratic form Q in the BD

data is decomposable.
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Definition 10.1. We define the subcategory

CExt(G,K2)
Δ ⊂CExt(G,K2)×CExt(G,K2)

as follows: a pair (G,G
′
) is in the subcategory if and only if G

′
is isomorphic to G.

Definition 10.2. We define the subcategory

CExt(G,K2)
� ⊂CExt(G,K2)×CExt(G,K2)

as follows: a pair (G
′
,G) is in the subcategory if and only if G

′
is isomorphic to the

pushout of G by the map [2k−1].

Definition 10.3. We define the subcategory

CExt(G�,K2)
Δ

of CExt(G�,K2)× ·· · ×CExt(G�,K2) as follows: an object (G�
1 , · · · ,G�

k ) is in the

subcategory if and only if the multiplicative K2-torsors G�
1 , · · · ,G�

k are isomorphic.

Proposition 10.4. Let G� ∈ CExt(G�,K2). The pullback of G� via the doubling

homomorphism ι :G×G→G� gives two multiplicative K2-torsors on G:

1→K2 →G1 → ι(1×G)→ 1

and

1→K2 →G2 → ι(G×1)→ 1.

Then the resulting functor

CExt(G�,K2)→CExt(G,K2)×CExt(G,K2)

is essentially surjective on CExt(G,K2)
Δ.

Proposition 10.5. The pullback via the homomorphism G� ×·· ·×G� →G�,k gives a
functor

CExt(G�,k,K2)→CExt(G�,K2)×·· ·×CExt(G�,K2).

Here, both G� and CExt(G�,K2) appear k times. This functor is essentially surjective

on CExt(G�,K2)
Δ.

With the above two propositions, we deduce the following fact.

Corollary 10.6. The functor induced by the doubling isomorphism

CExt(G�,k,K2)→CExt(G,K2)×CExt(G,K2)

is essentially surjective on CExt(G×G,K2)
�.

Proof. We first consider

G×G→G×·· ·×G, (g1,g2) �→ (g1,g2,g1,g1, · · · ,g1,g1).
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Here the target has 2k copies of G. Then we can write ι : G×G → G�,k as the

composition of

G×G→G×·· ·×G→G� ×·· ·×G� →G�,k. (15)

By Propositions 10.4 and 10.5, we can find G�,k so that its pullbacks to each G under
the map

G×·· ·×G→G�,k

are all isomorphic to G. Thus, G�,k pulls back to G for the second copy of G in ι :

G×G→G�,k.
We now consider the pullback to the first copy. Then (15) restricts to

G×{1}→G×{1}×G×G×·· ·×G→G� ×G� ×·· ·×G� →G�,k.

We temporarily focus on the second map. By Lemma 3.3, the copies of G commute in

G�,k, which gives a homomorphism

G×{1}×G×G · · ·×G→G�,k.

The multiplicative K2-torsor G×{1}×G×G×·· ·×G obtained by pulling pack along

G×{1}×G×G×·· ·×G→G�,k

is isomorphic to the pushout of G×{1}×G×G×·· ·×G via the product map K2×·· ·×
K2 →K2.

Finally, to obtain the pullback to the first copy of G from G�,k, we need to pull back
G×{1}×G×G×·· ·×G via the diagonal map

G→G×{1}×G×G×·· ·×G, g1 �→ (g1,1,g1,g1, · · · ,g1).

It follows from the definition that G
�
is the Baer sum of 2k−1 copies of G.

Proposition 10.7. In the case of unitary groups, we assume that the quadratic form Q

is decomposable. For the multiplicative K2-torsor G�,k on G�,k given by Corollary 10.6,

G and G
�
commute in G�,k.

Proof. This follows from Lemma 3.3 and a simple calculation on the quadratic form. See

also the details in all of the cases.

The proof of Proposition 10.5 is similar to (and easier than) Proposition 10.4. So we

will only give the details in the latter case. The proof of Proposition 10.4 will be given
case by case in the rest of this section.

10.2. Strategy of the proofs

In this section, we explain the strategy of the proof of Proposition 10.4 and set up some
notation that is commonly used.

Let T be a maximal F -torus of G. Then ι(T×T)⊂ ι(G×G) is an F -torus of G�. Let
T� ⊃ ι(T×T) be a maximal F -torus of G�. Note that T� = ι(T×T) except in the case
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of odd SO(W ). Observe that this is not a maximal F -torus in P(WΔ) but only up to a

conjugation over Fs. We still use this nonsplit torus even if G� might be a split group

over F.
The torus T splits over Fs. Let Y be the cocharacter lattice of T over Fs. Let Y

� be

the cocharacter lattice of T� over Fs. Then Y � ⊃ Y ⊕Y . We first fix a Chevalley system

of pinning for (GFs
,TFs

) and then choose one for (G�
Fs
,T�

Fs
) which is compatible with

ι :G×G→G�.
Notation: the BD data for G are denoted (Q,E,f); to distinguish the BD data for the

two copies of G, we use (Q+,E+,f+) and (Q−,E−,f−) when needed. The BD data for G
�

are denoted (Q�,E�,f�).

