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WEYL REEXAMINED: “DAS KONTINUUM” 100 YEARS LATER

ARNON AVRON

Abstract. Hermann Weyl was one of the greatest mathematicians of the 20th century, with
contributions to many branches of mathematics and physics. In 1918, he wrote a famous
book, “Das Kontinuum”, on the foundations of mathematics. In that book. he described
mathematical analysis as a ‘house built on sand’, and tried to ‘replace this shifting foundation
with pillars of enduring strength’.

In this paper, we reexamine and explain the philosophical and mathematical ideas that
underly Weyl’s system in “Das Kontinuum”, and show that they are still useful and relevant.
We propose a precise formalization of that system, which is the first to be completely faithful
to what is written in the book. Finally, we suggest that a certain set-theoretical modern system
reflects better Weyl’s ideas than previous attempts (most notably by Feferman) of achieving
this goal.

§1. Introduction. Hermann Weyl (1885-1955) was one of the greatest
mathematicians of the 20th century, with contributions to many branches
of mathematics and physics. He was also deeply interested in the philosophy
of these disciplines, as his great book [47] shows. The question of the
certainty of the propositions of mathematics and the strongly related
question of the security of its foundations were of particular importance
for him (as well as a source of worry) throughout his scientific career
[46]. This worry has caused him to make several contributions to the
debate about the foundation of mathematics (like [45]. [46]. and [47]),
in which he changed his mind more than once.'! In contrast, Weyl
practically had just one important contribution to the research on the
foundations of mathematics: his famous small book “Das Kontinuum”
([43]. English translation in [48]). As explained in [19], this book has
a great historical significance, since in it the predicativist program [21]
for the foundations of mathematics (originally initiated by Poincaré in
[33. 35] and partially adopted by Russel in [49]) was seriously developed
for the first time, and its viability was demonstrated. Personally [8, 9], 1
believe that this program is the only one which really succeeds to provide
secure foundations and certainty to the most important parts of classical
mathematics. However, the aim of this paper is not to describe or defend the
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predicativist program in general: it is to reexamine (and reformalize) Weyl’s
specific contribution to it in his seminal book, whose content and goals are
described in the following famous words from its first page:”

I shall show that the house of analysis is to a large degree built on
sand. I believe that I can replace this shifting foundation with pillars of
enduring strength. They will not, however, support everything which
today is generally considered to be securely grounded. I give up the
rest, since I see no other possibility. [P 1]

The main goal of this paper is to restudy the philosophical and
mathematical ideas that underly Weyl’s system in “Das Kontinuum”, to show
that they are still relevant, and to provide a precise and completely faithful
formalization of it.* (To our best knowledge. this is the first formalization
to really be completely faithful to what is written in the book.)

There are two reasons why it might seem strange to devote in 2018 a long
paper to a new study and formalization of the content of [43].

1. A lot of good research into predicative mathematics has been made in
the 100 years that have passed since [43] was published. Accordingly, it
is generally believed that Weyl’s mathematical work on the foundations
of analysis is by now “superseded by later developments of arithmetical
mathematics” [17]. Therefore, it seems that nowadays the study of “Das
Kontinuum” has only the historical value noted above, but has no true
mathematical value anymore.

2. In any case, it is well-known that [43] has already been carefully and
thoroughly studied by S. Feferman in [17] and [19]. In [17] Feferman
has also fully formalized in modern terms the system which is described
and used in [43], and his formalization is usually accepted by almost
everyone as very faithful and adequate. (See, e.g.. Chapter 9 of [28].)
So what reason can there be for examining and formalizing it again?

In what follows, we show that both arguments above against pursuing the
goals of this paper are mistaken. First, none of Feferman’s formalizations
of Weyl’s system is really faithful to those of Weyl.* Second, Weyl’s work
actually transcends what Feferman calls above ‘arithmetical mathematics’.
Third, I believe that Weyl’s system is superior to its modern counterparts for
the task of serving as a basis of a predicatively justified, natural development
of classical analysis. Fourth, there are some important hidden ideas in “Das

2Henceforth, the page references in all quotes from “Das Kontinuum” are according to
[48]. In case a quote is from the Appendix of [48] (which is a translation of [44]), the letter
‘A’ appears before the page number. Words are emphasized in quotes if and only if they were
emphasized in the original text. The book itself is referred to as [43].

3The notion of “formalization” is meant here in the traditional way in mathematical logic,
that is: obtaining a corresponding formal system on paper. Note that in computer science
(and, in particular, in the field of formalization of mathematics), this term also has the
connotation that the formalization is computerized in some proof assistant.

“This fact, as well as the one mentioned at the next (second) point, had been noted in [4]
well before I independently reached the same conclusions. See Section 3.5.
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Kontinuum” that have so far been completely ignored in the literature on it,
but will be uncovered and exploited below.

Note 1. Unfortunately, this paper contains several critical remarks
concerning Feferman’s papers [17] and [19]. It should be emphasized
that these remarks do not diminish my great admiration of Feferman’s
foundational work in general, and his research on predicativity in particular.

The structure of this paper is as follows. Section 2 describes in more
detail Weyl’s motivations for writing [43]. Then in Section 3, we present
our formalization WA of Weyl’s system in [43], and compare it to previous
ones. Unlike the order things are presented in Weyl’s book, the ideas of
Weyl that have led to WA are explained after that, in Section 4. Section 5
is devoted to the semantics of Weyl’s system, and to possible extensions of
it that have been considered by him. Section 6 describes how analysis has
been developed by Weyl in WA. In Section 7, we discuss some drawbacks
of Weyl’s approach. Finally, in Section 8, we give a brief description of how
most of Weyl’s ideas are reflected and implemented, while the drawbacks of
his system are avoided, in the predicative set theory PZF of [§].

§2. What has Weyl rejected, and why? There are two (not unrelated)
reasons for Weyl’s dissatisfaction with the usual accepted foundations of
analysis that can immediately be seen in his book. First, and most important,
Weyl’s totally rejected as “vague” the modern notions of an arbitrary set,
and of a function as an arbitrary set of pairs. Second, Weyl thought that
the “currently accepted foundations of analysis” commits the sin of vicious
circularity. He said about it:

[Blecause of its vague concept of set and function and its manner of
applying the concepts of existence and identity (particularly to the
real numbers), finds itself caught in a vicious circle. [P. 44]

As is well known, the diagnosis that the paradoxes in Cantor’s set theory
are due to the use of definitions which involve vicious circles was first due to
Poincaré¢, and then adopted by Russell. They both rejected the introduction
of objects using definitions which involve a collection (or ‘totality’) to which
the defined object belongs. Definitions of this sort were called by them
impredicative, and the principle that forbids such definitions was called the
“Vicious Circle Principle (VCP)’, because they thought that “it enables us to
avoid the vicious circles involved in the assumption of illegitimate totalities™
[49]. The VCP was given by Russell in [49] a rather vague formulation:
“Whatever involves all of a collection must not be one of the collection”.
Following Poincaré and Russell, in [43] Weyl too allowed only predicative
(i.e., not impredicative) definitions of sets, and strongly objected to the use
of impredicative ones. Thus, he writes the following concerning legitimate
principles of definitions of properties of objects (and so of sets of objects):

[I]t would be meaningless to include among these principles an
assertion such as the following: If A is a property of properties, then
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one may form that property P4 which belongs to an object x if and
only if there is a property constructed by means of these principles
which belongs to x and itself possesses the property .A. That would be
a blatant circulus vitiosus; yet our current version of analysis commits
this error and I consider this ground for censure. [A:P. 113]

In current notation and terminology, Weyl is forbidding here definitions
of elements of the powerset 25 of a set S of, for example, the following form:

(%) Pa={x€S|3X.X € 25ANA(X)Ax € X}.

The reason that such definitions are rejected as involving a vicious circle
is again that they include quantification over a collection, 2%, to which the
defined set is supposed to belong. The circularity in this definition becomes
evident once we recall that the only meaning of “ 25" that makes sense for
Weyl is as the collection of subsets of S which are definable by acceptable
principles of definitions. (This is reflected at this very quote!)

NOTE 2. An obvious objection to the above argument, first made by
Holder in [23]. is that it depends on artificially including 25 in (x). Holder
argued that it would suffice to let P4 = {x € S| IX.A(X)Ax € X }. If A has
already been defined in a noncircular way, then no circularity is involved in
this shorter definition either. As far as I was able to check, Weyl has never
directly responded to this objection. However, it is clear what his response
would have been: In order to know whether an object satisfies A, we need
first to identify it as a property of elements of S, that is: as an element of 25.
So the omission of 25 from the definition of P4 only hides the problem; it
does not eliminate it. This omission is indeed impossible in Weyl’s system,
since Weyl adopted in it a strict type discipline. (See Section 3.2.) Because
of it, the suggested shorter definition is simply not available in his system.
(Holder’s objection is accepted in the system PZF, which is presented in
Section 8. We return to it also at the end of Section 5.2 and in Section 7.)

A particularly important example of impredicativity in analysis that Weyl
explicitly rejected, is given by the least upper bound (LUB) principle. The
LUB of a bounded set .A of reals is defined as the minimal element of the set
of upper bounds of A. This is an impredicative definition. Moreover, if real
numbers are taken (as Weyl does) as Dedekind cuts, then the existence of
the LUB of A is shown by defining it as:

LUB(A)={qeQ|3x.xe2°AX e AANgec X}.

Again, this involves an impredicative definition. (Note that this definition of
the LUB is a particular instance of the scheme () above.)

Weyl should have been aware that there are impredicative definitions in
Russell’s sense that are perfectly acceptable, like ‘the least prime number’.
(This is a legitimate definition according to Weyl’s views.) Therefore, he
needed a better criterion than the VCP for characterizing impredicative
definitions. Such a criterion was already given by Poincaré himself in [34].
As Crosilla explains (with quotes) in [14], “For Poincaré impredicative
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definitions were problematic as they treat as completed infinite classes which
are instead open-ended or incomplete by their very nature.” A nonsuperficial
reading of Das Kontinuum reveals that this (and not so much the alleged
circularities) is also what Weyl really saw as problematic. This is explicitly
said on [P. 234] of [47] (concerning the set-theoretical antinomies):

The deepest root of the trouble lies elsewhere: a field of possibilities
open into infinity has been mistaken for a closed realm of things
existing in themselves.

Now what the example above of an harmless ‘impredicative definition’
does, is just to select an (already given) object from an already given,
closed collection, that is: a collection of the type called in [14] (following
Poincaré) ‘stable and invariant’. In contrast, a definition is illegitimate (that
is: impredicative) if it tries to select an object from an open collection, treating
the latter as if it were closed. This happens, for example, if the definition
involves quantification over such a collection. In fact, every definition that
involves quantification over a collection which is not ‘stable and invariant’
should be rejected as impredicative from this point of view (and not only
definitions of elements of such a collection).

As we have already noted, Weyl’s views about legitimate definitions are
practically the same as those just described; but his terminology is different.
What Crosilla calls ‘stable and invariant’ he calls ‘extensionally determinate’,
and he characterizes a collection of this sort as a “closed aggregate which is
intrinsically determined and demarcated” [A:P. 109]. About such collections,
he writes:

Suppose P is a property pertinent to the objects falling under a
concept C. And suppose P has a clear and unambiguous sense.

. if the concept C is extensionally determinate, then not only the
question “Does a have the property P?” (where a is an arbitrary
object falling under C), but also the existential question “Is there an
object falling under C which has the property P?”, possesses a sense
which is intrinsically clear. Corresponding remarks apply to relations.
[A:P. 109]

Here, Weyl implicitly divides all collections into three sorts:

(I). The extensionally determinate collections, that is, those that are
stable and invariant, and so quantification over them has a definite
truth-value. (Examples for Weyl are finite sets of objects [P. 20], and the
collection N of the natural numbers.)

(II). Collections which may not be extensionally determinate (and so
are open), but are definite in the sense that the question whether a
given object belongs to them has a definite answer. (R, the set of real
numbers, is the most important example. Weyl explicitly says on [P. 67]
that it is an object in his universe, while on [P. 111] he says that it is not
extensionally determinate. See Section 4.2.)
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(IIT). Collections that are not even definite. (The collection of
continuous functions over R is an example here. See Section 5.1 for
discussion and relevant quotes, and Section 6.5.)

Only a collection of sort (1) or sort (I1), that is, one with a definition that
“has a clear and unambiguous sense”, can be an object in Weyl’s universe. In
addition, Weyl allowed to use in definitions only quantifications over collections
which are extensionally determinate.

At this point, a natural question arises: given a definition of a collection,
how can we decide to which of the above three sorts it belongs? Most of
the first chapter (out of two) of Weyl’s book is devoted to this question.
What is important about his effort is that unlike Poincaré, he is not
just providing there a vague negative characterization of ‘predicative’
definitions. He attaches no less importance to precise positive criteria for
such definitions.’ that is: to providing a list of effective rules for producing
legitimate definitions, which is sufficiently strong for a safe development of
analysis (though it might not be complete).

The sense of cognition directed toward the physical world thoroughly
eludes me if I am not able to anchor the concepts “number”, “set”,
and “function” in logical principles of construction in the manner I

attempted in my treatise. [A:P. 113]

§3. Exact formalization of Weyl’s system.

3.1. Problems in understanding “Das Kontinuum”. For current readers,
Weyl’s book is not easy to follow. (As a result, several conflicting
formalizations of his system, to be reviewed in Section 3.5, can be found
in the literature.) We now describe the main problems in understanding this
book, and how they are overcome in this paper.

The main source of confusion might be the fact that Weyl’s system 1is
officially (and fully) presented only at Section 8 of the first chapter of
[43]. The sections before it are mainly devoted to explaining Weyl’s road
to his final system. Concerning their content, Weyl explicitly writes the
following at Section 8: “Let us withdraw all our provisional remarks (i.e.,
the whole of Sections 4-7). For we are now going to present the definitive
formulation of the principles which are to govern the formation of relations.”
(Actually, Weyl does need in this ‘definite formulation’ three technical things
from Sections 6 and 7: the notion of ‘absolute sphere of operation’, and
the precise formulation of the principles of substitution and iteration.) It
seems to me that because of this method of exposition, the content of
Sections 4-7 has caused much confusion about Weyl’s intentions and system.
Our formalization of Weyl’s system is mainly based on Section 8, together
with the explanation of it that Weyl provided in [44]. Unfortunately, even
Section § leaves open some technical questions that should be faced when one

Note that Weyl himself has not used the concept of predicativity in his book.
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tries to fully formalize the system described there. However, these questions
can be answered by a careful examination of what is done in the second
chapter of [43]. in which the system developed in the first chapter is put
into use. (The formalizations of Feferman were exclusively based on the first
chapter.)

Another significant problem is Weyl’s terminology. Some of his notions
are vague; some are overloaded; and some are different from those we use
today. Though imprecise, the following “dictionary” might be helpful:

e category: type

e blank: (free) variable

o (pertinent) judgement, proposition: sentence, closed formula
judgement scheme: open formula

multidimensional set: set of tuples

intensional: syntactic

extensional: semantic

sphere of operation: universe, or more accurately: structure

Finally, a major source of problems in understanding “Das Kontinuum?”,
is that it seems that when he was writing it, Weyl was not yet aware of the
need to strictly separate between syntax and semantics. As a result, there are
cases in which he is treating the same thing sometimes as a semantic object,
and sometimes as a syntactic one. A typical case in which this confusion
is clearly seen to modern eyes is in his principle 5 on P.10, which allows to
“fill in a blank in a relation by an object’ (i.e., substitute an object for a free
variable of a formula). By an “object” Weyl almost always means an element
of his universe(s), that is: this concept belongs to the semantics of his system.
Accordingly, what Weyl really meant here is substituting a (closed) zerm of
the language for a variable. (In [17], Feferman corrected this by replacing
“object” here by “constant symbol”.) In this paper, we disambiguate Weyl’s
use of notions, strictly separating syntax and semantics.

