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Floating fluid-filled membrane breakwater (FFMB) is a temporary structure that can
attenuate waves in the deep sea. In this paper the hydrodynamic performance of the
FFMB is analysed by using the eigenfunction expansion boundary element method
(EEBEM) and physical model experiments. A general motion equation is derived that
considers both the dynamic tension and curvature of the membrane. Moreover, an integral
expression for the dynamic tension is provided. On this basis, a linear model for solving
wave–membrane interaction is established through the EEBEM. Newly designed physical
experiments are performed to verify the model and elucidate the nonlinear characteristics
of the FFMB. Following verification of the model, this paper investigates the effects of
various structural parameters of the FFMB on the wave transmission coefficient, reflection
coefficient, horizontal wave force, vertical wave force and dynamic tension. Furthermore,
the interrelationship between the structural resonant response and the hydrodynamic
performance is elucidated, and the optimal density and filling ratio of the FFMB for
engineering applications are proposed. The results demonstrate that the numerical and
experimental results are in good agreement, indicating that the model and the motion
equation are both practical and highly accurate. By optimizing the structural parameters,
the FFMB is capable of effectively attenuating waves within a specific frequency band,
while minimizing the wave force.
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1. Introduction

Since the early 1990s, the use of membrane structures in the marine environment has
become a trend (Ohyama et al. 1989; Koley et al. 2022). According to the difference
between the membrane shapes, they can be divided into linear and arcuate membranes.
While the linear membrane refers to the membrane in the natural state or the linear
structure formed by tension on both sides (Kim & Kee 1996; Williams 1996), and arcuate
membrane refers to the membrane that forms a closed space, which is filled with a liquid
or gas to make it expand (Phadke & Cheung 2003; Zhao et al. 2022). In particular,
fluid-filled membrane structures, which are composed of an arcuate membrane, have a
wider range of potential applications. On the one hand, they can be used as a temporary
offshore structure for wave attenuation, such as floating fluid-filled membrane breakwater
(FFMB) and submerged fluid-filled membrane breakwater (SFMB) (Broderick & Jenkins
1993; Phadke & Cheung 1999, 2001). On the other hand, they can be used as a flexible
pipeline designed to carry and transport oil and other liquids lighter than water (Zhao
1995). Moreover, a fluid-filled flexible tube can also be used for wave power absorption,
such as the Anaconda wave energy converter (Babarit et al. 2017; Kurniawan et al. 2017).
Because these membrane structures are flexible, easy to handle, portable and reusable,
environmentally friendly in the ocean, easily recycled and inexpensive to construct (Sahoo
2012; Koley & Sahoo 2017a; Li et al. 2020), it is of great engineering application value to
use flexible fluid-filled structures in the sea, especially for breakwaters.

Unlike traditional rigid breakwaters (Christensen et al. 2018; Lv & Zhao 2021; Cheng
et al. 2022; Ning et al. 2022), the interaction between the membrane breakwaters and
waves is a complex dynamic process (Zhao & Aarsnes 1998). The membrane structure will
be greatly deformed under the action of waves, and the interaction between radiated waves
and scattered waves can shield the water behind the breakwater (Cho & Kim 1998; Koley,
Behera & Sahoo 2015). The successful realization of these systems requires accurate
modelling and analysis of the waves on and around the membrane and the stress and strain
in the material (Liu & Huang 2019). Therefore, it is of great significance to analyse the
hydrodynamic performance of membrane structure and explore their mechanism, so as to
provide a theoretical basis for engineering practice.

Since the linear membrane breakwaters are relatively easier to handle than that of the
arcuate membrane, numerous researchers have dedicated their efforts to studying their
hydrodynamic performance under waves (Sahoo 2012; Koley et al. 2015; Mandal & Sahoo
2016). Williams (1996) developed a model of a pre-stretched thin membrane using the
eigenfunction expansion method, and subsequently provided a numerical solution to the
problem by employing the source distribution method. The researchers discovered that
the wave reflection was primarily influenced by the membrane length, the weight of the
mass and the mooring stiffness, while the membrane weight and the buoyancy of the
system exerted a relatively minor effect. Based on the eigenfunction expansion method,
some scholars have conducted relevant studies on vertical pre-stretched membranes (Kim
& Kee 1996; Williams 1996; Kee & Kim 1997; Lo 2000) and horizontal membranes (Cho
& Kim 1998; Karmakar & Sahoo 2008). The results demonstrate that the superposition
of radiated and scattered waves generated by membrane motion results in wave
attenuation. Furthermore, the width, position and tension of the membrane are identified
as crucial factors. Moreover, some researchers have demonstrated that open-aperture
membranes exhibit superior wave attenuation effects (Kumar, Manam & Sahoo 2007;
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Hydrodynamic performance of the FFMB

Koley & Sahoo 2017a,b; Koley et al. 2022). By adjusting factors such as the
length, stiffness, permeability, layer number and tension of the membrane (Karmakar,
Bhattacharjee & Soares 2013; Koley & Sahoo 2017b), as well as the type of mooring
(Kee 2005), the breakwater can have a good effect on wave attenuation.