Definition 10.8. We define the subcategory

BD(G,T)Δ ⊂BD(G,T)×BD(G,T)

as follows: the pair of triples (Q,E,f) and (Q′,E ′,f ′) is in the subcategory if and only if
(Q,E,f) is isomorphic to (Q′,E ′,f ′).

It is easy to see that Proposition 10.4 is equivalent to the following result.

Proposition 10.9. The functor induced by pulling back via G×G→G�

BD(G�,T�)→BD(G,T)×BD(G,T)

is essentially surjective on BD(G,T)Δ.

We will prove this result case by case.

10.3. A useful lemma

Given an exact sequence

1→ F×
s →E → Y → 1,

we can push out the direct sum of two copies via the product map pr : F×
s ×F×

s → F×
s

to obtain

1→ F×
s → pr∗(E ⊕E)→ Y ⊕Y → 1.

We now give a useful criterion to compare elements in pr∗(E ⊕E). Recall that

pr∗(E ⊕E) = F×
s × (E ⊕E)/〈(x1x2,x

−1
1 ,x−1

2 ) : (x1,x2) ∈ F×
s ×F×

s 〉.

Define

mul : F×
s × (E ⊕E)→E, (x,e1,e2) �→ xe1e2.

This gives a well-defined map mul : pr∗(E ⊕E)→E .

Lemma 10.10. Let (x,e1,e2) and (x′,e′1,e
′
2) be two elements in F×

s × (E ⊕E). They have

the same image in pr∗(E ⊕E) if and only if (e1,e2) and (e′1,e
′
2) have the same image in

Y ⊕Y and mul(x,e1,e2) = mul(x′,e′1,e
′
2).
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Proof. The ‘only if’ part is trivial. We now prove the ‘if’ part. If (e1,e2) and

(e′1,e
′
2) have the same image in Y ⊕Y , then (e′1,e

′
2) = (e1y1,e2y2) for some y1,y2 ∈ F×

s .

The condition mul(x,e1,e2) = mul(x′,e′1,e
′
2) implies that x = x′y1y2. This shows that

(x′,e′1,e
′
2) = (xy−1

1 y−1
2 ,e1y1,e2y2). The proof is complete.

10.4. Symplectic groups

We now discuss the case of symplectic groups or their inner forms. This is probably the

easiest case sinceG is simply connected. A multiplicativeK2-torsorG onG is determined

by a Galois invariant Weyl group invariant quadratic form Q on Y. In [27] Proposition

3.15, it is shown that for every integer a, there is a unique such quadratic form on Y such
that its value on a short coroot is a. In other words, we have an equivalence of categories

CExt(G,K2)→BD(G,T)→ Z,

where the last functor sends a quadratic form to its value on a short coroot.

The torus T×T is a maximal F -torus of G�, so T� =T×T. The cocharacter lattice

of T� over Fs is Y � = Y ⊕Y . The functor

CExt(G�,K2)→CExt(G,K2)×CExt(G,K2)

can be described in terms of

BD(G�,T�)→BD(G,T)×BD(G,T).

In terms of Z→ Z×Z, it is simply a �→ (a,a). Proposition 10.9 follows trivially.

10.5. Special even orthogonal groups and inner forms

We now consider the case of special even orthogonal groups. We start with some basic
results.

10.5.1. Preparation. Let n= (d ·dimDW )/2. (The results in this section only involve
multiplicative K2-torsors. This n has no relation with the degree of the cover. It will not

cause any confusion.) We choose a standard basis of Y = Zn = Span{e∨1 , · · · ,e∨n} so that

the root lattice is given by

Y sc = Span{α∨
1 , · · · ,α∨

n}= Span{e∨1 − e∨2 , · · · ,e∨n−1− e∨n,e
∨
n−1+ e∨n}.

Note that Y sc is a sublattice of Y with index 2. A W -invariant quadratic form Q is
determined by its value on a coroot. Let Q(α∨

1 ) = a.

Lemma 10.11. We have 2 | a.

Proof. We know that Q(α∨
n−1) =Q(α∨

n) = a. Let Q(e∨n) = b ∈ Z. As Q(2e∨n) =Q(α∨
n−1)+

Q(α∨
n), we have 4b= 2a. This implies 2 | a.
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The torus T� =T×T is a maximal F -torus of G�. Its cocharacter lattice over Fs is

Y � = Y+⊕Y−. We write

Y sc
+ = Span{e∨1 − e∨2 , · · · ,e∨n−1− e∨n,e

∨
n−1+ e∨n}

Y sc
− = Span{e∨n+1− e∨n+2, · · · ,e∨2n−1− e∨2n,e

∨
2n−1+ e∨2n}

Y �,sc = Span{e∨1 − e∨2 , · · · ,e∨2n−1− e∨2n,e
∨
2n−1+ e∨2n}.