3.2. WA: Weyl’s formal system for analysis. Conventions: We use ¢ and
7 as metavariables for types, ¢,5 as metavariables for terms, and ¢,y as
metavariables for formulas. We also employ x, y. z, w as general variables for
objects, n, k, m as variables for objects of type N, /', g as variables for objects of
types of functions, X, Y, Z for objects of types of sets. Weletg = 01X X T,
T=1 X" xrn,x—xl X W= Wieo Wi V= V1ser s Vks Z = Z1sur s Zhs
f—fl,...,fm,X:Xl,...,Xm,Vx... ——Elx—|..., dx:o... —Elx L YZ2:G... =
VZ] .01 -"VZk Of. ...

3.2.1. Language.

Types.

(1) Nis a basic type.
(2) If g1.....04 and 7y.....1, are types, where k > 0 and n > 1, then
(o1 x -+ x0p) = S(r] x--- X 1,) I8 2 type.
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Terms and their type(s).

(1) x° : o whenever x7 is a variable of type ¢.° (We assume an infinite
supply of variables x? for each type 7.)

(2) f(t1.....1):S(T)incase f : 7 — S(T) and #;: 5; for 1 <i < k.

(3) {(x1.....xn) | w}: S(T) whenever n > 1, x;: 7; for 1 <i<n, and
w is a delimited formula.

(4) Ay1.....vk.t:5 — S(T)incaset: S(T)and y; :g; for 1 <i<k.

(5) ITL,(fi..... /) : NxaxS(T)" — S(7)ifm>0,andfor1 <i<m,
either /;: G x S(T) = S(T) or fi: Nxa xS(T) = S(T).

Delimited formulas (d.f.).

(1) Ifr: Nand s: N, then Succ(t,s) is a d.f.

(2) Ift: Nands: N, thent=sisad.f.

(3) If 11.....1, are terms of types 7y.....T,. respectively, and s : S(7).
then (71.....1,) €sisa d.f.

(4) If ¢ and y are d.f., then so are —¢. (pAy) and (¢ V ).

(5) If x is a variable of type N, and ¢ is a d.f., then so is Ixp.

Formulas.

(1) If r: Nand s: N, then Succ(t.s) is a formula.

(2) If ¢ and s are terms of the same type, then t = s is a formula.

(3) If £1,....t, are terms of types 71.....T,., respectively, and s : S(7).
then (71,....t,) € s is a formula.

(4) If ¢ and w are formulas, then so are ¢, (pAw) and (¢ V v ).

(5) If x is a variable and ¢ is a formula, then Jx¢ is a formula.

3.2.2. Logic and axioms.

Logic. Classical many-sorted first-order logic with variable-binding
terms operators [22], and with equality in a// sorts (i.e., types).
Axioms:

Comprehension Schemas.

o Vin.(w) € {(X) | w} < wlin/x].
o VZ.(Ay.t)(Z) = 1[Z/].

Extensionality Schemas.

e VX :SEWVY:S@T)X=YVw:TweX o weY,
o Vf:Gg—ST)WVg:7g—=ST)f =g+ VZ:0./(Z2) =g(2).

The standard axioms for Succ.

o !'nVk.~Succ(k,n),
o VkI'n.Succ(k,n),
o VkVmVn.Succ(k,n) A Succ(m,n) — k =m.

oWe shall usually omit the superscript, writing just x : o.
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Induction Schema.
w{0/n}A(YnVk.Succ(n.k) Ny — w{k/n}) — Yy,
Axiom Schemas for iteration.

Foreach 1 <i<m:

o VEVVX.IT} (f)(l 2.X) =f([LEX).
o VnVKVEVIVX. Sucg(n k) — IT! (f)(k Z.X) = )
IT5 () (n 2./ (k2. X)..... S ([, J2.X)).
Where depending on the type of f; , fi([k.]z. X ) means either
2. X) or fi(k,Z,X), and similarly with £;([1,]2. X).

3.3. Some explanations.

NoTtE 3. It should be emphasized that 7; x --- X 1, is not a type of WA in
case n > 1. It is only an expression which may occur in notation for types.
(For possible motivations, see the discussion in Section 6.3.3.)

NoTE4. Weyl did not use of course the A-notation, which was not known
at the time he wrote his book. Therefore, the notation he did use and the
accompanying explanations are sometimes obscure. Thus in Section 7 of
Chapter 1, one can find expressions like ¢ R(n;xx" | X)’, where a semicolon
‘. is suddenly used without any explanation of its role!

NoOTE 5. Weyl took substitution of arbitrary terms for free variables as
one of the construction principles of his system (denoted by “Pr. 7). In our
formalization, we have from the start closed all atomic formulas under this
rule. It is straightforward to show that our whole language is closed under
this rule too. More precisely: it is easy to prove by structural induction that
if x: 7 is a variable, s : ¢ is a term, ¢ is a (delimited) formula, and : 7 is a
term which is free for x in s and ¢, then s{#/x} is a valid term of type ¢, and
@{t/x} is a (delimited) formula.

NOTE 6. In the definition of terms, no conditions are imposed on the
variables which are mentioned in clauses 3 and 4 (except for their types).
This might seem strange, since a direct reading of Weyl’s text might give the
impression that we should have demanded in clause 3 that each x; is free
in y, and in clause 4 that each y; is free in z. However, Weyl’s remark on
P. 38 of [48] that “In each category of set there is an empty and a universal

et.” shows that Weyl either from the start did not intend to impose these
conditions, or that he saw that the following theorem (which can easily be
shown to be equivalent to the content of Weyl’s remark) obtains.

THEOREM. Let WA, be the system which is obtained from WA by imposing
the above-mentioned conditions. Then WA and WA,, are equivalent.

Proor. We first show that in the language of WA,,, there is a closed
term ¢, in every type 7 # N. The proof is by induction on the complexity
of 7. For every type ¢ which has smaller complexity than that of
7, choose some variable x° of type ¢. Let s, = x° if ¢ = N, and
some closed term of type o (which exists by the induction hypothesis)

https://doi.org/10.1017/bsl.2020.23 Published online by Cambridge University Press


https://doi.org/10.1017/bsl.2020.23

WEYL REEXAMINED: “DAS KONTINUUM” 100 YEARS LATER 35

otherwise. Define for each o, the formula ¢, to be x° = x? in case
o = N, and IxN.(sr.....57)€ X7 (S41.....55,) in case 0 = g} x -+ X 7], —
S(z] x ---x 7]). Then for each ¢ of complexity smaller than 7. ¢, is
a delimited formula whose sole free variable is x?. Suppose now that
T=(o;x - x0) = Sty X x1,). Let W = @ A+ - Ao Apr, A+ Ay,
Then /x°,....x% {(x™,....x™) | w} is a closed term of type 7.

Next, let Ugez) = {X | X € t VX ¢ t}. where ¢ is some closed term of type
S(7). Then Ug) denotes the universal set of S(7). Similarly, 05 = {X | ¥ €
IAX & t} 1s a closed term that denotes its empty set.

Finally, suppose v is a delimited formula, and Xxi...., x, variables of type
T1.....T, (respectively). Then yAx; € Ugi,)A--- Ax, € Ugy,) is equivalent in
WA,, to w. This fact easily implies the theorem. -

NoTE 7. In the two last clauses in the definitions above of formulas and
delimited formulas, we are following Weyl in the most faithful way, since
in his six logical principles for constructing new formulas from old ones,
Weyl indeed chose to take negation, disjunction, and conjunction as the
basic connectives, and the existential quantifier as the sole basic quantifier.
Weyl partially explained the second of these choices by the fact that V can be
defined in terms of 3 and —. (This is explicitly noted in the second paragraph
of P. 12.) However, Weyl noted also [P. 11] that conjunction can be defined
in terms of VV and —. Hence, there is some mystery here: why in the case of Vv
and A Weyl chose to include both as primitives, while in the case of the two
quantifiers he chose to take only one of them as primitive? And why 3 rather
than V? Was this just an arbitrary choice, or was there a deeper reason for
it? No answer can be found to any of these questions in the works of Weyl.
Nevertheless, Weyl’s choices here might be due to some strong intuitions of
a great mathematician, since in Section 8, we shall see that Weyl’s choices
are precisely the right ones!

3.4. Example: cardinalities. As an example of how our formalization
works, we now formalize in it the definition of the notion of cardinality
that is given in Chapter 1 of [43].

In what follows we use, like Weyl, k,m.n as variables of type N. For
X : S(N), let X — {m} denote {k: N |k € XNk # m}. Define:

N={n|n=n}, P=AX:S(N){Y:S(N)|VaneY —sneX}
d=AY:S(S(N)){X:S(N)|Imme XAX —{m} € Y},
Card =X : S(N).{n: N| X € IT}(d)(n.P(N))}.

Obviously, N denotes the set of natural numbers (as an object rather than
as a type) and P(N) denotes its powerset. Therefore, it is easy to show
(by induction on 7 in the metalanguage) that I7| (d)(n.P(N)) denotes the
collection of sets of natural numbers that have at least n elements. In turn,
this implies that if X is a set of natural numbers that has exactly » elements,
then Card(X) is the set {1,2,...,n}, while if X is infinite then Card(X) = N.
Note thatd : S(S(N)) — S(S(N))!
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It is important to note that in Chapter 2 of [43], Weyl proved in his system
some basic properties that Card(X), as defined above, should be expected
to have. The first of them is that if n’ € Card(X) (where n’ is the successor of
n), then n € Card(X). (From this it easily follows that Card(X) is an initial
segment N.) Using the comprehension axioms and extensionality axioms
of WA, this is equivalent to:

VavkVX : S(N).Succ(n.k)AX € IT}(d)(k,P(N)) = X € IT} (d)(n. P(N)).

This proposition is proved in Chapter 2 by induction on n. Note that what is
proved by this induction is not a delimited formula. Hence it needs the full
power of the induction schema. (This fact was first observed in [3].)

3.5. Previous formalizations of “Das Kontinuum”. The above formaliza-
tion of Weyl’s system in [43, 48] is not the first one that has been suggested.
This section provides short descriptions of those previous ones that I am
aware about. In the sequel. it will become clear (I hope) that none of them
is fully satisfactory, while the one given here does reflect exactly the system
that Weyl was describing and using in his book.

Asnoted in the introduction, the most well-known and generally accepted
work on the subject is that of Feferman in [17] and [19]. In these papers,
Feferman has explicitly associated with “Das Kontinuum” four different
modern formalizations. What he took to be the most adequate formalization
of what he believed that Weyl had had in mind is the second-order system
K@ which he presented in detail in [17], and described in [20] as “the one
customarily ascribed to Weyl”. K@ (so he wrote) “formalizes that part of
Weyl’s system that meets his aim of purely arithmetical interpretation”. (We
shall see in Section 4.4.2 that Weyl had no such aim, at least not in the
sense of ‘arithmetical’ that Feferman had in mind.) Then he noted that K(®
is practically equivalent to the system called ACA, in the area of reverse
mathematics [40]. Since ACA, is simpler (and better known) than K(®, it
is the one which is presented in [19] as “a modern formulation of Weyl’s
system”. However, we have seen in Section 3.4 an important example of an
induction made in [43] that cannot be reduced to the induction axiom of
ACAy. The only possible alternative to ACA, as a modern counterpart of
Weyl’s system which is (briefly) mentioned in [17] and [19], is indeed the
much stronger version ACA of ACA,, which is obtained from the latter
by replacing its single induction axiom by the full induction schema that is
adopted also in WA. Finally, a forth candidate which is briefly mentioned in
[17]is a third-order system called K'#). The need to introduce it arose because
Feferman had realized that regardless of the strength of induction, Weyl’s
system as a whole is necessarily stronger than K(®)—a fact that he (wrongly)
attributed to an incoherence in Weyl’s principles. Feferman claimed that in
K#) Weyl’s system can fully be captured.” However, since Weyl allowed sets
of arbitrary order, neither ACA nor K can possibly capture his system.

7Surprisingly, no official presentation of K'# can be found in [17] (or elsewhere). However,
from Feferman’s hints, one might guess what system he had in mind.
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Though it is not impossible that K¥) (or ACA) suffices for every piece of
mathematics that Weyl actually developed in his book, the potential strength
of his system is much higher than that of K¥) or ACA. (Other important
differences between Feferman’s formalizations and ours will be noted in the
sequel.)

Note 8. The second part of [17] is devoted to Feferman’s system W
(named after Weyl). That system is not presented as a possible exact
formalization of Weyl’s system in [43]. It is only described there as very
close to it in its spirit and intentions. (This is debatable, since Feferman uses
in W the machinery of his explicit mathematics. However, the operational
approach, on which the latter is based, is not really compatible with Weyl’s
views, since Weyl gave priority to relations over functions.) Like WA, and
unlike K@ and K'#), W is based on a system of #ypes, which includes types
of any finite order. However, that system is much more complicated and
extensive than that used by Weyl, since it is a system of what Feferman
called flexible types. Thus unlike WA, W has variables for types, and related
equality formulas.

A different formalization of Weyl’s system in [43] is outlined (more or less)
in S. Pollard’s introduction to [48]. Unlike Feferman’s official formalizations,
Pollard’s one is not limited to any particular order, but allows sets of any
finite order. The corresponding universe is created in an accumulative way,
so there are still no type distinctions. (As a result, Pollard found it necessary
to introduce the extensionality axiom in a strange way, which is not even
hinted in Weyl’s book.) Another significant difference between Pollard’s
formalization and all the other ones mentioned here is that according to
it, Weyl’s functions are not objects in Weyl’s universe. (Hence there are no
variables for functions in that formalization.)

An almost fully accurate and faithful previous formalization of Weyl’s
system in [43] is the one described by R. Adams and Z. Luo in [2-4].
Except for one significant difference (explained below), the formalization
that is provided in the present paper is very similar to theirs (though it
was independently done). Unfortunately, the emphasis in their papers was
on how their formalization of [43] is implemented in the authors’ general
framework of Logic-enriched type theory. Therefore, no attempt was made
in them to give support to their interpretation of [43] from the text. They
also gave very little attention to describing and analyzing the philosophical
assumptions and views that underlie [43], or to explain its intended semantics
(as we do here). As a result, Adams and Luo’s work has passed practically
unknown among people interested in the foundations of mathematics, and
has not got the attention that it deserved.

Adams and Luo’s formalization differs from ours in the following
points:

e The most significant difference between our formalization and that of
[4] is with respect to the treatment of equality. In [4] only equality
between terms of the basic type N (or, more generally, the same basic
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type in versions where other basic types exist) is taken as primitive,
while equality in other types is taken as defined. However, Weyl is very
clear about this issue in his official description of his system:

[T]hese basic relations are to be augmented by the identity
relation (whose blanks can now be affiliated with any category
of object of the expanded sphere, both blanks with the same
category of course). [P. 44]

Their misinterpretation of Weyl’s use of equality causes serious
complications to Adams and Luo in translating Weyl’s theorems into
their system. Thus they had to introduce a notion of “extensional
function” that was never used by Weyl, and write “Let f : X — Y
be an extensional function” instead of “Let f : X — Y be a function”.

e In order to simplify their system and its implementation, Adams and
Luo explicitly chose to make the extensions below to Weyl’s system
(correctly noting in what ways these are extensions). Their system is
most probably conservative over Weyl’s system, but their extensions are
in conflict with some of his basic principles and ideas.

— They introduce x as an operation on types, with corresponding
new operations on objects (the pairing operation, and its two
converses). This approach surely has its advantages; but it also
has the disadvantage that (t x ¢) x 0 and 7 x (¢ x ) are different
types. It seems that Weyl has considered this distinction to be
artificial. (See Section 6.3.3 for a detailed discussion.)

— Instead of the single basic relation Succ on type N, they use
a constant 0 and a unary operation s. This change (and the
introduction of the operations connected with x ) is not compatible
with the priority that Weyl gave to relations over functions.

— They allowed function types of the form ¢ — 7 for arbitrary T, and
together with it function terms of the form Ayy... ., yi.t, where t may
be a term of any type (not only a type of sets). This is undoubtly
a very natural extension from the point of view of modern type
theories. However, it is not coherent with Weyl’s quite original and
deep ideas concerning functions, and the importance that he has
explicitly attached to his special notion of a function ([48], p. 34).
We shall elaborate on these notion and ideas in Section 4.3.

§4. The ideas and principles behind Weyl’s system.