For the arcuate membrane, according to the different positions of the fluid-filled
membrane breakwater, the breakwaters can be divided into FFMB and SFMB. For the
SFMB, Ohyama et al. (1989) developed a linear model of the SFMB and compared their
numerical results with experimental data, focusing on the wave transmission and reflection
coefficients. Phadke & Cheung (1999), Phadke & Cheung (2003) derived a governing
equation based on the thin membrane theory of cylindrical thin shells, obtained the
kinematic response of the SFMB preliminary by using the boundary element method. Das
& Cheung (2009) used a boundary element method coupled with a finite element model to
study the three-dimensional response of an SFMB in a wave flume. Liu & Huang (2019)
used the mixed Euler–Lagrange model to simulate the interaction between nonlinear
waves and the SFMB, focusing on the kinematic response of the SFMB and related
nonlinear wave scattering. Based on the potential flow theory and multipole expansions,
Li et al. (2020) studied the interaction between the water wave and the SFMB through
theoretical analysis, and analysed the effects of internal pressure and structural height on
the wave transmission and reflection coefficients. Zhao et al. (2022) used computational
fluid dynamics to study the interaction between waves and the SFMB. The overpressure,
vorticity field, elastic modulus and structural response are analysed, and three different
vibration modes of membrane structure under different wave frequencies are determined.

For the FFMB, Broderick & Jenkins (1993) studied the interaction between a flexible
underwater horizontal cylinder and surface waves, and compared the results with
laboratory experiments. Broderick & Leonard (1995) proposed a time-domain model
of nonlinear interaction between deformable objects and waves. In their method, the
boundary element model of external fluid is coupled with the finite element model of
the membrane. The internal fluid is not modelled and the internal pressure is assumed
to be constant. Zhao (1995) adopted the control equation based on the circumferential
tension and the pressure difference balance between the two sides of the membrane to
study the dynamic response of a floating fluid-filled membrane. Zhao & Aarsnes (1998)
later expanded the model to include membrane elasticity and compared their numerical
results with experimental data. Based on the principle of virtual work, Phadke & Cheung
(2001) derived the variational governing integral equation of thin membrane deformation.
Coupling two boundary element models with the finite element model of the membrane
structure, the potential flow solutions of the internal and external fluids is obtained, and
the vibration characteristics of the membrane structure are given.

The aforementioned research has thoroughly analysed the law of interaction between
waves and the FFMB, thereby providing invaluable results for practical application.
However, up to now, in these studies, the membrane has been modelled as a stretched
straight string, in which the lateral displacement satisfies a one-dimensional wave equation
(Kim & Kee 1996; Kee & Kim 1997; Karmakar & Sahoo 2008; Mandal & Sahoo 2016;
Koley & Sahoo 2017b; Koley et al. 2022), and the effect of the membrane curvature has
not been considered. Therefore, the motion of the arcuate membrane cannot be accurately
predicted through the one-dimensional equation, and the motion response of FFMB under
wave action can not be accurately described. In addition, although some numerical studies
have been carried out on the FFMB, there are few experimental studies on it, especially on
its transmission coefficient, reflection coefficient, wave force and the response to FFMB,
which also limit the application of FFMB in engineering.
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This paper presents a general motion equation for both arcuate and linear membranes.
It is used as the dynamic boundary condition of a two-dimensional thin membrane, which
overcomes the difficulty of coupling the motion of arcuate membranes from the flow
field in existing models. Then, a coupled eigenfunction expansion boundary element
method (EEBEM) (Lv, Zhao & Li 2022) and water flume experiments are used to
comprehensively study the hydrodynamic performance of the FFMB, which complements
the lack of existing experimental data and demonstrates the kinematic response of the
FFMB. The EEBEM is a method that combines the eigenfunction expansion method with
the multi-domain boundary element method (Chen et al. 2017; Zhao et al. 2020). By
coupling the corresponding boundary conditions at the boundaries of adjacent regions, the
interaction between arbitrary structures and waves can be fully realized. At the same time,
compared with the traditional multi-domain boundary element method (Bakhti et al. 2017),
the eigenfunction expansion method can effectively reduce the computational domain,
improve the computational speed and achieve higher numerical accuracy. Finally, the
structural parameters suitable for practical engineering waters are proposed to provide
a reference for engineering applications.