Thus, Y sc
+ ⊕Y sc

− is a subgroup of Y �,sc of index 2 and e∨1 − e∨n+1 /∈ Y sc
+ ⊕Y sc

− .
Let Q� be a W -invariant quadratic form on Y �.

Lemma 10.12. The restriction of Q� to Y+⊕Y− is a direct sum of two quadratic forms

Q+⊕Q− with Q+ =Q−. In particular, we have

BQ�((y+,0),(0,y−)) = 0

for y+ ∈ Y+ and y− ∈ Y−.
Conversely, for a W-invariant quadratic form Q on Y, there is a unique W-invariant

quadratic form Q� which restricts to Q+⊕Q− on Y+⊕Y−.

Proof. The proof is straightforward.

10.5.2. Construction of BD data. Let G be a multiplicative K2-torsor on G with

BD data (Q,E,f). We use it to construct a Galois equivariant triple (Q�,E�,f�).
Let Q be a Galois invariant W -invariant quadratic form on Y. Define Q� =Q⊕Q to be

a quadratic form on Y � = Y ⊕Y . This is a W -invariant quadratic form and thus Galois

invariant from the proof of [27] Proposition 3.15.

Second, from the exact sequence for E , we form the exact sequence

1→ F×
s ⊕F×

s →E⊕E → Y ⊕Y = Y � → 1.

We push it out via the product map pr : F×
s ⊕F×

s → F×
s to obtain

1 F×
s ⊕F×

s E ⊕E Y ⊕Y 1

1 F×
s pr∗(E ⊕E) Y � 1

The commutator map of the bottom exact sequence is given by [y1,y2] = (−1)
B

Q� (y1,y2).

Set E� := pr∗(E ⊕E). The bottom exact sequence will be the second BD invariant for
G�.
We also have a natural map pr∗(f ⊕f) : pr∗(EQsc ⊕EQsc)→ pr∗(E ⊕E) which fits into

1 F×
s pr∗(EQsc ⊕EQsc) Y sc⊕Y sc 1

1 F×
s pr∗(E ⊕E) Y � 1
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Let Gsc = Spin2n →G= SO2n. The multiplicative K2-torsor of Spin2n is determined
by a quadratic form Y = Y sc, which is determined by its values on any simple coroots.

From the map

Spin2n×Spin2n → Spin4n,

we obtain the following commutative diagram:

1 F×
s ⊕F×

s EQsc ⊕EQsc Y sc
+ ⊕Y sc

− 1

1 F×
s

EQ�,sc Y �,sc 1
,

where the first vertical map is given by multiplication. By our choice of Chevelley system

of épinglage, under the second vertical map, the image of sQsc
±
(α∨) is sQ�,sc(α∨) for a root

α in Y sc
± . This commutative diagram factors through pushing out by pr : F×

s ⊕F×
s → F×

s

and we have the following commutative diagram:

1 F×
s pr∗(EQsc ⊕EQsc) Y sc

+ ⊕Y sc
− 1

1 F×
s

EQ�,sc Y �,sc 1
.

We now want to construct the third BD invariant. That is, we need to construct a map

1 F×
s

EQ�,sc Y �,sc 1

1 F×
s pr∗(E ⊕E) Y � 1

in which the middle map f� extends pr∗(EQsc ⊕EQsc) → pr∗(E ⊕ E). We also use the
notation f+ to denote the map

EQsc
e �→(e,1)−−−−−→ EQsc ⊕EQsc → pr∗(EQsc ⊕EQsc)→ pr∗(E ⊕E).

Similarly, we define f−.
The map f� is determined by its images on {sQ�,sc(α∨) | α∨ ∈Δ∨

G�}. Since we require
that

f�(sQ�,sc(α∨)) = f±(sQsc
±
(α∨))

for a root α in Y sc
± , this trivially determines f� by f+⊕f− except f�(sQ�,sc(e∨n−e∨n+1)).

We have to choose this value so that

f�(sQ�,sc(e∨n−1+ e∨n)) = f+(sQsc(e∨n−1+ e∨n)).
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We find that it would be slightly more convenient to work with the following setup: we
choose f�(sQ�,sc(e∨1 − e∨n+1)) so that

f�(sQ�,sc(e∨1 + e∨2 )) = f+(sQsc(e∨1 + e∨2 )).

Lemma 10.13. If we choose f�(sQ�,sc(e∨1 − e∨n+1)) as the unique element such that its

projection to Y ⊕Y is e∨1 −e∨n+1 and mul(f�(sQ�,sc(e∨1 −e∨n+1))) = 1, then f�(sQ�,sc(e∨1 +

e∨2 )) = f+(sQsc(e∨1 + e∨2 )). In other words, f� is an extension of f ⊕f .

Proof. Recall that

e∨1 + e∨2 = (e∨2 − e∨1 )+(e∨1 − e∨n+1)+(e∨n+1− e∨n+2)+(e∨n+1+ e∨n+2)+(e∨1 − e∨n+1).