4.1. Objects, categories, sets, relations, and formulas. Like Russell and
Whitehead in [49], Weyl tries to ensure the predicativity of his system by
using a combination of two independent means, and (again like in [49]). one
of these means is the use of types. The corresponding notion which is used
by Weyl is that of a category. In this paper, we reserve (as far as possible)
this notion of Weyl for the semantic level (in which it corresponds to a
certain collection of objects), and use ‘type’ for the syntactic one. Similarly,
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we follow Weyl in referring to the elements of the categories in his universe
(i.e., the intended semantics of his system) as ‘objects’, but using, as usual,
the name ‘terms’ for the syntactical creatures that denote such objects. Here
are the basic principles that underlic Weyl’s system of categories, objects,
and relations between objects:

P1. Every object, as well as each place in a relation, is affiliated with a
definite category.

P2. A few (but at least one) of the categories are taken as basic. These
categories should be extensionally determinate. Associated with each
of them are few, particularly simple and well-understood.® primitive
relations.” One of these relations should be the identity relation.

P3. The concept of a natural number is a basic, well-understood,
mathematical concept, and there should always be a basic category
which corresponds to it.

P4. On top of the basic categories, there is an infinite hierarchy of ‘ideal’
categories. The objects of the ideal categories are sets and functions.
P5. Existence can be attributed only to a set (or a function) which has
a (legitimate) definition.

P6. Every set is the extension of some relation.

P7. Relations (and so sets) are introduced genetically: they are derived
by adequate, “logical” means from some small collection of relations
that are taken as basic. As a result, the relations in Weyl’s system
are those that are defined by open formulas in an appropriate formal
language which is an extension of the (possibly many-sorted) first-
order language with equality that corresponds to the basic categories
(taken as the sorts).

P8. The use of quantification over a collection of sets (or functions)
and the use of equality between sets (or functions) should be forbidden
in definitions of objects.

In the next notes, we provide some explanations of these principles and
the related concepts.

NoOTE9. In thedescription of his system, Weyl distinguishes between three
different sorts of entities: judgement schemes, relations, and sets. (In the
multidimensional case, the latter are also called “functional connections”.)
Judgement schemes are purely syntactic entities, and are exactly what
we call today open formulas (i.e., formulas with free variables). Sets
are mathematical objects of the intended semantics. Finally, relations are
intermediate intensional collections of objects. They are induced (or defined)
by formulas, and in turn induce sets by what Weyl calls “the mathematical
process”. The central difference between a relation and a set is given by
principle P6: while two relations of the same type are considered identical

8Weyl’s terminology is “immediately exhibited”.
Sometimes Weyl uses ‘basic relation’ or ‘fundamental relation’ as synonyms for ‘primitive
relation’. We shall do the same in what follows.
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iff their underlying defining formulas are (logically) equivalent, two sets (of
the same category) are identical iff they have exactly the same elements.'"

NotE 10. Footnote 12 to Chapter 1 of [43] says the following about closed
judgment schemes (i.e., sentences) concerning the basic categories:

That they all have one meaning, i.e., express a judgment, is a precise
formulation of the hypothesis ...regarding the “complete system of
self-existent objects”. [P.119]

From this footnote, as well as from the content of the book and its
system as a whole, it is clear that concerning the basic categories, Weyl’s
intention is, essentially, that the (many-sorted, in case there is more than
one basic category) first-order language with equality which is induced by
the collection of the basic categories (and the primitive relations connected
with them) has a definite (and intuitive) intended semantics. With respect
to this intended semantics of the basic categories and the associated primitive
relations, Weyl seems to have a platonist view: those categories and their
objects are “self-existent”, that is: they have an independent existence; and
relative to that semantics every proposition of that language (including those
which contain quantifiers) has an absolute meaning and an absolute truth
value. I believe that in addition, by describing basic relations as “immediately
exhibited” (our footnote 8), Weyl means that they should be sufficiently
simple to be taken as decidable. (This should be understood here in the
intuitive sense described in P. 18 of [48]: having “a definite, methodical
proof procedure for reaching (in finitely many steps) a decision concerning
the truth or falsity of every pertinent judgment”).

Note 11. The justification Weyl gives to P3 is that “The intuition
of iteration assures us that the concept ‘natural number’ is extensionally
determinate.” [A:P. 110]. Not only this, but following Poincaré, Weyl
maintains that “[The idea of iteration, i.e., of the sequence of the natural
numbers, is an ultimate foundation of mathematical thought.” [P. 48]. In
particular: “Our grasp of the basic concepts of set theory depends on a
prior intuition of iteration and of the sequence of natural numbers” [P. 24].
Accordingly, he took this category to be absolute, and so always one of the
basic categories. In his system for analysis (and therefore in WA), it is the
sole basic category.

Weyl does not explicitly explain why he thinks that the sequence of
the natural numbers is an ultimate foundation of mathematical thought.

loUnfortunately., Weyl is not always consistent in his use of the notions of relation and
judgement scheme, and often confuses them. For example: the formulation of his first six
closure principles Pr.1-Pr.6 explicitly refers to judgement schemes, and relations are not
mentioned in them. In contrast, his remaining two closure principles, Pr.7 and Pr.8, explicitly
apply to relations, and judgement schemes are not mentioned in them. Nevertheless, as the
numbering shows, all these principles belong to one list, which can be viewed either as a
list of principles for deriving new formulas from previous ones, or as a list of principles for
deriving new relations from previous ones. Weyl does not seem to always distinguish between
these two interpretations.
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However, a clear hint is provided in his discussion (and rejection) of the claim
(of Hilbert, though his name is not mentioned) that arithmetical axioms are
mere stipulations, and that asserting a proposition means asserting that it is
a consequence of the axioms. He writes:''

The interpretation under consideration proves to be feasible only
when one knows that the axioms are consistent and complete ... But
we do not know this (although we may believe it). And if this belief
is one day to be transformed into insight, then, clearly, since logical
inference consists of iterating certain elementary logical inferences,
we will attain this insight only through our intuition of iteration, i.e.,
of the infinite repetition of a procedure. But from this intuition we also
directly obtain the fundamental arithmetical insights into the natural
numbers on the basis of which the whole mathesis pura is logically
constructed. [P. 19]

What I think Weyl had in mind here, is that our very notions of
mathematical propositions and mathematical proofs are based on the idea
of iteration. Thus as explained below, in the case of propositions, Weyl
provided in his book six principles for obtaining more and more “complex
judgements schemes” from simple ones, using iteration. Proofs, in turn,
are obtained by iterating the use of certain rules of inference. Therefore,
the abilities to formulate propositions and to prove them depend on prior
understanding of the general idea of iteration/recursion/induction. But it
makes no sense to claim understanding of iteration in this case, but still
deny understanding of the simplest case of iteration: that which produces
the natural numbers from a single basic object 1 by iterating a single unary
operation: the successor. (In fact, in several places in [43] Weyl identifies
iteration with the use of the sequence of natural numbers.)

NotE 12. Recall that a basic category is an extensionally determinate
collection of objects, equipped with a few simple basic relations. The above
characterization of the natural numbers implies that

A single basic relation, whose meaning is immediately exhibited,
underlies this category — namely, the relation S(x,y) which holds

between two natural numbers x, y when y is the immediate successor
of x. [P. 25]

In particular, the operations of addition and multiplication are not
primitive in Weyl’s system. This reflects the fact that Weyl viewed relations
as primary, not functions. This view is also reflected by the fact that there
are no primitive function symbols, or even primitive constants, in Weyl’s
system in [43], and functions are introduced in those systems only as a
sort of a generalization of relations. (We shall elaborate on this fact in
Section 4.3.)

'Note that Weyl is conjecturing here (in 1918!) the incompleteness of arithmetics. (This
interesting fact has been noted already in [26].)
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NotE 13. P4 is a crucial point in which our understanding of Weyl
strongly differs from that of Feferman in [17, 19]. However, examples like
that given in Section 3.4, where Weyl employs a function d : S(S(N)) —
S(S(N)), as well as plenty of others in Section 6 below, can leave no doubt
about it. The same is true for quotes like the following one:

[R]elations between objects are themselves objects — between which
new relations can obtain. [P. 40, footnote 35]

It should be noted that this quote is actually imprecise, since what are
objects in Weyl’s universe are the sets that correspond to the relations, not the
relations themselves. This is clearly stated in the definite, final presentation
of his system (in Section 8 of Chapter 1):

Joining the objects of the basic categories are objects of new ideal
categories, i.e., the sets and functions; [P. 43].

With that understood, it follows from the first quote that Weyl’s universe
includes basic objects, sets of basic objects, sets of sets of basic objects, etc.
Moreover, for every category 7 and n > 1, the category of the n-dimensional
sets'” of objects of category 7 is always different from 7 (and for k # n also
from the k-dimensional sets of such ob(iects). Thus Weyl’s universe includes
objects of any finite order (unlike in K'® or K#)).

NotEe 14. P5 is a positive formulation of Weyl’s complete rejection of
the notion of “arbitrary set” (sometimes called “quasi-combinatorial set”),
which underlies Cantor’s set theory, and on which the current standard
foundations of mathematics are based. In Weyl’s own words: "

No one can describe an infinite set other than by indicating properties
which are characteristic of the elements of the set. And no one can
establish a correspondence among infinitely many things without
indicating a rule, i.e., a relation, which connects the corresponding
objects with one another. The notion that an infinite set is a
“gathering” brought together by infinitely many individual arbitrary
acts of selection, assembled and then surveyed as a whole by
consciousness, is nonsensical; “inexhaustibility” is essential to the
infinite. [P. 23]

NoTtE 15. Practically, the important point concerning relations and sets is
that what is directly given a definition are the relations, not the corresponding
sets which are obtained from them by the mathematical process. So the first
crucial question concerning what sets are available to us is: What constitutes

2Recall that Weyl does not use Cartesian products. So in places we would usually talk on
subsets of the Cartesian product of t and o, Weyl talks about two-dimensional sets whose
first component (‘blank’) comes from 7 and the second—from o.

3The difference between property and relation is that the former is one-dimensional, while
the latter may be multidimensional. Like Weyl, henceforth, we take properties to be a special
kind of relations, and frequently use the name ‘relation’ for both.
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a legitimate definition of a relation? The answer is given by Principle P7.
Thus Weyl writes:

[O]ne is to restrict oneself to those properties and relations which can
be defined in a purely logical way on the basis of the few properties
and relations which are given immediately in intuition along with the
relevant categories of object. [A:P. 112]

Now, the concept of “logical” in “defined in a purely logical way” is
ambiguous in Weyl’s book. At first it refers to the iteration of six principles
for defining new relations from old ones, that are listed on pp. 9-11 of
[48] (and referred to later as Pr. 1-Pr. 6). In modern terms, these six
principles allow the use (in defining new relations from old ones) of negation,
conjunction, disjunction, the existential quantifier, and substitutions of
variables and constants for free variables of the same type. Once terms
for sets and functions are introduced into his language, Weyl allows also
substitutions of arbitrary terms for variables of the same type. (This is
Pr. 7, in his list of principles of definitions.) As long as “purely logical
definability” is limited to the use of these seven principles, it can easily be seen
to be equivalent to the classical (many-sorted) definability in the first-order
language with equality that is based on the given basic relations. However,
later Weyl introduced an eighth, very important, method of deriving new
relations from old ones: iteration (Pr. 8 in his list of principles of definitions).
Therefore, it seems that by “purely logical definability”, Weyl has in mind
something stronger than first-order definability. (We shall return to this
question in Section 4.5.2, after a thorough discussion of Pr. 8 in Section
4.4.) These observations are reflected in Principle P7.

NoTE 16. Another crucial question is: does every relation induce a set?
Unfortunately, many sentences of [43] give the impression that this is the
case. However, again Weyl is more cautious about what he writes in the
definite presentation of his system (Section 8 of Chapter 1) and in the
definite explanation of that system in [44]. He makes it clear there that
only certain special relations, which he calls “delimited”,'* actually induce
sets.'” This constraint of using only delimited relations is the second means
(besides the classification of objects/terms into categories/types) that Weyl

14Unfortunately, the notion of ‘relation’ is overloaded in [43] and [48]. and is not always
used consistently. The fact that frequently Weyl writes just ‘relation’ where he has in mind
‘delimited relation’ is a case in point. Another one is when a relation is treated as a syntactic
entity. There are also cases in which the notion of relation is used in the meta-meta-language,
like in: “Now the claim we are making here about the two judgment schemes U and V does
not explicitly mention any intrinsic relation at all which holds between them” [P. 21]. Finally,
when Weyl talks about ‘basic relation’ (or ‘primitive relation’), he usually means what we
now call ‘atomic predicate’.

3There are places (e.g.. Chapter 2, footnote 3) where the sets induced by the delimited
relations are called “delimited sets”. This seems to imply that there are nondelimited sets.
(Those which are induced by relations which are not delimited, that is: by arbitrary open
formulas?) However, no use is made by Weyl of such sets, and only the sets which are induced
by delimited relations are objects in his universe.
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uses in order to ensure predicativity and to prevent vicious circles. Weyl’s
fundamental observation here is that arguments closely related to those used
in Richard’s paradox show the following:

[T]he universal concept “object” is not extensionally determinate, —
nor is the concept “property”, nor even just “property of natural
numbers”. [A:P. 110]

Since the natural numbers are the most basic objects in Weyl’s universes,
the last quote implies that Weyl saw any (infinite) collection of sets (or
functions) as open. Therefore, by the discussion in Section 2, the demand of
predicativity of definitions of objects implies Principle P8:

The essential thing is that in defining the relations no use is made of the
concepts of the equality and existence of sets; thereby, but also only
thereby, do we avoid the meaninglessness of circular definition. [P. 41]

Since the universal quantifier is definable in Weyl’s system in terms of
the existential one, the above quote forbids to use in definitions of sets
any quantification over sets. In addition, it allows the use of equality
in definitions of objects only if it is between objects of the same basic
category. The reason for this second constraint is that equality between
two sets of objects of some category is equivalent (by extensionality) to
a certain universal quantification over that category. Hence the second
constraint follows from the first. (Actually, this argument shows that the
use of equality in definitions should also be allowed in case the equality is
between sets of objects of the same basic category. However, because of the
noted equivalence, this would add no extra definability power.)

It should be emphasized that from the description above, it follows
that formulas have two different roles in Weyl’s system. One is the usual
one, of expressing proposition schemes (or “judgment schemes”, in Weyl’s
terminology) about the objects in the intended universe(s). Their other role,
for which only delimited formulas can be used, is as the main tool for defining
(and by this creating) those objects that Weyl calls “ideal”, that is: sets and
functions. This fact might be responsible for the confusion one can find in
the literature about the use of quantifiers in [43]. Thus in [17] Feferman
wrote: “It is not clear what position Weyl would take on quantification
over relations and functions as part of the language, since they are certainly
to be excluded in defining conditions of relations and functions.” This is
surprising, for two reasons. First, Weyl is actually very clear on this point in
his definitive description of his systems:'°

The current meaning of “pertinent judgment” emerges from Section
2: they are those judgments (in the proper sense, i.e., without blanks)
which arise, through unrestricted application of principles 1 through

16Principle 6 mentioned in this quote allows quantification over variables. Note that the
emphasis on ‘unrestricted’ in this quote was done by Weyl himself.
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6 of Section 2, from the above basic relations of the expanded sphere
of operation. [PP. 43-4]

Second, and more important, formulas in which quantifications is made
on real numbers (which are sets in Weyl’s system—see Section 4.2), and
even on functions from real numbers to real numbers, are repeatedly made
in Chapter 2 of [43]—and Weyl explicitly noted this! (We shall encounter
some examples in the sequel.)

Actually, it is not peculiar to Weyl’s system that formulas are used for
two different purposes, and that for one of them, not every formula can be
used. The same observation applies to every set theory in which an attempt
is made to avoid the usual set-theoretical paradoxes. Thus in ZF, both x # x
and x ¢ x are formulas that serve as proposition schemes. However, while
x # x can be used to define a set in the universe of ZF, x ¢ x cannot be
used for this purpose. What has been special about Weyl’s system is that
like its collection of all formulas, the collection of formulas that can be used
for defining sets (the delimited formulas) is also syntactically defined using
specific recursive principles of definitions (which are very similar to the rules
for defining arbitrary formulas).