The remainder of this paper is structured as follows. Section 2 describes in detail the
derivation of the membrane’s motion equation and the realization of the EEBEM. Then,
the FFMB model is briefly introduced in § 3, and the interaction between waves and the
FFMB is revealed through the EEBEM and experimental results, with emphasis on the
analysis of nonlinear waves and motion response. In § 4 the hydrodynamic performance
of the FFMB is demonstrated by the EEBEM, and the influence of the FFMB density,
filling ratio, radius and elastic modulus is emphatically analysed. The structural parameters
applicable to engineering practice are given. Finally, the main conclusions are given in § 5.

2. Hydrodynamic formulation and EEBEM

2.1. Static boundary conditions of the FFMB
Figure 1 shows the sketch of an FFMB, in which the x axis is the still water surface and
the z axis is upward. The FFMB is composed of membrane and internal fluid, in which
the membrane density is ρs and the membrane thickness is Δ. The fluid density inside and
outside of the membrane are ρI and ρO, respectively, satisfying ρI < ρO. As a result, the
FFMB floats on the water surface due to the buoyancy. Here θ represents the angle between
the tangent of the membrane and the positive direction of the x axis; z = zh and z = −zb
denote the vertical positions of the highest and lowest points of the FFMB, respectively;
S represents the length of the membrane extending clockwise from the apex (0, zh); pi0
represents the internal membrane pressure of the FFMB and TS represents the initial static
tension of the FFMB. The static shape of the FFMB depends on the filling ratio γ and the
relative density ρI/ρO of the fluid inside and outside the membrane.

The filling ratio γ is defined as

γ = A0/Amax, (2.1)

where A0 is the area surrounded by the membrane and Amax is the largest possible area for
which the membrane shape is circular. When the filling ratio is γ = 1, the geometry of the
membrane is circular (as shown in figure 3, blue line) and the radius of this circle is called
the membrane radius RC.

This paper briefly introduces the method of obtaining the static shape of the FFMB as
follows. For more details, please refer to Zhao (1995). As shown in figure 2, assuming that
a small element of the membrane is dS, the initial membrane tension is T , the resultant
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Figure 1. Schematic diagram of wave with the FFMB.
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Figure 2. Stress analysis of the FFMB.

force of internal and external fluid pressures is pn, the tangential force on the membrane is
pt and the deflection angle of the element is dθ . Since the membrane thickness is infinitely
thin, the mass and gravity of the membrane can be neglected. The force balance equation
of the membrane element can be written as

pn dS = 2T sin(dθ/2) + dT sin(dθ/2),

dT cos(dθ/2) + pt dS = 0,

}
(2.2)

where
pn = pi0 + ρIg(zh − z), z ≥ 0,

pn = pi0 + ρIg(zh − z) + ρOgz, z < 0.

}
(2.3)

Since the fluid is assumed to be inviscid, the friction force on the membrane is zero,
that is, ∂T/∂S = 0. According to (2.2), the differential equation of the membrane can be
expressed as

pn dS = T dθ ⇒ 1
R

= dθ

dS
= pn

T
, (2.4)

where R is the radius of curvature.
The static shape of the FFMB is symmetrical to the z axis. Therefore, for the highest

(0, zh) and lowest points (0, −zb), the membrane needs to satisfy the following boundary
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Figure 3. Static shape of the FFMB, RC = 0.2 m. (a) Effects of filling ratio γ , ρI/ρO = 0.8 and (b) effects of
relative density ρI/ρO, γ = 0.9.

conditions:
θ(S) = 0, S = 0,

θ(S) = π, S = Lm/2.

}
(2.5)

Here Lm is the total length of the membrane.
Applying Taylor expansion to the membrane angle θ(S) and substituting (2.4) into it, we

can obtain

θ(Sj + �S) = θ(Sj) + dθ(Sj)

dS
�S + d2θ(Sj)

dS2 (�S)2 + · · · � θ(Sj) + pn

T
�S. (2.6)

According to (2.5) and (2.6), when the internal membrane pressure pi0 and the highest
point (0, zh) of the FFMB are known, the curve of the membrane boundary can be obtained
by arbitrarily assuming the membrane tension T and membrane difference length �S.
However, because the tension is unique when the membrane is in equilibrium, the curve
will not satisfy (2.5) when the assumed tension T does not match the actual tension.
Assuming that the actual tension is TS, (2.5) is adopted as the discriminant condition, and
the tension T is iterated continuously until T = TS, then the static shape of the membrane
can be obtained.