This decomposition satisfies the condition (∗) in (4). By Lemma 2.6 (note that 2 |Q(α∨)),

sQ�,sc(e∨1 + e∨2 ) = sQ�,sc(e∨1 − e∨n+1)sQ�,sc(e∨n+1+ e∨n+2)sQ�,sc(e∨n+1− e∨n+2)

×sQ�,sc(e∨1 − e∨n+1)sQ�,sc(e∨2 − e∨1 ).

This implies that f�(sQ�,sc(e∨1 + e∨2 )) =

f�(sQ�,sc(e∨1 − e∨n+1))f
�(sQ�,sc(e∨n+1+ e∨n+2))f

�(sQ�,sc(e∨n+1− e∨n+2))

×f�(sQ�,sc(e∨1 − e∨n+1))f
�(sQ�,sc(e∨2 − e∨1 ))

or

f�(sQ�,sc(e∨1 − e∨n+1))f−(sQsc(e∨n+1+ e∨n+2))f−(sQsc(e∨n+1− e∨n+2))

×f�(sQ�,sc(e∨1 − e∨n+1))f+(sQsc(e∨2 − e∨1 )).

We now calculate its image under mul. We observe that

mul

(
f−(sQsc(e∨n+1− e∨n+2))f−(sQsc(e∨n+1+ e∨n+2))

f+(sQsc(e∨1 − e∨2 ))f+(sQsc(e∨1 + e∨2 ))

)
= 1.

From our choice of f�(sQ�,sc(e∨1 − e∨n+1)),

mul(f�(sQ�,sc(e∨1 − e∨n+1))) = 1.

Using these two facts, together with Lemma 2.5 part (2), we deduce that

mul(f�(sQ�,sc(e∨1 + e∨2 ))) = mul(f+(sQsc(e∨1 + e∨2 ))).

By Lemma 10.10, this shows that

f�(sQ�,sc(e∨1 + e∨2 )) = f+(sQsc(e∨1 + e∨2 )).

This completes the proof.

Remark 10.14. It seems that the choice of f�(sQ�,sc(e∨1 −e∨n+1)) is quite delicate, but

it is not hard to see that this is almost the only choice. In the next section, we will show

that f� is also Galois invariant by carefully analyzing the Galois action on E .
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10.5.3. Digression on the Chevalley system. To show that f� is Γ-equivariant,

we need to have some understanding of the Galois action on EQ�,sc . The Galois action on

EQ�,sc comes from the (possibly nonsplit) maximal F -torus T�,sc. We still denote this

action as σ. We now would like to understand σ(sQ�,sc(e∨1 − e∨n+1)) for σ ∈ Γ.

We start with some general facts about reductive groups over Fs. Let Aut(GFs
) be the

automorphism group of GFs
. Let Inn(GFs

) denote the subgroup of inner automorphisms.

Let τ ∈ Aut(GFs
). Let (B,T) be a choice of Borel subgroup and maximal torus which

gives a based root datum (X,Φ,Δ;Y ,Φ∨,Δ∨). Then there exists gτ ∈ G(Fs) such that
Int(gτ )(τB) =B and Int(gτ )(τTFs

) = TFs
. This induces an automorphism of Δ. There

is a split exact sequence

1→ Inn(GFs
)→Aut(GFs

)→Aut(Δ)→ 1.

A splitting of this exact sequence is determined by a choice of xα :Ga �Uα for α ∈Δ.

We first would like to understand the action of Γ on the root subgroup xe1−en+1
:

Gm �Ue1−en+1
→G�,sc. Note that G�,sc →G� restricts to an isomorphism on the root

subgroup Ue1−en+1
. We will use the same notation for both root subgroups. It is sufficient

to understand the action of Γ on xe1−en+1
:Gm �Ue1−en+1

→G�.
To have good control on this, we have to relate the Galois action on G×G and G�.

(We can also argue directly for Gsc×Gsc and G�,sc.)
Recall that G is a subgroup of GLW ;D. Fix an isomorphism D⊗F Fs �M2(Fs). Put

z =

(
1 0

0 0

)
∈ M2(Fs) and set Wz := z(W ⊗F Fs). The restriction g �→ g|Wz

gives an

isomorphism of GLW ;D(Fs) onto the group GLWz
(Fs).

Let 〈 , 〉z be the restriction of 〈 , 〉 on Wz. Then 〈 , 〉z is an Fs-bilinear mapping
with value in the 1-dimensional Fs-vector space zDzρ and it is nondegenerate and has

the opposite symmetry as 〈 , 〉 under interchange of the two variables. The restriction

g �→ g|Wz
gives an isomorphism of GFs

onto the group Gz :=G(Wz,〈 , 〉z). Let Tz be the

image of T in Gz.
To summarise, we can identify the commutative diagram

GFs
×GFs G�

Fs

GLW ;D,Fs
×GLW ;D,Fs

GLW�;D,Fs

with

Gz ×Gz G�
z

GLWz ;Fs
×GLWz ;Fs

GLW�
z ;Fs
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Let G be the F -split group with a maximal split torus T so that the root system of
(G,T) is the same as the root system of (GFs

,TFs
). The group GLWz ;Fs

is split and

has an F -structure GLWz ;F . We realise G as a subgroup of GLWz ;F . Then there exists

h ∈GLWz
(Fs) such that

h ·Gz(Fs) ·h−1 =G(Fs), h ·Tz(Fs) ·h−1 = T(Fs).