It should be clear now how the principles P1-P8 are reflected in WA. Thus,
in addition to the usual two main syntactic categories which we have in
first-order languages (terms, denoting objects, and formulas), WA includes
a syntactic category of types, which reflect Weyl’s categories. As usual in
simple type theories, each term is associated with a unique type.'” Among the
types, some types are basic; they are the syntactic counterpart of Weyl’s basic
categories. (In WA, the only basic type is the type N of the natural numbers.)
All other types are types of terms for sets or functions, and are derived from
the basic types by repeated use of two operations: one for introducing types
of terms for sets, the other for introducing types of terms for functions. The
latter will be explained in Section 4.3. The former is obtained as follows: If
71,....T, are n arbitrary types, then S(7; x --- x 1,,) is the type of terms for n-
dimensional subsets of (intuitively) 7; x - - - X 7,,. As usual, complex formulas
are obtained from atomic ones using the standard first-order connectives
and quantifiers, while the atomic formulas are obtained by applying basic
predicates to terms of the appropriate types. These basic predicates always
include (and in WA also only include):'®

7In principle, Weyl does not make this uniqueness demand. On the contrary: on pp. 61—
62 of [48] he notes that the constructed set of fractions (i.e., positive rational numbers)
can be taken as a new basic category. He further notes that in such a case, this new basic
category will be a subcategory of the nonbasic category we denote by S(N?). However, he
continues that “except for an expanded vocabulary, this approach offers us no more than does
the direct continuation of our construction begun on the basis of the single basic category
‘natural number’.” This seems to indicate that Weyl did not like the possibility of an object
belonging to two distinct categories, even though he does not reject it. Anyway, in his system
for analysis, every object is indeed affiliated with a unique category. This is in sharp contrast
to Feferman’s W, in which types may have infinitely many subtypes.

B1n principle, ‘= is not just one predicate, but a family of predicates, one for each type.
Similarly ¢ €” should in fact be taken as a family of predicate. one for every tuple (zy....,7n)
of types. However, this is not a significant issue.
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e The binary predicate Succ on N. (Weyl uses S instead of Succ.)
e The equality predicate = between terms of the same type.
e The relation € between tuples of objects and sets of such tuples.

As for the syntactic category of terms (which is needed for determining
the syntactic category of atomic formulas, and so of formulas in general),
we note that there are no terms in Weyl’s system of type N, except for the
variables of this type. In contrast, it has a rich system of terms for sets.
Those terms are formal counterparts of the delimited relations discussed
above. This is not surprising, since in formal languages objects are denoted
by terms, and sets are objects in Weyl’s universe. Therefore, instead of Weyl’s
trichotomy: judgement schemes—delimited relations—sets (where the first
is syntactic, the third semantic, and the middle intermediate) we have the
trichotomy: formulas—set terms—sets (where the first two are syntactic,
the third semantic). This means that set terms of type S(zy x --- x 1,,) are of
the form {(xi....,x,) | w}, where x; : 7; for 1 <i<n, and y is a delimited
formula. In turn, according to P8, a delimited formula of WA is a formula
in which all quantifications are over variables of type N, and all equalities
are between two terms of type N.

4.2. The real numbers. The real numbers are introduced in [43] as
Dedekind cuts in Q. Since elements of the latter are essentially represented
in [43] by quadruples of natural numbers (where (k./,m.n) represents
k/l—m/n), areal number is in WA an object of the category/type S(N*). (See
Section 6.3 for details.) Now the only quantifications used in the definition
of what is a Dedekind cut are on the rational numbers, and so can be reduced
to quantifications over N. However, since real numbers are sets, R (the set of
all real numbers) is a set of sets.'” Therefore, in contrast to the set of natural
numbers, R is open:

[T]he concept “real number” is not extensionally determinate.
[A:P. 111]

It follows, first of all, that quantifications over R is not allowed in
definitions of sets and functions. Other important implications of the fact
that R is open will be discussed in Section 6.

4.3. Functions.

4.3.1. Weyl’s notion of a function. We turn, at last, to the nature of the
third sort of objects in Weyl’s universes: functions. As was emphasized above,
Weyl totally rejected the modern view of a function as any set of pairs that
satisfies the functionality condition. He insisted that (like sets) functions
can be determined only by rules. Since he was mainly interested in functions
with range R (the set of real numbers), and every element of R is of the
category S(N*), Weyl limited his notion of a function to functions whose
range is of the form S(z; x --- x 7,,). that is, a category of sets. Now recall
that up to now, every term of such a category which is not a variable has

YNote that Weyl explicitly says on P. 67 that R is an object in his universe.
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the form {(x....,x,) | w}, where x; : t; (i = 1,....n). Suppose now that y; :
O1..... Yk . oy are free variables of w such that {x;.....x,} N {y1,....yx} =0.
Then it is natural to define a ‘function of several variables’ by assigning to
each tuple (aj.....a;) such that a; belongs to the category (denoted by) a;
(i =1.....k) the set of all tuples (by.....b,) such that (ai.....ax.b;.....b,)
satisfies w. This is exactly the sort of functions that Weyl accepted and
employed. Accordingly, in WA, there are types for categories of functions of
this sort, and terms for denoting such functions. These types have the form
(o1 x -+ xar) — S(t; x -+ x 1,,). and the main form of terms of such a type
have the form Ayy,....ye.{(x1..... %) | w}.

Function terms can of course be applied. This obvious fact implies that
once they are introduced, each type of the form S(z; x --- x 7,,) has new
terms, in addition to those that had been available before the introduction
of function terms. Thus f(x) : S(r) whenever f and x are variables such that
f:0 — S() and x : 6. Accordingly, Weyl’s system has other function terms
in addition to those called above the ‘main’ ones. In general, given any term
t:S(ty x -+~ x 1,), and variables y; : g1....,y : ox that are free in 7, we have
a corresponding function term of the form Ay;.....yr.1: (61 X -+ X o) —
S(7y x --- % 1,). Such a function term, in which ¢ is not of the main form,
and even contains parameters, is used, for example, at the proof (in the
second chapter of [43]) that any function which is continuous over the unit
interval is uniformly continuous there. The proof starts with the words: “if
f is the given real-valued function ...”. In these words, f is a variable of
type S(N*) — S(N*). and the words express the assumption that f(x) is a
real number whenever x is a real number. Later in the proof, Weyl uses the
expression f*, which denotes the function term Al : Q.f(I*), where I* is the
Dedekind’s cut determined by I, that is, f* = Al : Q.f ({x: Q| x < 1}).”" Note
that /* is a function term which contains a free variable (f'), and it is not of
the canonical form Ayy,...,ye.{(x1.....x,) | w}.

The following should be noted concerning the syntax of function terms:

1. As the example discussed in the previous paragraph shows, a function
term Ayy.....yr.t may have free variables (i.e., t may have other free
variables beside yp.....y;). This fact is not clear at all from the
description of the system in the first chapter of [43]. On the contrary,
what is written there gives the opposite impression. However, like in
the above example, the content of the second chapter clearly shows
that this is the case. Moreover, Weyl writes this there explicitly:*!

All this carries over mutatis mutandis to function sequences, i.e.,
to cases where the relation R(l|n), which defines the sequence,
contains blanks in addition to those indicated. [P. 76]

Since Q is not officially a type/category in Weyl’s system, the actual term which is
denoted by f/* is more complicated. Thus, the real term should start with something like
Ak N.I: N.m: N,n: N rather than with Al : Q. On P. 82, Weyl notes this explicitly.

21 By “the relation R(/ | n)’. Weyl means what we have denoted by An.{I | w}. where v is the
formula which defines R.
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2. Function terms may denote functions whose range is any category
of the form S(t; x -+ x 7,,), not only R (or rather S(N*)). Thus one
of Weyl’s first examples (at the end of Chapter 1, Section 6) is AX :
S(t).{x:7|x & X}, the complement function on sets of objects from
a category 7. (Recall that another, particularly illuminating, example
was given in Section 3.4.) This is another demonstration how far is the
type system in [43] from being second-order.

3. Since Nis a basic category, there are no function terms or function types
in Weyl’s system that have N as their range. Therefore, all functions from
N to N are taken to be relations, and are treated as such. In particular,
addition and multiplication on N are for Weyl ternary relations on N
[P. 26]. On the other hand, Weyl noted that

[T]he cardinal number p(n) of the prime natural numbers up to
n, ... 1is a function of n in our precise sense. The same holds for
all other “number-theoretic functions”.” [P. 58]

So far about the syntax of function terms and function types. Their
intuitive semantics is what one would expect: The objects of the category
which corresponds to the type (g1 x - - - X g% ) — 7 are intended to be functions
that assign to each tuple of objects of the categories (which correspond to)
o1.....04 an object of the category (which corresponds to) 7. What function
each function term induces is obvious. One should only note that like in the
case of sets, functions are extensional objects. In other words, the functions
that correspond to two function terms of the same type are equal iff to each
tuple of possible arguments they assign the same value.

Another very important property of functions in Weyl’s universe(s) is that
they are always defined: If f is an object of (o1 x --- x g) — 7, and ay.....ax
are, respectively, objects of o1.. ... 0%, then f(ay.....a;) exists, and is an object
of the category 7.”* This implies that whenever we want to define some real
function from R to R with some properties, then we have to define it using a
function term of the type S(N*) — S(N*) (Section 4.2), and make sure that
the value that the corresponding function F assigns to an argument from R
is also in R, and that the reduction of F to R has the required properties. (See
the discussion on pp. 67-8 of [48], where the notion of a real-valued function
is defined.) For example, any function term which we use for introducing
the inverse function on R — {0} will induce a function that is defined on 0 as
well. 24

22This is due to the fact that according to Weyl’s definition, the cardinal of a finite set is
not a number, but a finite initial segment of \V.

23This is in very sharp contrast with what happens in Feferman’s system W from [17].
that is supposed to be based on Weyl’s ideas. Not only W allows functions to be partial—it
employs a special logic (called LPT, for ‘Logic of Partial Terms’) for dealing with terms that
might not denote anything.

24t is interesting to note that for the function 7 which is induced by the narural definition
of the inverse, we have 7(0) = (gy4) (Where Ogna) is the empty set of the category S(N%).

Note that this set in S(N*) is nor a real number.
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4.3.2. Discussion. Weyl’s explanation of his motivation to introduce
functions in the way he did is rather short and ambiguous. Since this is
a very important subject, we would like to devote to it a deeper and more
detailed discussion.

As was emphasized above, Weyl totally rejected the modern concept of a
function. On the other hand, Weyl did consider ([48]. [P. 33]) as an alternative
reasonable choice (to the one he finally chose) at least one other notion
of a function, a notion that at first sight might seem to be more general
than the one described above. It is functions as a special kind of delimited
relations: those which satisfy the functionality condition. Weyl admitted that
“This is one possible formulation of the concept of function”. However, he
thought that the one chosen by him “seems more natural”. He did not give
further explanations why he thought so, except for showing that with the
more general notion, even a proposition like “The sum of two real-valued
functions is itself a real-valued function’ would fail to be correct. However,
this is a subtle matter, so let us try to clarify it.

To begin with, Weyl’s description of this possible notion of a function is
rather vague. Focusing on “single-variable functions”, but generalizing a bit
what is written on pp. 33-34 about this issue (and translating it into modern
language), what Weyl considers here is the principle that if Vx3!y.(x,y) € s,
where x: 0, y:7, and 5s: S(o x 7). then s defines a function from ¢ to 7.
But how should this condition be understood? It cannot be understood
semantically (i.e., as being true in the intended semantics), since then the
property of being a function would not be absolute, that is: its truth value
might not be stable. (We return to this in Section 5.1.) Because of Weyl’s
principles, this would make any formalization of analysis in his system
extremely cumbersome and unnatural. Hence the condition Vx3!y.(x.y) €
s can only be understood syntactically (i.e., as being provable in Weyl’s
system). In other words: Weyl is considering here the use of a limited form
of the extension by definitions procedure [39], in which the formula involved
is delimited. However, doing this has the great drawback of destroying a
very important feature of this system: So far, the introduction of new terms
and relations to the language of the system has been a purely linguistic
matter, not requiring to prove something before. This remains the case when
Weyl’s notion of a function is used. But things change radically once the more
general notion is adopted, together with the provability interpretation. In
such a case, the task of introducing the language cannot be separated from
the task of introducing the proof system. An even more serious problem
with treating functions using the extension by definitions procedure is that
according to it, a formula of the form w{s(z)/y} is just an abbreviation for
Jy.(t.y) € sAy. and so it is not delimited (unless the type of y is N). In other
words: delimited formulas are not closed under substitution of terms for
variables. One result of this unfortunate failure is Weyl’s observation that
under this interpretation, even the sum of the real-valued functions f; and f>
is in general not available as a function, since the obvious definition of this
sum, {(x.y) |Vq.q € y < 3q13¢2.q1 € /L(x)Aq2 € [2(x)A\q = q1 + g2}, would
not be a valid term.
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Another very interesting remark which Weyl made about his concept of a
function is that “[O]nce we become aware of it, we also immediately grasp
its significance” [P. 34]. Again he gave no further explanations about this
significance. However, well before I read Weyl’s book, I had independently
used in [7] the same notion of a function in order to provide a unified
theory of constructions and operations as they are used in different branches
of mathematics and computer science, including set theory, computability
theory, and database theory. As explained in [11], my notion has been based
on the following two basic principles:

e From an abstract logical point of view, the focus of a general theory of
computation should be on functions of the form:

Ve VA (X Xn) €S| S E @(X1ae e X0 Y1se - Vi)

where S is a structure for some first-order signature o, ¢ is some formula
of g, and {{xy.....x»}.{y1..... vk} } is a partition of the set of the free
variables of . Here, ¢ is used to define a query with parameters
V1.---.Vk- Accordingly, the tuple (yi.....yx) provides here the input,
while the output is the set of answers to the resulting specific query.

Note that usual functions to S” can be identified with functions of
the above form in which the output is a singleton.

e An allowable query should be safe in the sense that the answer to it does
not depend on the exact domain of S, but only on the values of the
parameters {y.....yx } and the part of S which is relevant to them and
to the query, under certain conditions concerning the language and the
structures that are taken as relevant to the query.

Obviously, the notion of a function described in the first principle is exactly
Weyl’s notion. It is also rather clear that the notion of safety described in
the second principle is closely related to Poincaré’s notion of invariability,
and so there is a close connection between ‘safe formulas’ and ‘delimited
formulas’. We refer the reader to [7] and [11] for further explanations of these
two principles, including their use for characterizing Church Thesis. Here
we shall be content with some examples of the usefulness and universality
in mathematics of Weyl’s notion of a function.

1. Construction problems in Euclidean geometry. Here what one is usually
required to do is to find a procedure that given some finite list of points,
produces all the points that have a certain relation with the given points.
Thus the procedure for “computing” the function A0A4.{X | XO =
AO} is to construct the circle with center O that passes through A4,
while that for “computing” the function ABAA.{X | XB = XA} is the
construction of the perpendicular bisector of AB.

2. Procedures for solving equations and inequalities. Examples here are
the procedures learned in high school for solving inequalities of the
form ax*+ bx + ¢ > 0, or linear trigonometric equations of the form
Asin(nx) + Bcos(nx) = C. Another example is the procedure given
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in Linear Algebra for solving a system of linear equations with an
arbitrary number of unknowns and arbitrary number of equations.

3. Queries in logic programming and queries in relational databases.

4. Practical computations with natural numbers. In every computerized
system, what is taken as the type of natural numbers is actually
only some finite initial segment of the full set of natural numbers.
Therefore, a safe query should be one that has the same answer in all
implementations in which this initial segment includes the inputs to
the query and the natural numbers mentioned in it. Note that for this,
addition, multiplication, etc., should practically be taken as relations
exactly as they are treated in Weyl’s book.