Figure 3 shows the static shape of the FFMB with different filling ratio γ (2.1) and
relative density ρI/ρO. It is observed that the shape strongly depends on the filling ratio γ .
With the decrease of γ , the FFMB becomes more and more flat. The relative density
mainly affects the relative position of the FFMB on the water surface, and has little
influence on its static shape.

2.2. Dynamic boundary conditions of the FFMB
Similar to the equation under the condition of still water, the motion equation of the FFMB
under dynamic action can be written as

P′ dS − 2T ′ sin(dθ ′/2) = dman,
∂T ′

∂S
= ρs�at,

}
(2.7)

where an is the normal acceleration and at is the tangential acceleration; P′ = PS + PD,
T ′ = TS + TD, θ ′ = θS + θD; PS, TS and θS are the pressure, membrane tension and
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membrane angle in still water, respectively, which can be obtained from § 2.1. Here PD,
TD and θD are the dynamic pressure, membrane tension and membrane angle caused by
the external load; dm = ρs� dS is the mass of the membrane.

Because the mass force of the membrane is much smaller than the additional mass
force generated by the fluid motion, and the mass of the membrane is small enough to be
ignored, the tangential equation of the FFMB can be written as (2.8)

∂T ′

∂S
= ∂(TS + TD)

∂S
≈ 0 ⇒ ∂TD

∂S
= 0. (2.8)

Simplifying (2.7) and ignoring the second-order small quantity, the dynamic boundary
condition of the FFMB can be expressed as:

PD − TD
dθS

dS
− TS

dθD

dS
= ρs�an. (2.9)

As TD, dθD/dS and an are all unknowns, it is difficult to solve (2.9) directly and
generally it can only be solved by finite element method (Phadke & Cheung 1999, 2001).
Considering that the membrane exhibits simple harmonic motion under the action of
waves, its normal displacement can be expressed as w e−iσ t, where w is the amplitude
of the membrane element in the external normal direction, σ is the circular frequency,
i = √−1 and t is the time. The corresponding normal acceleration an can be expressed as

an = −σ 2w e−iσ t. (2.10)

For convenience of description, the time factor e−iσ t is omitted hereinafter. According
to (2.8), the tangential displacement of the membrane can be ignored. Under the linear
theory, the effects of displacement in different directions can be linearly superimposed,
and figure 4 shows the curvature change (dθD/dS) caused by the displacement. It can be
seen that the blue line represents the shape of the membrane after moving, the red line
represents the initial shape, the black dotted line represents the curve after the red line
moves along its normal vector by a distance of wj, while wj is positive in the direction
pointing to the outer normal. It can be seen that dθD/dS consists of two parts, one is the
curvature change of the whole circumferential membrane (dθD1/dS) caused by the normal
motion of the membrane, the other is the angle change (dθD2/dS) caused by the relative
displacement of the membrane. Therefore, dθD/dS can be expressed as

dθD

dS
= dθD1

dS
+ dθD2

dS
= − w

R2 − d2w
dS2 . (2.11)

For a two-dimensional plane strain problem in cylindrical polar coordinates, the linear
strain–displacement and stress–strain relation are given by

ε′ = εD + εS = 1
R

(
du
dθ

+ w
)

+ εS, (2.12)

ε′ = 1
E

(σθ − νσR), (2.13)

where ε′ is the total hoop strain of the membrane, εS is the hoop strain in initial state, εD
is the hoop strain caused by the dynamic action, u is the tangential displacement of the
membrane, E is elastic modulus, ν is the Poisson’s ratio, σθ represents hoop stress and σR
represents normal stress. For a thin membrane, the normal stress is zero.
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Figure 4. Motion diagram of the membrane element.

Using (2.12) and (2.13), the dynamic tension of the membrane TD can be expressed as

TD = EεDΔ = E�
1
R

(
du
dθ

+ w
)

= E�

(
du
dS

+ w
R

)
. (2.14)

To eliminate the influence of tangential displacement strain, integrate (2.14) and the
dynamic tension of the membrane can be written as

∫ Lm

0
TD dS =

∫ Lm

0
E�

(
du
dS

+ w
R

)
dS ⇒ TDLm = E�(uLm − u0) + E�

∫ Lm

0

w
R

dS.