From this we can transfer the based root datum for (G,T) to a based root datum of

(G,T). Thus, we obtain a basis of YG from a basis of Y. We write it as (e1, · · · ,en).
The action of Γ on (G,T) gives an action of Γ on (G,T):

G(Fs)→G(Fs), g �→ σ̃(g) := Int(h)◦σ ◦ Int(h−1)(g).

The map σ† := σ−1 ◦ (Int(h) ◦ σ ◦ Int(h−1)) ∈ Aut(GFs
). It is easy to see that σ† =

Int(σ(h)h−1). The element σ† induces an action on the root system of (G,T), which

we again denote as σ†. Then there exists a lift wσ of a Weyl group element wσ of (G,T)

such that wσ(σ
†(Δ)) = Δ.

A Chevalley system for (Gz,Tz) can also be translated to a Chevalley system for (G,T).

The action of σ on the root system of (Gz,Tz) and the pinning can be read from the

action of σ† on (G,T).
We write the action down more explicitly. Let y : Gm → Tz be a cocharacter of Tz.

Then the action of σ on y is given by

Gm →Gm →Tz →Tz, t �→ σ−1(t) �→ y(σ−1(t)) �→ σ(y(σ−1(t))).

Let xα :Ga →U be a root subgroup. Then the action of σ on α is given by

Ga →Ga →UFs
→UFs

, t �→ σ−1(t) �→ xα(σ
−1(t)) �→ σ(xα(σ

−1(t))).

When transferring this action to (G,T), these actions are given by the following:

• y :Gm → T is sent to the element σ†(y), defined as

Gm → T, t �→ σ̃(y(σ−1(t))).

• xα :Ga → U is sent to xσ†(α), defined as

Ga → U, t �→ σ̃(xα(σ
−1(t))).

In this way, a based root datum for (G,T) determines one for (G,T).

The group G is the connected component of some orthogonal group O2n. It is not hard

to check that σ(h)h−1 ∈ O2n(Fs). As a consequence, the automorphism of the Dynkin
diagram given by wσ ◦σ† is either the identity or the isomorphism permuting en−1−en
and en−1+en. (In other words, triality does not appear in the case of D4.) In either case,

this isomorphism can be realised by the conjugation given by a lift τσ of a Weyl group
element in GLWz

.

We now have two different pinnings for (G,T). The first is xα : Ga → U which is

translated from (G,T). The other is Int(τσwσ) ◦xσ†(α). They might not be the same.
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But we can choose tσ ∈ T(Fs) such that

Int(tστσwσ)◦xσ†(α) = xα, α ∈Δ.

This implies that σ† = Int(w−1
σ τ−1

σ t−1
σ ).

10.5.4. The action on G�. We now have that

ι(h,h) ·T�(Fs) · ι(h,h)−1 ⊂ ι(h,h) ·G�(Fs) · ι(h,h)−1

is T�(Fs)⊂G�(Fs) for a maximal split torus T� inside a split group G�. As in the case

of G, here we realise G�(Fs)⊂GLW�
z
(Fs). We can read the Galois action on (G�,T�)

from

σ† = Int(ι(σ(h)h−1,σ(h)h−1)) ∈Aut(G�(Fs)).

This map preserves T�(Fs). From our discussion above, we know that

Int(ι(σ(h)h−1,σ(h)h−1)) = Int(ι(w−1
σ τ−1

σ t−1
σ ,w−1

σ τ−1
σ t−1

σ )).

Lemma 10.15. For any σ ∈ Γ,

σ† ◦xe1−en+1
= Int(ι(w−1

σ ,w−1
σ ))◦xe1−en+1

.

Proof. It is easy to check that Int(ι(t−1
σ ,t−1

σ )) acts trivially on xe1−en+1
. Moreover,

Int(ι(τ−1
σ ,τ−1

σ )) acts trivially on xe1−en+1
as well. This completes the proof.

We translate the above lemma back to the case of (G,T). We deduce that σ(xe1−en+1
) =

w̃σ ◦xe1−en+1
for some lift w̃σ of a Weyl group element w̃σ for (G�,T�). In other words,

the Galois action on e1− en+1 is the same as the action by some Weyl group element.

Lemma 10.16. For any σ ∈ Γ,

σ(sQ�,sc(e∨1 − e∨n+1)) = w̃σ ·sQ�,sc(e∨1 − e∨n+1) · w̃−1
σ = sQ�,sc(w̃σ(e

∨
1 − e∨n+1)).

Proof. This follows from Lemma 2.4 and the discussion above. Note that from Lemma

10.11, we always have ε
Q(β∨)
α,β = 1.