4.4. Iteration and recursion.

4.4.1. The principle and its justification. As noted above, in Weyl’s system
for analysis, the natural numbers form the sole basic category. Hence the only
quantification which is allowed in it within definitions of sets and functions,
is over the natural numbers. This constraint, together with the fact that the
successor relation is the only primitive relation which is available for the
natural numbers, impose very severe limitations on the power of his system.
In fact, it is easy to see that the principles of Weyl that we have described so
far are not even sufficient for defining addition or multiplication of natural
numbers. To be able to develop analysis in a reasonable way nevertheless,
Weyl added to his logical principles of construction a mathematical principle
which he called ‘the principle of iteration’ and labelled it as Pr. 8. (The
classification of this principle as mathematical rather than logical is due to
Weyl himself. See, however, the discussion in Note 15.) Weyl has repeatedly
emphasized in his papers the crucial role that this principle has in his system.
Thus in [46] he wrote:

In this system iteration plays the role which in set-theory was played
by the uninhibited application of quantifiers. ... we have adhered to
the belief that “there is” and “all” make sense when applied to natural
numbers: in addition to logic we rely on this existential creed and the
idea of iteration.

So what is the principle of iteration? The basic idea behind it is the
following. Suppose ¢ is a type/category and F : ¢ — o. (In Weyl’s original
system such ¢ should be of the form S(z; x --- x 7,,).) One can obtain from
F a sequence of functions F!, F?, F3, ..., where for x: o, F'(x) = F(x),
F?(x) = F(F(x)). etc. In more precise terms, the sequence is recursively
defined (in our metalanguage) by the equations:

F'=F, F' = x: 0. F"(F(x)).

Intuitively, this sequence can be turned into a function IT(F): Nxo — o
by letting IT(F)(n.x) = F"(x) for n: N and x : o. However, the passage
from F to IT(F) cannot be done by using the principles we have so
far. Its introduction is the simplest (and the most useful, at least in
Weyl’s work) form that Weyl gives for his principle of iteration. Then
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he extended it in three directions. First: allowing the use of parameters.
Second: allowing simultaneous mutual recursive definitions of functions.
Third: allowing the application of IT to F alsoin case F': Nxo — o. In
WA, all these forms of the iteration principles are subsumed under one single
form.

What justifies in Weyl’s view his principle of iteration? Exactly what
justified taking the natural numbers as a basic category, and principle P3.
As we have emphasized, for Weyl, the natural numbers and the intuition of
iteration cannot be separated, and together they constitute the most basic
intuition of mathematics. This intuition also stands behind Weyl’s principle
of iteration. This is clearly explained, for example, in the following quote
from [45]:%

The sequence of natural numbers, and the intuition of iteration
underlying it, are ultimate foundations of mathematical thought. The
crucial importance of these foundations in the construction of all of
mathematics is reflected in our iteration principle.

4.4.2. The coherence of the principle of iteration. As explained in [17],
Feferman (and independently G. Longo too) believed that he had found
a “prima facie incoherence of Weyl’s principles” that is caused by Weyl’s
principle of iteration. Unfortunately, because of Feferman’s authority, this
wrong belief has become a generally accepted wisdom. Thus, both Mancuso
([28]. Chapter 9) and Bernard [12] rely on [17] in saying that Weyl’s
iteration principle is problematic. Similarly, in [31] Parsons says that what
Weyl developed in [43] is what we would call arithmetic analysis, and that
Feferman shows in [17] that “Weyl’s recursion principle creates a difficulty
for this”. As we will now show, both claims are simply wrong.

The starting point of this alleged incoherence is one of the most important
ideas of the work presented in [43]: to abandon the ramified hierarchy used
in [49], according to which subsets of N are divided into infinitely many
distinct levels. As is well-known, the use of that hierarchy forced Russell to
adopt the axiom of reducibility. Concerning this, Weyl wrote the following
in [47] (P. 50):

Russell, in order to extricate himself from the affair, causes reason
to commit hara-kiri, by postulating the above assertion in spite of
its lack of support by any evidence. In a little book Das Kontinuum,
published in 1918, I have tried to draw the honest consequence and
constructed a field of real numbers of the first level, within which the
most important operations of analysis can be carried out.

Weyl’s achievement here is correctly described in [17] as follows:

Weyl saw that he could remain faithful to the tenets of predicativity
by confining himself entirely to N and subsets of N of lowest level

ZThisisa paper of Weyl in which he explained his theory in [43], and explicitly emphasized
its merit, but then declared to give it up in favor of Brouwer’s intuitionism.
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(and thereby not requiring any level distinctions), while at the same
time accomplishing substantial portions of classical analysis.

However, Feferman then made the following wrong observation:*®

This development ... may be considered to be a form of arithmetical
mathematics, since the sets of level 0 are just those which are
arithmetically definable.

From this wrong observation, Feferman derived the following wrong
conclusion concerning Weyl’s original forms of his principle of iteration:

[E]Jven accepting the first (also the simplest) of these principles
conflicts with Weyl’s decision to stick to sets of lowest level in the
ramified hierarchy.

This was done in [17] by constructing “a relation definable by the iteration
principle (8) which is not arithmetical, hence not definable at level 0”. Hence
Feferman concludes that

This shows that Weyl’s principle (8) is in conflict with his plan to
work only with sets definable at the lowest level. Clearly, Weyl was
not aware of this problem with his principles.

It should be obvious from all these quotes that the “problem” with Weyl’s
principles which Feferman believed to have found completely depends on
his identification of Weyl’s first-level sets of natural numbers with what is
now known as the arithmetical sets. This is at best an anachronism. The
modern technical notion of an arithmetical set was not known at the time
Weyl wrote [43], so Weyl could not possibly decide to stick to those sets.
But even had Weyl been acquainted with this notion, he almost certainly
would not identify the collection of these sets with the collection of first-level
sets. First, the principle of iteration is so fundamental for him that there is
no way he would have given it up or weaken it in order to stick to the
arithmetical sets. Second, unlike in ACA( and in Feferman’s related formal
systems, primitive recursion in general and the operations of addition and
multiplication in particular, are not taken by Weyl as primitive. As we noted
in Section 4.1, Weyl emphasized in [43] that the only primitive relation
or function that is (and should be) associated with N is the relation of
successor. Therefore, the only way to define arithmetical sets and relations in
his system is via his principle of iteration. Without it, the resulting collection
of first-level sets would have been extremely weak. So for Weyl, the first-level
sets definitely included every set of natural numbers which is definable in
his system. Actually, this is clearly implied by the content of the following
quote, which completely refutes Feferman’s claim about the incoherence in
Weyl’s principles, since Weyl explicitly said in it that the introduction of
the principle of iteration effectively destroys the distinction between sensible
definability in general and first-level definability:

26What Feferman calls here ‘level 0° is what Weyl calls “first level’.
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We see now, given that the principles of substitution and iteration
are to be added, that we can no longer adhere to the notion of a
production of relations and corresponding sets in separate levels.

[P. 40]

A similar indication of the rather broad sense that Weyl has given to the
notion of first-level definability can be found in the description he gave in
[46] of his system in [43]:

The temptation to pass beyond the first level of construction must be
resisted; instead, one should try to make the range of constructible
relations as wide as possible by enlarging the stock of basic operations.

This quote also shows that Weyl has sought to make the collection of first-
level sets as extensive as possible, rather than to restrict it. This fact is in sharp
contrast with the belief that he would have decided to restrict his first-level
sets to the arithmetical ones had he known the latter.

Finally, in Section 5.1, we will show that not only Weyl did not decide to
stick to the arithmetical sets—but also, he explicitly refused to stick to any
definite collection of sets of natural numbers!

To sum up: the ‘incoherence’ and conflict that Feferman has spotted were
between Ais principles and those of Weyl; not in Weyl’s principles themselves.

4.5. The proof system. The rich language of Weyl’s system already
provides a lot of information about his universe(s). Still, a language does
not suffice for making a mathematical system. To prove theorems we also
need axioms, together with a logic for deriving theorems from them.

4.5.1. Axioms. The most obvious group of nonlogical axioms in Weyl’s
system are those that characterize the single basic relation which is assumed
by him: the successor relation Succ on the natural numbers. Here we simply
have the usual Peano’s axioms for Succ, including induction:

[T]he elementary truths about numbers can, by copious use of
induction, be derived from the two “axioms”: ‘every number has a
unique immediate successor’ and ‘every number other than 1 has a
unique immediate predecessor.’ [P. 58]

There is one important problem with the content of above quote: it
mentions induction, but it does not explain what form of it might be
employed. This might be the reason for Feferman’s claim in [17] and [19] that
there is an ambiguity in Weyl’s system concerning this issue, because it is not
clear whether Weyl would have admitted the full scheme of induction, or just
the limited one which is used in ACAy and W (namely: that a set of natural
numbers which includes 1, and is closed under the successor operation, is
equal to N). However, Feferman is wrong here, because it is clear that Weyl
does mean here the full scheme. First: there has been no possible reason
for Weyl to reject it. On the contrary: accepting it is almost dictated by
his ideas. Second (and more important): Weyl’s principle of definition by
iteration is not limited to the second-order level, but can be used for defining
higher-order functions. However, it would be impossible to prove anything
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nontrivial about functions defined in this way without having sufficiently
strong corresponding axioms of induction. A case in which we have already
seen such a use of strong induction is Weyl’s treatment of cardinalities of
sets of numbers that was reviewed in Section 3.4. This example can leave no
doubt about the strength of induction that Weyl accepts in [43].

The answer to the question what else is taken as nonlogical axioms in
Weyl’s system depends of course on the question what is taken to be the
logic employed there. The only answer to the first question that can be
found in Weyl’s book is given in the following quote:

Our principles for the formation of derived relations can be for-
mulated as axioms concerning sets and functions; and, in fact,
mathematics will proceed in such a way that it draws the logical
consequences of these axioms. [P. 44]

The principles referred to in this quote can be divided (as usual in set
theory, second-order logic, and typed or untyped A-calculi) into two sorts:

Comprehension axioms. which characterize sets and functions (by
specifying conditions for elementhood in the case of sets, and the results
of applications to arguments in the case of functions).

Extensionality axioms. which specify when two sets or two functions
are taken to be equal.

The axioms of both sorts that underly Weyl’s system are the standard
ones, and exactly what one would expect.

Note 17. Note that in the first quote from Weyl in this subsection,
Weyl refers to the two basic axioms concerning the natural numbers as
“axioms”, implying (so it seems) that they are not axioms in the usual
sense of his time. Moreover, in [46], Weyl wrote that in Das Kontinuum, he
“was able to build up in a purely constructive way, and without axioms,
a fair part of classical analysis”. This seems to me to contradict the two
quotes from Das Kontinuum brought in this subsection, unless Weyl views
all the axioms mentioned here as logical axioms. If so, this would mean that
Weyl took even the basic axioms of the successor relation as “logical”,
which is surprising. In any case, it again shows that Weyl did not like
to call “axioms” the propositions that function as axioms in his system.
Maybe (and this admittedly would need further support) this was due to his
objection to Hilbert’s views about the role of axioms in mathematics. Still,
from the modern point of view, at least the two principles concerning the
natural numbers which are mentioned above are definitely axioms, without

quotation marks.
4.5.2. Logic. It is well-known that Weyl turned to intuitionism not long

after the publication of “Das Kontinuum”. Therefore, it is important to
emphasize that in “Das Kontinuum” itself Weyl used classical logic freely,
without expressing any intuitionist tendencies. Thus he wrote:

“Fermat’s last theorem”, for example, is intrinsically meaningful
and either true or false. But I cannot rule on its truth or falsity
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by employing a systematic procedure for sequentially inserting all
numbers in both sides of Fermat’s equation. [P. 49]

What is more, Weyl explicitly accepted and used in [43] the main classical
principles that are rejected by the intuitionists: the law of excluded middle,
and the equivalence of Vx¢p with —Ix—¢:

Taking U to be any judgment at all, UV —U is self-evident ~ [P. 17]

“Every object has such and such a property” means “There is no
object which lacks the relevant property.” [P. 12]

The last quote is actually the place in the book where Weyl introduces the
universal quantifier, taking it to be a defined quantifier.

According to Feferman, Weyl accepted classical logic in general, and
applications of the law of excluded middle to quantified formulas in
particular, only with respect to domains which he took as extensionally
determinate, but not necessarily for ‘open’ domains. Thus he writes
in[17]:

In “Das Kontinuum”, only one closed infinite totality is assumed,
namely, that of the set N = {0,1,2,...} of natural numbers. The
definiteness of this concept is reflected in the assumption of classical
logic with its consequence, for each number theoretic property P(n).
that either P(n) is true for all 7 in N or P(n) is false for some nin N ,
that is, in logical symbolism, VnP(n) vV 3n—P(n). ... Though Weyl may
have been equivocal on this point of underlying logic, either way he
clung to the definiteness of the natural number concept. ...

This understanding of Feferman seems indeed to be supported by Weyl’s
distinction between extensionally determinate collections (like N), in which
an existential statement “possesses a sense which is intrinsically clear”, and
those which are not extensionally determinate (like R), in which this is
not the case. On the other hand, the definition given in the first chapter
of the universal quantifier in terms of the existential one and negation
remains in force throughout the book; nowhere there did Weyl describe
a new, independent sense of it when it comes to propositions about real
numbers and real-valued functions. This means that classical logic is the
official logic of all parts of Weyl’s system. (And indeed, the law of excluded
middle is applied to the reals several times in Weyl’s development of analysis.
See Section 6.5.) However, in contrast to what Feferman has thought, there
is no conflict between this fact and between Weyl’s view of R as an open
collection. We shall explain and clarify this point in Section 5.1.

The next question is: what about equality? The answer to that has already
been given in Section 3.5. The same answer is also provided by the way
analysis is developed in the first five sections of the second chapter of [43]. It
is clear that Weyl took there for granted the axioms of equality that ensure
that it is a congruence relation. Since Weyl’s system is a typed system which
employs abstraction terms, it follows that the logic which underlies it includes
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the whole of classical many-sorted first-order logic with variable binding term
operators and equality (where the latter is available in all sorts /types). This is
reflected in WA.

Is the logic used in [43] identical with first-order logic with equality? The
answer to this question depends on what one takes as ‘logic’. As we said in
Note 15, Weyl himself seems to be confused concerning this point, and the
word ‘logical’ is ambiguous in his book. Thus he talked there several times
about ‘general logical principles’. (See, e.g.. P. 46 and P. 70.) But what he
means by that seems to change from one place to another. On one hand,
there are places in which by ‘logic’ Weyl indeed means just what is called
now ‘first-order logic’. For example:

[T]he list of the six principles of definition is, just by itself (unless we
are wrong to think it complete), of considerable importance for logic.
[P. 14]

Weyl’s six principles are indeed complete for defining first-order languages
without function symbols. So Weyl’s belief in their completeness makes sense
only if ‘logic’ is identified with first-order logic, and does not include the
principle of definition by iteration, that is introduced later in the book. On
the other hand, there are places in the book in which all of Weyl’s eight
principles of definition, including iteration (which is the last one), are taken
as logical. As a consequence, induction (the inference rule which is connected
with the principle of iteration) is taken as a logical rule too:

[I]t is natural that an expansion of the forms of inference accompany
the extension of the table of our principles of definition. Thus, in
particular, the principle of iteration carries with it the Bernoullian
“inference from n to n+ 17 (or “inference by complete induction”).
[P. 39]

Finally, as been observed in Note 17, there are also places in which (under
the influence of Russell’s approach?) Weyl seems to take his system as a
whole to be purely logical:

I may or may not have managed to fully uncover the requisite general
logical principles of construction—which are based, on the one hand,
on the concepts “and”, “or”, “not”, and “there is”, on the other, on
the specifically mathematical concepts of set, function, and natural
number (or iteration). (In any case, assembling these principles is not

a matter of convention, but of logical discernment.) [P. 46-47]

Whatever the views of Weyl about what is ‘logical’ and what is not really
were—determining them is not so relevant for adequately formalizing his
system. For the accuracy of such a formalization, it does not really matter, for
example, whether the comprehension and extensionality axioms belong to
the underlying logic (making it an infinite-order logic) or not. Neither does
it make a difference whether induction is taken as a part of the underlying
logic, or as an additional axiom schema. Actually, because of the central
place that the iteration idea and the natural numbers have in [43], we believe
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that the logic that best suites the spirit of this book is ancestral logic AL, the
logic obtained by adding to first-order logic a transitive closure operator.
(See. e.g.. [5. 13, 29, 30, 38].) However, the underlying logic we have chosen
for WA reflects better than AL what is actually written in [43], and unlike AL,
it has corresponding sound and complete proof systems. (This is something
that Weyl did not know, of course, when he wrote [43].)