Lemma 10.17. For σ ∈ Γ, there exists i and a sign such that σ(e1−en+1) is of the form

±(ei− en+i).

Proof. Suppose σ(e1) =
∑

j ajej for some aj ∈ Z. Since the action of σ is the same for

both copies of G, we have σ(en+1) =
∑

j ajen+j . We know

σ(e1− en+1) =
∑
j

aj(ej − en+j)

must be a root of G�. Thus, it must be of the form ±(ei− en+i).

Lemma 10.18. If σ(e1− en+1) = ei− en+i for some i, then

σ(sQ�,sc(e∨1 − e∨n+1))/sQ�,sc(e∨1 − e∨n+1) ∈ pr∗(EQsc ⊕EQsc),
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and

mul(σ(sQ�,sc(e∨1 − e∨n+1))/sQ�,sc(e∨1 − e∨n+1)) = 1.

Proof. The first statement is straightforward. Using

(e∨i − e∨n+i)+(e∨1 − e∨i ) = (e∨1 − e∨n+1)+(e∨n+1− e∨n+i)

and Lemma 2.6, we have

sQ�,sc(e∨i − e∨n+i) ·sQ�,sc(e∨1 − e∨i ) = sQ�,sc(e∨1 − e∨n+1) ·sQ�,sc(e∨n+1− e∨n+i).

Now the result follows the fact that mul(sQ�,sc(e∨1 − e∨i )/sQ�,sc(e∨n+1− e∨n+i)) = 1.

10.5.5. Galois equivariance. We are now ready to prove that f� is Galois equivari-
ant.

Proposition 10.19. We have that

f�(σ(sQ�,sc(α∨))) = σ(f�(sQ�,sc(α∨))) (16)

for α∨ ∈Δ∨
G� and σ ∈ Γ.

Proof. The only nontrivial case is α∨ = e∨1 − e∨n+1.

Both sides in (16) project to σ(α∨). Thus, to show (16), it suffices to show that they
are the same under the map mul. It is easy to show that for any σ ∈ Γ,

mul(σ(f�(sQ�,sc(e∨1 − e∨n+1))) = 1.

We now calculate mul(f�(σ(sQ�,sc(e∨1 −e∨n+1)))). We have three cases to consider. First,

if σ(e∨1 − e∨n+1) = w̃σ(e
∨
1 − e∨n+1) =−(e∨1 − e∨n+1), then by Lemmas 2.5 and 10.16,

σ(sQ�,sc(e∨1 − e∨n+1)) = sQ�,sc(w̃σ(e
∨
1 − e∨n+1))

= sQ�,sc(−(e∨1 − e∨n+1)) = sQ�,sc(e∨1 − e∨n+1)
−1,

and this implies that mul(f�(σ(sQ�,sc(e∨1 − e∨n+1)))) = 1.

We now assume that σ(e1− en+1) = ei− en+i for some i. Then by Lemma 10.18 and

our choice of f�(sQ�,sc(e∨1 − e∨n+1)),

mul(f�(σ(sQ�,sc(e∨1 − e∨n+1))) = mul(f�(sQ�,sc(e∨1 − e∨n+1))) = 1.

Finally, we have to consider the case σ(e1− en+1) = −(ei− en+i) for some i �= 1. This

can be proved by combining arguments in the previous two cases. This completes the

proof.

10.6. Unitary groups

We now consider the unitary group case. Recall thatGFs
=GLn,Fs

. We choose a standard

basis of TFs
so that Y = Span{e∨1 , · · · ,e∨n} with the following set of simple roots:

{e∨1 − e∨2 , · · · ,e∨n−1− e∨n}.
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Let Q be a Weyl invariant quadratic form on Y. Then Q is determined by the following
two integers p and q :

BQ(e
∨
i ,e

∨
i ) = 2p, BQ(e

∨
i ,e

∨
j ) = q for i �= j.

Then for any coroot α∨, Q(α∨) = 2p− q. Since we assume that Q is decomposable, we
have q = 0.

The group G� has a maximal F -torus T� := T×T. The cocharacter lattice of T�

over Fs is Y � = Y ⊕ Y . We choose standard basis so that Y+ = Span{e∨1 , · · · ,e∨n} and

Y− = Span{e∨n+1, · · · ,e∨2n}. The choice of simple roots is given as above. We choose the
following set of simple roots for G�:

{e∨1 − e∨2 , · · · ,e∨2n−1− e∨2n}.

Since we assume that q = 0, Q� is a direct sum Q⊕Q on Y ⊕Y .

10.6.1. Construction of BD data. Let (Q,E,f) be the Galois equivariant BD data

for G. We now construct a Galois invariant BD data (Q�,E�,f�) for G�.
Given a quadratic form Q on Y which is determined by an integer p as above, we define

Q� :=Q⊕Q. The quadratic form is Weyl invariant and Galois invariant.

Remark 10.20. If q �= 0, the quadratic form Q⊕Q on Y ⊕Y is not W -invariant. We

have to choose a different one. The argument in the rest of section will require some
modification in order to handle this case.