§5. The meaning and use of Weyl’s system.

5.1. Intended semantics. Once we have turned Weyl’s system into a
modern formal system WA, we should ask: what is the semantics of WA
from a modern point of view?

One possible answer is that in addition to the natural numbers, the
universe of Weyl’s system for analysis consists of the sets and functions
that are defined in his system, that is: those that are defined by closed terms
of WA. Following the theory of knowledge representation in general, and
database theory in particular, we may call this the ‘closed world assumption’
(CWA). However, CWA is in conflict with Weyl’s fundamental views of the
ideal categories as open collections. As we are now going to show, it also
contradicts several places in [43], from which it follows in a decisive way
that the number of intended models that Weyl envisaged for his system was
greater than one. We call this answer to the question about the intended
semantics of Weyl’s system the ‘open world assumption’ (OWA).

A first place in [43] in which Weyl clearly adopts the OWA, and this is
crucial for his conclusions, is his discussion of the subject of cardinalities
(described in Section 3.4 above). This subject is important for Weyl, because
basing the natural numbers on the idea of iteration (as Weyl does) explains
only their role as ordinals, but not their roles as cardinals. So Weyl found
it necessary to justify that role too. Accordingly, he devotes to this issue
pp. 38-39 of the first chapter (in which the cardinality of a set is defined),
and pp. 55-58 of the second (where the basic properties of finite cardinals are
proved in his system). Unlike in Cantor’s set theories, according to Weyl’s
definition all infinite sets have the same cardinality, which he denotes by
oo. The reason Weyl gives for that is the nonabsoluteness of ordinals and
cardinals in the infinite case.”’

[Clontrary to Cantor’s proposal, no universal scale of infinite ordinal
and cardinal numbers applicable to every sphere of operation can exist.
(This does not, however, rule out a universal set theory.) [P. 24]

On the other hand, with finite sets things are completely different:

The numbers can (in any sphere of operation) be used to determine
the cardinality of sets of objects of any basic category. [P. 55]

?"In a famous wager, Weyl made with Polya in 1918, Weyl rejected even the statement that
every infinite set of numbers contains a denumerable subset. (See [36] or [17] for more details
on that wager.) This rejection appears also on [P. 79] of [48]: “[T]he presence of an infinite
set of real numbers does not in itself guarantee the existence of a sequence f(n) consisting
exclusively of numbers of this set”.
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In both quotes, it is essential for Weyl to speak about every (or any) sphere
of operation, that is, possible universe. The claims would have made no sense
had the CWA been adopted!

Another, particularly significant, place in which the OWA is expressed
and used is where Weyl discusses the nonabsoluteness of the most important
property that functions over R may have: continuity. He notes:

We can see that being continuous at a value a is not a delimited
property of a function (and therefore is dependent on a precise
demarcation of the scope of the concept “real number”). In the next
section, we plan to give an account of the great significance of this
fact for analysis, both pure and applied. [P. 81]

The account promised at the end of this quote is given a few pages later:

If we regard the principles of definition as an “open” system, i.e., if we
reserve the right to extend them when necessary by making additions,
then in general the question of whether a given function is continuous
must also remain open (though we may attempt to resolve any
delimited question). For a function which, within our current system,
is continuous can lose this property if our principles of definition are
expanded and, accordingly, the real numbers “presently” available are
joined by others. [P. 87]

Then Weyl added (in footnote 7 to the last paragraph) that

Of course, in the case of every function one encounters in analysis,
this question does not remain open, since the negative judgment which
asserts their continuity is a logical consequence of the “axioms” into
which the principles of definition change when formulated as positive
existential judgments concerning sets. [P. 122]

To begin with, these quotes refute again, in a decisive way, two claims
of Feferman that have been mentioned above. First, not only Weyl never
said that he had decided to stick to the arithmetical sets—but also here
he explicitly talks about the right of extending his current methods of
definition, and about the implications of this right. Second, in contrast
to what Feferman wrote in [17], they make very clear what position Weyl
takes on quantification over relations and functions as part of the language.
However, what is really important about the content of these very important
quotes (which Feferman seems to completely ignore) is the light which they
shed on three important issues concerning Weyl’s system and approach in
[43].

e Since the intended semantics of Weyl’s system consists of an open
collection of “spheres of operation”, its main use cannot be for
providing semantics for analysis. It can only be as an axiomatic theory,
which should be valid for every potential universe for analysis. Despite
the fact that Weyl was reluctant to use the word ‘axiom’ (Note 17), the
content of footnote 7 we have just quoted shows that he was very much

https://doi.org/10.1017/bsl.2020.23 Published online by Cambridge University Press


https://doi.org/10.1017/bsl.2020.23

60 ARNON AVRON

aware of this nature of his system. So does his remark that the fact that
there cannot be a universal scale of infinite cardinals does not rule out
a universal set theory. Actually, Weyl has explicitly said that the goal of
his principles is to get a mathematical theory:

If we are to use our principles to erect a mathematical theory, we
need a foundation [P. 48]

e The above quotes emphasize again the central role that absoluteness
plays in Weyl’s system. Thus his theory is intended to be able to prove
only absolutely true propositions. (Exactly like in set theory, Weyl calls
a proposition ‘absolute’, if its truth value remains “stable and invariant™
in the passage from a universe to an expansion of it.)

¢ One of the examples that Weyl gave of questions that may be asked about
a given function of a real variable, is whether it is continuous [P. 54].
Now we see that his answer to this question depends on the model
of the theory in which we are working when it is asked. A function
that is continuous at our current model might lose this property in an
expansion of it.”® However, in each model, the question does have a
definite answer. The same applies to any other proposition ¢. It follows
that —¢ V ¢ always has the truth value true, and so is absolute, even in
case ¢ itself is not. The same applies of course to every other classical
tautology. This explains and fully justifies the use of classical logic in
Weyl’s system!

Norte 18. It is very common to read in the literature that the law of
excluded middle applies only to a proposition with a definite truth-value
(implying, according to [42]. that classical logic is valid for a closed universe,
while intuitionistic logic should be applied in an open one).”” This claim
is based on a logical confusion between ‘ ¢ has an absolute truth value’
and - V . For the validity of the latter, it suffices that in every relevant
universe/structure, ¢ has a definite truth value. The former means that this
definite truth value should be the same in all of them.

5.2. The possibility of iterating the “Mathematical Process”. As we saw,
Weyl retained the option of adding new principles of definition to his system.
In this section, we discuss the only possible candidates that Weyl actually
considered in [43] (and decided not to use). Both of these candidates
are connected with iterating what Weyl called ‘the mathematical process’
(Section 4.1). The latter, recall, is the process by which we turn intensional

28By a ‘given function’, Weyl obviously means here an interpretation of a given function
term. 1 do not see any other possible way to understand his claim. Note also that this
particular proposition is downward absolute, that is: when a model is expanded to a bigger
one it can change its truth value from true to false, but not vice versa.

2Thus Feferman says in [17] that Weyl regarded statements formulated in his terms as
“having a definite truth value, true or false, and thus accepted classical logic (first-order
predicate calculus) as basic”. Similarly, Parsonas writes in [31] that for Weyl, “the question
whether ...has a definite sense, and the law of excluded middle applies”.
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relations into extensional sets and functions. Concerning the use of this
process Weyl wrote:

In the early stages of my presentation, this transition also depended
on the concepts of (one- and multi-dimensional) ser and function:
and the conception which drove us forward was that of the iteration
of the construction process ...But in the systematic construction at
which I finally arrive (Chapter 1, Section 8) ... the conception of the
iteration [of the construction process] is again dropped entirely, and
the concept of set and function must be deferred much longer than
was done originally. [A:P. 114]

In order to understand the second part of the last quote, note that the
introduction of all the terms of WA (which correspond to the intensional
relations accepted by Weyl) is completely independent of applying the
‘mathematical process’. In other words: all the relations, of all categories,
are available to us already at the syntactic stage of setting the language. The
‘mathematical process’, which in practice is imposed by the introduction
of the extensionality axioms, is then applied to the whole system of
terms/relations, and it simultaneously provides extensional semantics for
all of them. This order of development is described by Weyl himself as
follows:

If we imagine, as is appropriate for an intuitive understanding, that
the relations and corresponding sets are “produced” genetically, then
this production will ... occur in merely parallel individual acts (so to
speak). [P. 40]

Only now, at the end, should the concept of set and function be
introduced. [A:P. 117]

However, Weyl is telling us that at the beginning of the research that has led
to [43], he did intend to follow Russel in iterating the construction process
and using ramification. By doing this, one gets sets (and functions) that
belong to the same category, but have different levels. The most important
case in which new objects might be obtained in this way is when the
corresponding category is S(N") for some 7. (Recall that every real numbers
is an object of this sort, where n = 4.) The first iteration of the mathematical
process consists in this case of two steps, of which the second is optional.

1. Adding to S(S(N")) a new close term (perhaps in the form of a
constant), whose intended semantics is the collection of all the sets
that are induced by close terms of type S(N”) in WA’s language.

2. Treating the new set as a new basic category, by allowing to quantify
over its elements in legal definitions of objects.

Allowing only the first step is called by Weyl ‘the narrower procedure’. This
process obviously provides a new method for producing new sets of type
S(S(N")). However, Weyl claims (without a proof) that by adopting it we
will not get new sets of type S(N"). (In particular: no new real numbers.) In
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contrast, Weyl proved that the combination of the two steps does provide
new real numbers. These numbers are then real numbers of level 2 (where
the real numbers of level 1 are those that are definable in WA). By iterating
this process (i.e., both steps), one gets real numbers of arbitrary finite level.

There is no place in [43] (or in later works of Weyl) in which the iteration
of the process just described is rejected as impredicative.’’ Still, Weyl has
decided to avoid any iteration of even the narrower procedure. The reasons
he gave for this decision are mainly practical: the resulting system would be
too messy, and it seems that nothing important would be gained.

A “hierarchical” version of analysis is artificial and useless. It loses
sight of its proper object, i.e., number. [P. 32]

As far as I can see, analysis provides no occasion for iterating
this expanded mathematical process which includes the principles
of construction 7 and 8. [A:P. 117]

NotEe 19. The last quote explicitly refers to iterating the full process that
led to WA, including the substitution principle and the iteration principle
(which should not be confused with the iteration of the mathematical
process). However, the possibility to iterate the mathematical process was
first discussed and rejected already before the introduction of these two
principles. In fact, we have seen in Section 4.4.2 that the introduction of the
iteration principle is Weyl’s alternative to the iteration of the ‘mathematical
process’. Weyl even seems to suggest (in quotes brought there) that there is
a conflict between these two methods of construction!

Let us return to the justification of the avoidance of the iteration of the
construction process. Though Weyl’s practical arguments are convincing,
and he is also right in calling such an iteration ‘artificial’, in my opinion
there is also a good philosophical reason (from Weyl’s point of view) to
reject the idea of even one iteration of the process. The essence of this idea is
to treat, for example, the collection D(N) of the sets of natural numbers that
are definable by terms of WA as if it is a new basic category. The justification
of this move seems to be that this collection is (in Weyl’s terminology) an
extensionally determinate collection. However, according to principle P2,
this is not enough. A basic category should be equipped with “immediately
exhibited” primitive relations between its objects. As I wrote in Note 10, I
believe that this means that those relations should be decidable. But even
the identity relation on D(N) is obviously undecidable (in the sense that it
is undecidable whether two closed terms of WA induce the same set), and
it is difficult to see in what sense this relation can be taken as “immediately
exhibited”. Accordingly, D(N) should not be treated as if it were basic.

Another question, that naturally arises when quantification over D(N) is
allowed just because this collection is extensionally determinate, is: why not
allowing such quantification over any present element of S(S(N")) which we

30And indeed, a transfinite iteration of this sort is the basis of the famous Feferman—
Schiitte analysis of the limit of predicativity. (See [16. 21, 37].)
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recognize as extensionally determinate? This was exactly the idea of Holder
in [23] (Note 2 above), and accepting D(N) as legitimate strongly supports
Holder’s position. (Recall that Weyl himself considered doing so in the case
of the collection Q* of fractions. See footnote 17.)

§6. Developing analysis in WA. In this section, we outline the way Weyl
developed the fundamentals of classical analysis in the first five sections of
the second chapter of [43]. (Sections 6-8 are less relevant for this, and are
left for another occasion.)

6.1. Natural numbers. Recall that the only basic structural elements that
Weyl assumes on N are the binary equality and successor relations. So Weyl
starts Chapter 2 by showing how to use iteration in order to define addition
(+) and multiplication ( x) of natural numbers as ternary relations on N.
(Thus, e.g., the intended meaning of +(n.k,m) is that m is the sum of n
and k.)

Notations From now on, i,j, k,/,m,n will be used as variables of type N.
We denote {(i.j) | i =} by Id~. and write just IT instead of IT}.

Here is the definition of +:

Fsuee =X : S(N*) {(m.k) | 31.Succ(k.))A(m.1) € X},

Ry ={(n.k.m) | (m.k) € IT(Fsucc)(n.1d ) }.

Using induction on n in the metalanguage, it is easy to see that for every set
X of natural numbers, IT (Fs,.)(n.X) is the set of all pairs (m.k) such that
the pair (m.k +n) is in X. This implies that for every n. k. m, (n.k.m) is in
R, iff n+k = m. Hence the above definition of R, is indeed adequate.

Next one uses induction on n within WA to show that R, defines a binary
operation on N, that is: Fwa VaVk.3!'m. R, (k.n.m)

Handling multiplication of natural numbers in WA using addition is rather
similar to the way addition was introduced above using Succ:

F. =X :S(N*).{(m.k)|3.(m.I) € XN(m.l.k) € R},

Ry ={(n,m.k)|(n= 17"k =m) Vv 3I.Succ(l,n)\(m.k) € IT(F.)(l.1dx)}.

CoNVENTIONS. In the definition above of Ry we wrote n = 1 instead of
VI=Succ(l.n). It is indeed rather inconvenient to continue to use the purely
relational official language of WA. Therefore, we shall henceforth use (like
Weyl himself did) an extension of the language which has the constant
1, denoting the first natural number, and the usual function symbols for
the unary successor function and the binary addition and multiplication
functions. Thus we shall write (1) instead of In.o (n) A\Vk—=Succ(k.n): (1)
instead of In.¢o(n) ASucc(t,n); and (¢ +s) instead of In.p(n)A(1.5.n) € R,
Since ¢ Vk—Succ(k,n)’, ¢ Succ(n,m)’, ¢ (n.k,m) € R.’, and * (n.,k,m) € R,’
are all delimited formulas, the axioms for Succ and the above theorem of
WA about R, can be used for justifying these conventions in a way which is
similar (though a little bit more complicated) to the way the usual extension
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by definition procedure (for ordinary first-order logic) is justified.’! (See,
e.g.. [39].) We shall also denote 1’ by 2, 1” by 3, etc.

It is now straightforward to derive in WA all the axioms of PA (first-
order Peano’s Arithmetics). It follows that WA is at least as strong as PA.
Note that in [17] it is shown that the definability power of WA is actually
strictly stronger than that of PA, while from results in [3] it follows that the
proof-theoretical strength of the former is much bigger than the latter.

6.2. Fractions and rational numbers. After his treatment of the natural
numbers, Weyl first turns to the introduction of the fractions (i.e.. the
positive rational numbers), and then to the introduction of the rational
numbers themselves. His treatment of the former is rather standard and
straightforward, and is similar to the way it is done, for example, in
the classical book [25]. In particular: fractions are essentially equivalence
classes of the obvious corresponding equivalence relation on pairs of natural
numbers. Here is the formalization of the main definitions:*

o /=imn{(k.])|ml=nk} [/: N*— S(N*)].

e m/n=/(m.n); an element of S(N?) of this form is called a fraction.
Q" ={g:S(N?) | Im3n.g=m/n} [Q":S(S(N*))].