We can again take the direct sum of two copies of E and push it out via the multiplication

map to obtain

1→ F×
s → pr∗(E ⊕E)→ Y � → 1.

The commutator is [y1,y2] = (−1)
B

Q� (y1,y2). We take E� = pr∗(E ⊕E), and this is the
second BD invariant.

We can now proceed as in the case of even orthogonal groups. We will not repeat the

definitions of these notations here. We now have to define f� : EQ�,sc → pr∗(E ⊕E) such
that its composition with the map pr∗(EQsc ⊕EQsc)→EQ�,sc gives

f+⊕f− : pr∗(EQsc ⊕EQsc)→ pr∗(E ⊕E).

The map is already determined on the image of pr∗(EQsc ⊕EQsc) in EQ�,sc . One only has

to determine f�(sQ�,sc(e∨n − e∨n+1)) so that the map is Galois equivariant.

10.6.2. Galois equivariance. We can verify Galois equivariance using the argument

in Subsection 10.5.5. Here we give another proof using Hilbert’s Theorem 90. We would

like to show that there exists f�(sQ�,sc(e∨n − e∨n+1)) such that

f�(σ(sQ�,sc(e∨n − e∨n+1))) = σ(f�(sQ�,sc(e∨n − e∨n+1)))

for all σ ∈ Γ.
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For ease of notation, we write a= sQ�,sc(e∨n−e∨n+1). We take an arbitrary f� and define

a function c : Γ→ F×
s as follows:

c(σ) =
f�(σ(a))
σ(f�(a))

.

We show that c is a 1-cocycle. In other words, we prove the following result.

Lemma 10.21. For any σ1,σ2 ∈ Γ,

c(σ1σ2) = f(σ1) ·σ1(f(σ2)).

Proof. We write

c(σ1σ2) =
f�(σ1σ2(a))

σ1σ2(f�(a))
=

f�(σ1σ2(a))

σ1(f�(σ2(a)))
· σ1(f

�(σ2(a)))

σ1σ2(f�(a))
.

It suffices to show that

f�(σ1σ2(a))

σ1(f�(σ2(a)))
=

f�(σ1(a))

σ1(f�(a))
or

f�(σ1σ2(a))

f�(σ1(a))
=

σ1(f
�(σ2(a)))

σ1(f�(a))
.

Note that σ2(a)/a projects to Y sc⊕Y sc. Thus, the left-hand side is

f�(σ1(σ2(a)/a)) = σ1(f
�(σ2(a)/a)).

This proves the result.

Hilbert’s Theorem 90 says that H1(Γ,F×
s ) = 1. In other words, a 1-cocycle must be a

coboundary. This means that there exists x ∈ F×
s such that c(σ) = σ(x)/x.

We now define

f̃�(a) = f�(a)x.

Then

f̃�(σ(a)) = f�(σ(a))x= σ(f�(a))c(σ) ·x= σ(f�(a))σ(x) = σ(f̃�(a)).

This implies that f̃� is Γ-equivariant.

10.7. Special odd orthogonal groups

We now treat the case of G = SO2n+1. We first begin with some discussion of the BD

data. We can write Y = Span{e∨1 , · · · ,e∨n} and let

{e∨1 − e∨2 , · · · ,e∨n−1− e∨n,2e
∨
n}

be the coroots of SO2n+1. A W -invariant quadratic form Q on Y is determined by its

value on a short coroot. Let Q(α∨
1 ) = a. As in the even orthogonal case, we can similarly

prove the following.
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Lemma 10.22. We have that 2 | a.

Observe that T×T is an F -torus in G� but not a maximal torus. Let T� ⊃T×T be

a maximal F -torus of G�.
We write Y+ = Span{e∨1 , · · · ,e∨n}, Y− = Span{e∨n+1, · · · ,e∨2n}. We have

Y sc
+ = Span{e∨1 − e∨2 , · · · ,e∨n−1− e∨n,2e

∨
n}

Y sc
− = Span{e∨n+1− e∨n+2, · · · ,e∨2n−1− e∨2n,2e

∨
2n}

Y �,sc = Span{e∨1 − e∨2 , · · · ,e∨2n− e∨2n+1,e
∨
2n+ e∨2n+1}.

Let Q� be W -invariant quadratic form on Y �.

Lemma 10.23. The restriction of Q� to Y+⊕Y− is a direct sum of two quadratic forms
Q+⊕Q−. And we have Q+ =Q−.
Conversely, given Q = Q+ = Q−, there is a unique W-invariant quadratic form Q�

which restricts to Q+⊕Q− on Y+⊕Y−.

Proof. This is straightforward.

Let G be a multiplicative K2-torsor on G with BD data (Q,E,f). We now construct

a BD data (Q�,E�,f�) for G�. We only explain the difference in this case but will not
repeat all of the details.