+ = A"ql . S(Nz),qz . S(N2).{(k, l) | HmlﬂnlEIszlnz.ql = ml/nl/\qz =
ma/mNk/1= (muny+mony) /(mim)} [+ (S(N?)? — S(N?)].

X = /16]1 : S(Nz),qz : S(Nz).{(k, l) | dm3n AmyIn,.qp = ml/nl/\qz =
ma/maNk/1= (mumy)/(mny)} [ : (S(N?)2 — S(N?)].

o <= {(q1.92) : (S(N*))? | 3m3In.qy = q1 + m/n} [<: S((S(N?))?)].

Note that in all the definitions above except the first, the equality symbol
is put between two terms of type S(N?), and so the resulting formulas are
equivalent (by extensionality) to delimited formulas.

It is a straightforward matter now to prove in WA that Q™ is closed under
+ and x, that these operations and < have in Q" all the basic properties we
expect (like distributivity, associativity, invertibility under x, etc.), and that
in.n/1is an embedding of N into Q.

The next obvious step, the construction of the rational numbers from the
fractions, involves a small complication. The standard and natural way of
doing so is to imitate the construction of the fractions from the natural
numbers, using the addition of fractions instead of multiplication of natural
numbers. This would have been straightforward had the fractions been taken
as a new basic category. The definitions would have then been as follows:

o =Jq1:Q".q2: QT {(r1.12): Q") |1 +ra=qo+11}.
e Q={q:S((Q")?) |3q1:Q*392: QT . =q1 — 2}

3'Weyl used these conventions without trying to justify them, taking for granted that his
readers would see how to eliminate them, and that their use is conservative.
Like in all texts in mathematics, the symbols +, X, and < are overloaded here.
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However, Q' is not a basic category in WA, but a subset of the
ideal category S(N?). Therefore, we should replace Q* in the above two
“definitions” by S(N?). We get then that — (S(N?))? — S(S(N?)) (which is
a third-order operation), while the definition of Q becomes illegal.

Weyl’s solution to this problem is rather simple and obvious. Since each
fraction is representable by a pair of natural numbers, a pair of fractions
can be represented by a quadruple of natural numbers. The above two
“definitions” are therefore changed into the following ones:

o —=Jq1:S(N?). q2: S(N*) {(m1.ny.my. m3) | g1 +may/ny = qy+-my /my }.
e Q= {q:S(N4) Imy: N 3np: N3my: NIny: Nog=my/ny —my/ny}.

Note that — S(N?)2 = S(N*), Q: S(S(N*)), and that the relations = and C
between elements of Q are delimited relations (since those relations between
elements of S(N*) are delimited). It is now a routine exercise to define on
Q (actually: on the whole of S(N*)) the operations + of addition and x
of multiplication, as well as the order relation <. (Note that the latter is
a delimited relation on S(N*).) It is also easy to prove then in WA all the
standard basic properties of 4, x,=, and <.

Although Q is not officially a basic category, it can practically be treated as
such, since we can use in delimited formulas equality between its elements,
as well as quantification over it. The latter can be done as follows:

o Vr:Q.o(r) is an abbreviation of Vm,n. k. l.o(m/n—k/1).
e Jr: Q.p(r) is an abbreviation of Im,n.k,l.o(m/n—k/I).
e {¢:Q|¢(g)}is an abbreviation of {x € N*|3r: Q.o(r)Ax € r}.

6.3. Real numbers.

6.3.1. Introducing the real numbers. As we said in Section 4.2, the real
numbers are essentially taken in [43] to be Dedekind cuts. Again there is
a problem. Since the rationals are elements of S(N%), sets of rationals (as
Dedekind cuts are usually taken to be) are elements of S(S(N*)), and so
third-order objects—and as such it would be too complicated to handle
the real numbers in WA. Weyl’s solution to this problem is to take a real
number not as a certain set of rational numbers, but as the union of such a
set. Formally, let RN = S(N*). (This is just a convenient shorter name that
Weylintroduced: RN is not a new basic category.) Weyl called M : RN a real
number if M is neither empty nor the whole of N*, and Vm. n.k.1.(m.n. k1) €
M —m/n—k/I C M. (It follows that both the rational numbers and the real
numbers are elements of RN according to Weyl’s definitions.) In addition,
Weyl uses a terminology that connects the treatment of the reals in his
system with the standard one. He says that a rational number ‘belongs’ to a
real number M if it is a subset of M. Following this terminology, we too use
sometimes below € as a synonym of C (that is: write r€M instead of r C M).
Thus, if M is a real numbers, then (m;/n) —my/ny) € M < (my,ny.ma.ny) €
M. Using this terminology. Weyl defines R and basic related notions as
follows:
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DEFINITION.

1. The formulas Real(x), where x : RN, is the conjunction of the following
delimited formulas:

o Vm,n.k,l.(m.nk,1) € x—m/n—k/IC x;
o Jr: Q(réx)AJr: Q—(réx):;

o Vi :QVry: Q.ri€ExAIp < 1| — 1EX;

o Vry: Q(rpé€x — Jr; : Qr€xAry < 1y)).

2. R={x:RN| Real(x)} [R:S(RN)].

3. Letf: 0 — RN. The domain dom(f) of f is {x:a | f(x) € R}.

4. f: N— RN is a sequence of real numbers if Vn : N.f(n) € R.

5. Let T: S(RN"). f: RN" — RN is a real function on T (of n variables)
ifVx: RN".xe€ T — x € dom(f).

Note that being a real number and being a sequence of real numbers are
delimited properties. In contrast, being a real function of n variables is in
general not (even forn=1).

Defining the standard order relation on R, and the binary operations
+, x of addition and multiplication (respectively) of real numbers, is now
done in the usual way. (E.g.. + = Ax;: RN, x;: RN.{(m,n.k.1) | 3r; : QI :
Q.r1€ExiAREXIN(m, n,k, 1) € ri+1,}.) It is also not difficult to prove in WA
the following properties of R:

e +and x are real functions on R.

e For x: RN let x* = {(m.n.k.1) | 3r: Q.r < xA(m.n.k,l) € r}. Then the
reduction of Ax € RN.x* to Q is an embedding of Q in R. Moreover,
{y: RN | 3r:Q.y =r*}is a dense subset of R.

e R equipped with 4, x, and < is an ordered field of characteristics 0
that satisfies Archimedes’ axiom. Moreover: there are corresponding
definable inverse functions —: RN? — RN and = : RN?> - RN. (It is
provable in WA that if x,y € R then x +y € R iff y £ 0*. However x -y
is defined of course also in case y = 0*. See footnote 24.)

6.3.2. Algebraic numbers. Weyl’s next goal is to define the notion of an
algebraic number. This is not a straightforward task, though. There is no
problem, of course, to define separately for each natural number 7 the set
of real numbers which are roots of some algebraic equation of order n with
rational coefficients. (Thusin case n =2, itis defined by {x: RN |x € RATr; :
Q3o : Q.x x x+r} x x+r3 = 0*}.) However, in order to define the general
notion of algebraic number, we should be able to define the union of all these
sets, and it is not obvious at first sight how to do it. Nevertheless, Weyl
solved this problem rather easily by applying an iteration to the following
third-order function A:

A=AiLe S(RN?){(x.b): RN? |Tr:Q.(x,xxb+r*) € L}.
It is easy to see that for every n: Nand L: S(RN?), IT(A)(n. L) is:
{(x.b): RN?|Tro: Q... 3, 1:Q.(x.x" xb+r,y x X" ' +---+rp) € L}.
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Let Ly = {(a.b) : RN? | a € RAb = 0*}. Then the set of algebraic numbers
is defined by the term: {x: RN | x € RATn.(x,1*) € IT(A)(n, Ly)}.

6.3.3. Complex numbers and pairs. Section 3 (on real numbers) of Chapter
2 of [43] ends with the introduction of the complex numbers. There is nothing
surprising or original in the way this is done: a complex number is defined
as a pair of real numbers. However, Weyl’s approach to the notion of a pair
is certainly unusual.

Recall that although the formal expression (x.... . x,) is used in our formal
terms, this is not a term itself. (See footnote 12 and Note 3.) Actually, it seems
that Weyl was very reluctant to use the notion of a pair: it is never mentioned
in Chapter 1 of [43] (where Weyl’s system is introduced). In Chapter 2, on
the other hand, the notion is used, but in different ways. Thus it is used in an
unofficial way on [P. 51] (of [48]), where the notion of ‘set of pair of natural
numbers’ is explicitly identified with that of ‘two-dimensional set of natural
numbers’, without giving ‘a pair’ an independent meaning. In contrast, on
[P. 66] ‘a set of pairs of fractions’ is identified with ‘a four-dimensional set of
natural numbers’. The first time a precise technical notion of a pair is used
is on [P. 74], where the complex numbers are introduced. It is defined there
only for any two nonempty sets of some type. The definition goes as follows.
Let A:S(o; x---xa,)and B: S(ty x---x 7). f n=k = 1then ‘ (4,B)’ is
just the Cartesian product of 4 and B. In the general case, it is the result of
flattening this product. (The condition that 4 and B should be nonempty is
in order to ensure that (41, By) = (4. B,) iff Ay = A, and B; = B,.) Note
that in all cases (4,B) : S(o1 X -+- X 6, X 11 X -+ X 7%.). Weyl notes that for
every ¢ and 7, there is a corresponding function Pairzz. It is important to
add to this the observation that in contrast, the corresponding projection
functions are available only if ¢ and T consist of basic types.

Note also that according to Weyl’s definition, ((4.B),C) = (A4,(B,C)).
This crucial fact might explain Weyl’s reluctance (not explained in his book)
to use the ordinary notion of a pair: He might have wanted to avoid the
complications which would have been involved by iterating this operation,
or by introducing Cartesian product as an independent operation on types.
Thus by introducing the product operator, we would get infinitely many
practically “basic” types (e.g.. N x (N x N)), and various distinctions that
it seems that Weyl found useless.

Finally, what are the complex numbers according to Weyl’s notion of a
pair? Since a real number is for Weyl a nonempty element of RN = S(N*), a
pair of real numbers is an element of S(N®). Hence Weyl’s definitions imply
that complex numbers are equivalence classes of 8-tuples of natural numbers
under a certain equivalence relation. Therefore, each complex number is
characterized by some 8-tuple of natural numbers.

6.4. Sequences and convergence principles.
NOTATION. For convenience, from now on, we shall not distinguish between

a rational number r and the corresponding real number r*, and usually write
just the former where in principle it should be the latter.
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A sequence of real numbers is just a function from the natural numbers
to the reals. Therefore, the type of such a sequence is N — RN. The first
main theorem about the real numbers that Weyl proves in [43] is that any
Cauchy sequence of reals converges to some real number. The definitions
of the notions involved in this theorem are practically identical to the usual
ones. Thus CAUCHY, the collection of Cauchy sequences, is the following
element of S(N — RN) (where |a| is defined as usual):

{f: N— RN|Ve : Q.e > 0— IkVmVn.m > kAn > k—|f (n) — f(m)| < &}.

Similarly, given @ : RN and /' : N — RN, we say that f converges to a (or
that a is the limit of f) if the following condition obtains:

a€RAVe:Q.e>0— FkVnn >k — |f(n) —a| <e.

NoTE 20. The only (rather insignificant) difference between these defi-
nitions and the usual ones is the restriction of ¢ to Q. It ensures that the
collection of Cauchy sequences of reals (and so, by the next theorem, also
the collection of convergent sequences) is a set, and the convergence of a
sequence of reals to a specific real number is a delimited relation. (Note
that the usual definition of the collection of convergent sequences is not
delimited, since it involves quantification over R.)

CAUCHY’S CONVERGENCE PRINCIPLE. A sequence of real numbers
converges to some real number iff it is a Cauchy sequence.

For proving the difficult part of this theorem (i.e., that every Cauchy
sequence converges), Weyl defines:

lim=Af: N— RN{r:Q|3¢: QIn.g > rA\Vm > n.q € f(m)}.

Then lim: (N — RN) — RN, and it is easy to see that for any / : N— RN,
lim(f) is either the whole of R (which is denoted in this context by co), or
the empty set (which is denoted in this context by — c0), or a Dedekind cut,
that is, some real number. One then shows that if / is a Cauchy sequence
then the last case obtains, and f converges to lim(f).

The next topic that Weyl discusses in this section is sequences of functions.
His main observation here is that what is usually written, for example as a
sequence of real functions Fi(x),F>(x).... where F;: RN — RN, is really
a function F: N x RN — RN. Therefore, the limit of the sequence can be
defined as Ax : RN.lim(in.F(n.x)). (Obviously, this limit is a function from
R to R in case Vx.x € R — An.F(n,x) € CAUCHY.)

Cauchy’s convergence principle is one of several principles that are
“allegedly equivalent” [P. 76] in the standard development of analysis. Weyl’s
next determines which of them is provable in his system.

The provable ones are:

1. The intersection of a nested sequence of closed intervals whose length
converges to 0 is a singleton.
2. Every monotone and bounded sequence of real numbers converges.
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The unprovable ones are:
(i) Dedekind’s cut principle:
(ii) The LUB principle:

(iii) Bolzano—Weierstrass theorem for sets;
(iv) Heine-Borel theorem.

NotE 21. Weyl actually stated that Principles (i)—(iv) are false. However.,
he did not prove this, or even that none of them is provable in WA.

Although Principles (i)—(iv) cannot be maintained in WA, most of them
have satisfactory weaker versions that are provable there, like:

(i)’ The sequential LUB principle: Every bounded sequence of real
numbers has an LUB and a GLB.

(iii)” Bolzano—Weierstrass theorem for sequences: Every bounded
sequence of real numbers has a convergent subsequence.

(iv)” The sequential Heine-Borel theorem: If [0, 1] € U, A;. where A; is
an open interval for each 7, then [0, 1] C U?_, A; for some n.

NoTE 22. By a “sequence of intervals” Weyl officially meant (P. 77) two
sequences f and g of real numbers such that for all n, f(n) < g(n). Therefore
the formalization of (iv)’ according to what he had in mind is:

Vf: N— RNVg: N— RN.
(Vx: RN.x € RAO < xAx <1 — Jif(i) <xAx < g(i)) —
— InVx: RN.x € RAO < xAx < 1 — Fii <nAf(i) < xAx < g(i).
To this version of the theorem, Weyl provided a proof by contradiction

that works directly with cuts. The key construction is to show that if the
theorem fails for some /" and g, then the following term

{r:Q|3Imvg:Q.q<r—(g<0vIi<nf(i) <qrhg<g(i)}

defines a real number in the unit interval that leads to a contradiction.
However, using the strong means of construction by iteration and proof by
induction that WA provides. it is possible to prove a more general (and closer
to the usual formulation of Heine—Borel theorem) version of (iv)’:
VA: N — S(RN)
((Vi: N.Open(A(i)))A(Vx: RNxERAO< x <1 —Ji: NxeA(i))
— 3In: NVx: RN.x € RAO < xAx < 1 — Ji: N.i<nAx e A(i)).

where Open(A) abbreviates:
Vx.x€A—=Tr:Qr>0AVy.(y ERAX—r < yAy < x+7) =y €EA.

The proof of the last claim can be done by one of the usual methods (e.g..
by using a repeated bisection of the unit interval).

Section 4 of Chapter 2 (with which the present section of this paper deals)
ends with a very brief outline of how the general principle of iteration enables
us to derive the theory of infinite series (of real numbers and of real-valued
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functions) from the theory of sequences just described. This, in turn, can
be used to develop the theory of power series (and the theory of infinite
products). Finally, the elementary functions “can be defined by using any of
the infinite processes usually employed for this purpose” [P. 80].

6.5. Continuous functions. One great advantage of Weyl’s development
of analysis in his system over the way this is done, for example, in ACA,,
is that Weyl is using no coding. Thus the formalization of his definition of
the continuity of a function f : RN — RN at an element ¢ : RN such that
a € RAf(a) € Ris:

Ve:Qe>0—30: Q0 >0AVx: RN(Jx—a| <d — |f(x) —f(a)] <¢))).

Note that the condition |x —a| < J implies that x € R, and the condition that
If (x) — f(a)| < & implies that f(x) € R. Hence the only difference between
this definition and the usual one is that in Weyl’s definition ¢ and J should be
rational. However, this is an insignificant difference, since Weyl’s definition
and the standard one are equivalent both classically and in WA. Most
probably, Weyl has chosen the above definition in order to show the exact
reason why the property of being continuous at some point is not a delimited
property of a function. (It is due to the universal quantification over x: RN
in the above definition.) We have already discussed the great significance of
this fact in Section 5.1: It means that being continuous is not an absolute
matter; a continuous function might cease to be so when new elements are
added to R. Thus Weyl’s treatment of continuity is in a sharp contrast with
its treatment in ACA( [40] or in Feferman’s systems [17], where continuous
functions are encoded by certain functions from Q to R, and continuity is
an absolute property.
Next, Weyl proves three basic properties of continuous functions:

A: A continuous function assumes all intermediate values.
B: A continuous function on [0, 1] has a maximum there.
C: A continuous function on [0, 1] is uniformly continuous there.

Again, using the strong means of construction by iteration and proof by
induction that WA provides, it is possible to prove these theorems by one
of the usual methods (e.g.. by using a repeated bisection of the relevant
interval), relying for that on the results proved in the previous section (e.g..
that the intersection of a nested sequence of closed intervals whose length
converges to 0 is a singleton). However, again Weyl prefers not to do this
(or even to note this possibility). Instead, he presents direct proofs that use
the definition of real numbers in terms of Dedekind cuts. For example, in
order to prove Theorem A, Weyl assumes that f is a continuous function on
the unit interval such that /(0) < 0 and /(1) > 0, and define c = {r: Q| 3¢ :
Q.0 < g < 1Ag >rAf(gq) < 0}. He then notes (leaving proofs to the readers)
that ¢ is a real number (that is: a Dedekind cut) in the unit interval, and
that /(c) is neither negative nor positive. From the latter fact, he infers that

f(e)=0.
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NoTE 23. In the last step of the above proof, Weyl is applying the law of
excluded middle in the form of the trichotomy /' (¢) <0V f(c) =0V f(c) > 0.
Then in the proofs of B and C, this law is applied to more complicated
formulas. It should be noted, though, that (as far as I have checked) in
“Das Kontinuum” the law of excluded middle is applied only to delimited
formulas. Therefore, it is plausible that in order to develop analysis in WA,
it might suffice to use intuitionistic logic augmented with excluded middle
for delimited formulas (rather than full classical logic).

After proving A, B, and C, Weyl notes (without proofs) that A can be
extended to continuous functions of several real arguments, and that the
fundamental theorem of algebra also holds in his version of analysis. Then
he proves that a monotone continuous function on [0, 1] has an inverse on
[£(0),f£(1)]. He noted that in contrast, an arbitrary function f : RN — RN
may not have an inverse on a set 7 of reals even if for every y € T there
exists a single x € R such that f(x) = y. Finally, the section on continuous
functions ends with the following paragraph, whose content speaks for itself:

In the realm of continuous functions, differentiation and integration
serve as function-generating processes just as they do in contemporary
analysis: no change in the foundations is required. Of course, things
are not so simple in the case of the more far-reaching integration- and
measure-theories of Riemann, Darboux, Cantor, Jordan, Lebesgue
and Caratheodory. [P. 86]

The remaining three sections of Chapter 2 (and the book) also have a lot of
interest, but are less important for the subject of formalizing Weyl’s system
in [43], and developing basic analysis in it. Section 6 is devoted to long and
deep discussion of the differences between the intuitive continuum and the
mathematical one (as developed, e.g.. in the previous sections). Section 7
is about magnitudes in general and their measures, and Section 8 is about
curves and surfaces.

§7. Limitations and drawbacks of Weyl’s system. Although WA has (in
our opinion) great advantages over systems like ACA, or even Feferman’s
W, it has several serious drawbacks as well.

1. There are terms in the language of WA for all three sorts of collections
(I-III) that were described in Section 2, even though collections of
sort III (like the universal element of S(S(S(N))) intuitively is) are not
really objects according to predicative views in general, and those of
Weyl in particular. Even worse is the fact that beyond the types of the
form S(N"), there is no effective criterion for distinguishing between.,
for example, terms that denote extensionally determinate collections,
and those which do not. Thus no method is provided by Weyl that
can allow us to distinguish between the very different nature of the
terms Q (denoting the set of rational numbers) and R (denoting the set
of real numbers). Both terms are of type S(S(N*)), but according to

https://doi.org/10.1017/bsl.2020.23 Published online by Cambridge University Press


https://doi.org/10.1017/bsl.2020.23

72 ARNON AVRON

Weyl himself, the first intuitively defines an extensionally determinate
collection, while the second does not. The same is (respectively) true
for the following two terms of type S(S(N)):

o {{n}|ne N}={X:S(N)|InVkkeX < k=n}.
e P(N)-{0}={X:S(N)|3n.ne X}

2. While {X : S(N) | Vn.n € X} is a term of type S(S(N)) that denotes
the singleton {N}, there is no term of type S(S(S(N))) that denotes
the singleton of this set (i.e., {{A}}). It follows that a finite collection
of extensionally determinate objects of some category ¢ is not always
an object of category S(o). This seems to be incoherent with Weyl’s
most basic principles, since such collections are obviously extensionally
determinate. What is more, this fact actually contradicts what Weyl
explicitly says (P. 20) about the possibility of characterizing a finite set
by simply listing its elements.

3. Following Holder in [23], and the discussions above at the end of
Section 5.2 and in Note 2, it seems strange (according to Weyl’s own
ideas) to allow quantification only over A/, but not over any other
extensionally determinate set. An example of an anomaly caused by
this unjustified constraint is the fact that /" '[Y] = {x: RN|f(x) € Y}
is a set for every subset Y of R and every f : RN to RN, while f]X] is
not a set even in case X is extensionally determinate, because {y: RN |
dx: RN.x € XAy =/(x)} is not a legal term.

4. The language of WA makes many duplications and artificial distinc-
tions. For example, let ' and P be the terms defined in Section 3.4.
While N is the type of the natural numbers, N is a term of type S(N),
denoting the set of these numbers. Hence N and N are two completely
different things, although their intuitive interpretations are the same.
Similarly, while S(N) is the ¢ype of sets of natural numbers, P(N) is a
term of type S(S(N)). denoting the sez of sets of such numbers. Hence
again S(N) and P(N') are completely different things, even though
practically they denote the same collection.

5. Cardinality is defined by Weyl in WA only for sets of natural numbers.
This is certainly not enough. Note that Weyl himself talks in [43] about
e.g. two functions. In other words: he refers to the cardinality of sets of
objects of an ideal type.

§8. The predicative set theory PZF. The main goal of this section is to
demonstrate the relevance that most of Weyl’s ideas in [43] still have for
the problems of the foundations of mathematics and the mechanization
of mathematical proof checking. For this, we briefly describe our own
predicative set theory PZF [8, 10]. This system adheres to almost all the
ideas on which Weyl’s system in “Das Kontinuum” is based, but does not
suffer the problematic aspects of the latter (Section 7). There is only one
major idea of Weyl that is rejected in PZF: the use of types. However, types
are mainly used by Weyl in order to secure that the terms of his theory
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define “extensionally determinate” objects. It turned out that the same goal
can be achieved (and in a better way) without using types. On the other
hand, the set-theoretical framework has the great practical advantage of
being the one which the great majority of the mathematicians in the world
know and prefer. Thus the basic notions of set theory are nowadays used in
any branch and textbook of modern mathematics. Moreover, set theory is
almost universally accepted as the foundational theory in which mathematics
should be developed.
The following principles of Weyl underlie PZF as well.

1.

2.

11.
12.

13.

14.

The natural numbers sequence is a well understood mathematical

concept, and as a totality it constitutes a set.

The idea of iterating an operation or a relation a finite number of

times is accepted as fundamental.

. Induction on the natural numbers is accepted as a method of proof in
its full generality, that is: as an (open) scheme.

. Higher-order objects, such as sets or functions, are acceptable only

when introduced through legitimate definitions.

A definition of an object should determine it in a unique, absolute

way. The same applies to definitions of relations between objects.

. Objects should be introduced genetically, and be derived by adequate,

logical means from few basic objects and relations.

The relations of elementhood (€) and equality (=) are basic.

. The use of quantification over a collection of objects should be allowed
in definitions of objects only if that collection forms an object, and is (in
Weyl’s terminology) extensionally determinate, that is: it is introduced
by a “stable and invariant” definition.

. Sets are extensional: sets that have the same elements are identical.

. Using ramification in definitions, and classifying sets of natural

numbers according to “levels”, are artificial, and should be avoided.

The use of classical logic is justified.

The possibility of introducing new methods of defining sets is taken

into account. Accordingly, the OWA (Section 5.1) is adopted: the

‘universe’ of sets is seen as open. More precisely: our theory has no

single ‘intended universe’.

Set terms of the form {(xi....,x,) | w}. and operations of the form

V1o Vi {(X1... .. xn) | W}, have a particularly central role.

=, A, V, and 3 should be taken as the basic first-order connectives and

quantifiers. (This choice of Weyl is completely justified and inevitable

in the case of PZF. See Note 7 and footnote 34.)

There are of course also issues in which Weyl’s type-theoretic system and
our purely set-theoretic one differ. The main points of difference are due to
our following four other principles, which were not shared by Weyl:

Like in ZF, there is just one category/type of objects: sets.
Like in ZF, we assume just one basic object (()), and only two basic
relations: those that were mentioned in Principle 7 above (€ and =).
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e Every object (i.e., every set) should be ‘extensionally determinate’.

e Quantification over a collection of objects is allowed in definitions
whenever that collection is an extensionally determinate object. (This
is Holder’s principle—see Note 2 and the end of Section 5.2.) By the
previous items, this means that it is allowed over any set.

Unsurprisingly, coping with these principles demands that some of the
common principles above are implemented differently in PZF and in WA.

e The ZF-like framework of PZF causes apparent problems with
implementing the first three principles in the list above. (Those that
are connected with the natural numbers.) This is solved by following a
suggestion that was made in Section 4.5.2 above: using ancestral logic
AL [5, 13, 29, 30, 38] as our underlying logic rather than first-order
logic. In fact, in [5] it was argued that the ability to form the transitive
closure of a given relation (like forming the notion of an ancestor
from the notion of a parent) should be taken as a major ingredient
of our logical abilities (even prior to our understanding of the natural
numbers), and that this concept is the key for understanding iteration,
as well as inductive reasoning. Here it can be added that the use of
AL eliminates the ambiguity in [43] about the meaning of the word
“logical” (discussed in Note 15 and Section 4.5.2), and allows us to
fully adhere to Principle 6.>"

e The most important difference is with respect to the fifth principle in the
above list. Recall that Weyl tried to implement this principle using two
means: imposing type restrictions on variables, and allowing to use in
definitions of objects only delimited formulas. The first of these means
is not available in PZF, and even with its help the second one would not
be sufficient. (See Section 7.) Therefore, in PZF, the use of these two
independent constraints, one connected with a property of variables and
the other with a property of formulas, is replaced by a constraint which is
connected with a single relation - between formulas and set of variables.
Following the terminology of database theory [41], we call - ‘the safety
relation of PZF’. The intuitive meaning of ‘@ (x1.....Xn. Y1..... V) =
{x1.....,x,}" is that the formula ¢ is “extensionally determinate”, or
‘stable and invariant” with respect to the set of variables {x1,...,x;} for
all values of the parameters yy,..., ;. Here we identify these notions
with universe independence.

DEerINITION. Let T be a set theory, and let ¢ be a formula in the language
of T such that Fv(¢) = {X1.....Xu. V1..... Yk }. @ is T-universe-independent
with respect to {xj,....x,} if every transitive model of T is closed under
the operation Ayy,...,yr.{(x1.....x,) | ¢}, and for every tuple (ai....,a,) of

3The set of valid formulas of AL is not r.e. (or even arithmetical). Hence no sound and
complete formal system for it exists. In PZF, we use the standard sound formal system for
AL, as it is presented in [13] (following [29, 30]). One of the crucial rules of that system is a
general rule of mathematical induction.
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sets, the value of this operation on (aj.....a,) is the same in every transitive
model of T that contains ay.....a,.

NoOTE 24. For a set-theoretical platonist, the above definition is absolutely
precise. For someone who is not (like the author of this paper). this is
an imprecise definition that nevertheless provides a good intuition about
the meaning of the informal notion of “universe independence”—and this
intuitive understanding is all we need here.

Note 25. If we identify {} with (., and let {() | ¢} denote 0 (i.e., 0)
in case ¢ is false, and 1 (i.e., {#}) in case ¢ is true, we see that ¢ is T-
universe-independent with respect to 0 iff ¢ is T-absolute according to the
usual set-theoretical notion of absoluteness. (See, e.g.. [24].) Hence our
universe-independence relation between formulas and sets of variables is a
generalization of Godel’s absoluteness (which is a property of formulas).

Universe-independence is a semantic notion. In order to base a proof
system on it, we need (like Weyl) to impose it syntactically (and genetically)
by adequate logical means. (See the sixth principle above.) The solution to
this problem which is used in PZF has come from the observation that this
is an instance of a more general task, not peculiar to set theory. In fact, in
[6, 7, 11] an appropriate purely logical framework, that can be used for this
task, was introduced. This framework unifies different notions of “safety”,
or “domain-independence”, of formulas, coming from different areas of
mathematics and computer science, like: domain independence in database
theory [1, 41], and absoluteness in set theory.

The system PZF from [8] has been designed according to the principles
described above. In the Appendix below, we present an improved version of
it. An (incomplete) investigation of its power can be found in [10].*

Appendix: The formal system PZF
Language. The language Lp,r is defined by a simultaneous recursion.
Predicates and operations:

e = and € are binary predicates.

o If ¢ isa formula such that = pzp(), and Fv(¢) = {x1....,x,} where
n >0, then [(x],....x,) | ¢] is an n-ary predicate.

e If 7 is a term such that Fv(¢) = {y1.....yx}, then Ay,....yr.1 is a
k-ary operation.

Terms:

e Every variable is a term.

3*Note that in PZF, it was necessary to take 3 and both of A and V as primitives of the
language, because it is impossible to derive any of the clauses in the definition of > pzr from
the rest of the clauses. (In sharp contrast, no independent conditions for V or — are known.)
Recall that this is exactly what Weyl did! (See Note 7.)
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o If o >pzr {x}, then {x| ¢} isa term.
o If Fis a k-ary operation, fi.....1; are terms, then F(z;.....7;) is a
term.

Formulas:

e If P is an n-ary predicate, then P(71.....1,) is an atomic formula
whenever f1....,, are terms.

e If ¢ and y are formulas, and x is a variable, then —p, (pAy),
(¢ V), and Ixp are formulas. ( Vx¢ and ¢ — w are taken as
abbreviations for —~3x—¢ and ~(pA—y), respectively.)

e Ifpisaformula, zand sareterms, and x and y are distinct variables,
then (TCy ,¢)(t.s) is a formula, and

Fy((TCryp)(1.5)) = (Fy() = {x.y}) UFv(1) U Fy(s).

The Safety Relation -pzp:

(€):xet=pzr {x}if x & Fv(r).

(At): @ =pzr 0 if ¢ is atomic.

(=):p=pzr{x}tifp € {x#x,x=11=x}, and x € Fv(¢).
(=)= =pzr 0 if @ = pzr 0.

(V):oVy =pzr Xif ¢ =pzr X and y -pzr X.

(AN): @ ANy =pzrp XUY if ¢ =pzr X, w =pzr Y. and either
YNFv(p)=0or XNFv(y)=0.

(3): Iy =pzr X —{y}if y € X and ¢ =pzF X.

(TC)Z (TC,Y’ygo)(x,y)>-pZFX if either p=pzrX U {x}, or
o=pzrX U{y}.

Logic and axioms.

Logic: Classical AL with variable-binding terms operators.
Axioms:

Extensionality. Vz(z € x <>z €y) > x=y
Comprehension. The universal closures of formulas of the forms:

e xe{x[pteop
o [(x1,....xn) | @Ity tn) < o{t1/X10. ety Xn}
o (1o yit)(stoesi) = t{s1/y1.. i/ v}

e-induction. (Vx(Vy(y € x — p{y/x}) = ) = Vxp
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