The construction of Q� is straightforward since such a quadratic form is determined

by its values on its short coroot.
We now define the second BD invariant. Note that Y �/Y ⊕Y = Z ·e∨2n+1. Consider

E ⊕E ⊕ (F×
s ×Z)

with the following multiplication:

(e1,e2,(x,a)) · (e′1,e′2,(x′,a′)) := (e1e
′
1,e2e

′
2,(xx

′(−1)
B

Q� ((y1,y2),a
′·e∨2n+1),a+a′)).

Here, (y1,y2) is the image of (e1,e2) under E → Y . This defines an exact sequence

1→ F×
s ⊕F×

s ⊕F×
s →E⊕E ⊕ (F×

s ×Z)→ Y � = Y ⊕Y ⊕Z ·e∨2n+1 → 1.

Pushing out by the product map pr : F×
s ⊕F×

s ⊕F×
s → F×

s gives

1→ F×
s →E� → Y � → 1.

One can verify that the commutator map is given by (−1)
B

Q� (y1,y2). We also have a
commutative diagram

1 F×
s pr∗(EQsc ⊕EQsc) Y sc⊕Y sc 1

1 F×
s E� Y � 1
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To construct the third BD invariant, one has to construct f� : EQ�,sc → E� which

extends the map pr∗(EQsc ⊕EQsc)→E�. We only have to specify the values

f�(sQ�,sc(e∨1 − e∨n+1)) and f�(sQ�,sc(e∨2n− e∨2n+1))

so that f� is Galois equivariant. To choose the first value, we use the argument presented

in the SO2n case. The choice for the second value is identical to the unitary case. This
completes the proof.

11. L-functions

So far we only give a global zeta integral which represents an Euler product but have not

said anything regarding the L-functions obtained from the twisted doubling integrals. The
construction relies on the construction of representations of type (k,m)D. In the linear

case, a good source of such representations is the generalised Speh representations. Here

we present a conjectural picture. Further investigations are necessary in order to gain a

complete understanding of the local and global theory.
We make a couple of assumptions to simplify the situation in our discussion. We

assume that D = F , so that only the group GLm will be involved. We also assume

that the quadratic form Q appearing in the BD data is decomposable. So we will not
have any problems regarding parabolic induction. As we pointed out earlier, to treat the

nondecomposable case, we need to have a suitable version of ‘metaplectic tensor product’.

Fix an integer p. This determines a W -invariant decomposable quadratic form on the
cocharacter lattice for every GLm. Let nQ = n/gcd(n,Q(α∨)) for any α∨ ∈Δ∨ if m≥ 2

and nQ = n/gcd(n,2a) for a = Q(e∨1 ) and m = 1. The twisted doubling integral relies

on the following construction of the inducing data in the Eisenstein series. To be more

precise, we would like to have

τ ∈ Irrucusp(GLk(A))→ θ(n)(τ,m) ∈ Irru(GL
(n)

kmnQ
(A)). (17)

For every local place v, the local analog is given by

τv ∈ Irrugen(GLk,v)→ θ(n)(τv,m) ∈ Irru(GL
(n)

kmnQ,v).

Here, the superscript u means that only unitary representations are considered and the

subscript gen means generic representations.

We expect the following list of properties:

• The construction is local-to-global compatible: θ(n)(τ,m) = ⊗′
vθ

(n)(τv,m) if τ =
⊗′

vτv.
• The representation θ(n)(τ,m) is of type (knQ,m).
• For all k,n and the multiplicative K2-torsor on GLk determined by the integer

p as above, assume that there exists a ‘Shimura-type lift’ from Irr(GL
(n)

k (A))→
Irr(GLk(A)) which is also local to global compatible. If τ does not lie in the image

of the Shimura lift from GL
(n′)
k (A) to GLk(A) for any n′ |n, then the lift is cuspidal.

If it does, then this can be constructed using residues of Eisenstein series.

This is also discussed in [24] and [14].
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Remark 11.1. We also expect more properties of this construction to be valid. Such
properties are motivated by the local and global theories of the twisted doubling integrals.

For instance, this construction should satisfy a multiplicativity with respect to the

parabolic induction. This will be used in order to establish the multiplicativity of γ-
factors.

Remark 11.2. Instead of (17), one might consider

τ ∈ Irrucusp(GLk(A))→ θ(n)(τ,m) ∈ Irru(GL
(n)

kmnQ
(A)),

given by residues of Eisenstein series. However, the orbit of θ(n)(τ,m) might not be of
(knQ,m) due to the existence of cuspidal theta representations. We refer the reader to [8]

Subsection 3.2 for some discussion on this matter.

As a consequence, we expect that the twisted doubling integrals give an integral

representation for the tensor product L-function for G×GLk. (In the unitary case,
it would be G×ResE/F (GLk).) Our formulation is slightly different from [16]. Also

note that in [10] the Langlands–Shahidi type L-functions appear in the constant terms of

Eisenstein series, in which the tensor product L-function for G×GLk is obtained for split
classical groups G, among many other interesting L-functions. It would be interesting to

relate the L-functions obtained from these constructions.
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