(2.15)

Because the membrane is annular, the starting point and the ending point are the
same point. The tangential displacement of the starting point u0 and the ending point
uL0 satisfies the equation uLm = u0. The dynamic tension of the membrane can be written
as

TDLm = E�

∫ Lm

0

w
R

dS. (2.16)

In summary, the dynamic boundary condition of the FFMB can be expressed as (2.17),
the dynamic tension of the membrane TD can be written as (2.18) and the dynamic pressure
PD can be written as (2.19). Since the gravity of the membrane is much smaller than the
pressure inside and outside the membrane and the membrane tension, the gravity of the
membrane can be ignored. When the structure moves, the inertial force of the membrane
is taken into account without loss of generality. In fact, ignoring the inertial force of the
structure is only a special case of (2.17), when the membrane density ρs is assumed to be

1001 A21-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

77
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.770


Hydrodynamic performance of the FFMB

zero, the inertial force is zero.

PD − TD
dθS

dS
+ TS

(
w
R2 + d2w

dS2

)
= ρs�

d2w
dt2

, (2.17)

TD = E�

Lm

∫ Lm

0

w
R

dS, (2.18)

PD =
{

iσρIφI − ρIgw cos θS, z ≥ 0,

iσ(ρIφI − ρOφO) + (ρO − ρI)gw cos θS, z < 0,
(2.19)

where θS is the angle between the membrane element and the x axis in the static
equilibrium state, g is the gravitational acceleration, and φI and φO are the fluid
velocity potentials inside and outside the membrane, respectively. For the problems of
hydrodynamics, the normal displacement w can also be expressed by the velocity of the
object surface ∂φI/∂n

w = i
σ

∂φI

∂n
. (2.20)

Here n is the normal vector.
Using (2.17), combined with (2.18)–(2.20) and the corresponding boundary conditions

of the flow field, the solution of the membrane motion and flow field can be realized. Note
that the motion equation of the linear membrane can be written as (Kim & Kee 1996;
Karmakar & Sahoo 2008; Sahoo 2012; Koley et al. 2015, 2022)

PD + TS
d2w
dS2 = ρs�

d2w
dt2

. (2.21)

Because the radius of curvature of a straight line is infinite, (2.21) is merely a particular
instance of (2.17), which further verifies the correctness of the motion equation deduced
in this paper. Besides, it shows that the motion equation has universal significance and can
replace the existing linear membrane motion equation.

2.3. Governing equations and boundary conditions
As shown in figure 1, assuming that Ai is the amplitude of the incident wave, Hi is the
height of the incident wave, Ti is the period of the incident wave, h is the water depth, Hr
and Ht are the heights of the reflected wave and transmitted wave, respectively. In addition,
ΓL set at x = −l is the boundary of the wave inlet and ΓR set at x = r is the boundary of
the wave outlet; ΓB is the bottom boundary, ΓM1 is the membrane boundary above the
external fluid and ΓM2 is the membrane boundary below the external fluid.

Considering that the problem satisfying linear wave theory and the velocity potential
can be expressed as Φ(x, z, t) = Re[φ(x, z) e−iσ t], where the symbol Re[] denotes the real
part of a complex number. For instance, if a complex number is defined as x = A + Bi,
the real part of x is A(Re[x] = A). Here φ(x, z) represents the complex amplitude of the
velocity potential. The total fluid domain is divided into four subregions (Ω1, Ω2, Ω3, Ω4)
and the velocity potential in each subregion is assumed to be φ1, φ2, φ3, φ4, where Ω1 and
Ω3 are the outer region for the wave inlet and outlet, Ω2 is the inner region outside the
FFMB and Ω4 is the inner region for the FFMB. Under the linear wave theory, velocity
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potential φ should satisfy the following governing equation and boundary conditions

∇2φs(x, z) = 0 for s = 1, 2, 3, 4. (2.22)

The linearized free surface boundary condition is given by

∂φs

∂z
= Kφs for s = 1, 2, 3, on z = 0, (2.23)

where K = σ 2/g, g is the gravitational acceleration and the impermeable bottom boundary
condition can be expressed as

∂φs

∂z
= 0 for s = 1, 2, 3, on z = −h. (2.24)

For the membrane boundary, the dynamic boundary condition of the FFMB can be
expressed as (2.25), and the specific derivation can be found in § 2.2

PD − TD
dθS

dS
+ TS

(
w
R2 + d2w

dS2

)
= ρs�

d2w
dt2

, on ΓM1 and ΓM2, (2.25)

TD = E�

Lm

∫ Lm

0

w
R

dS, (2.26)

PD =
{

iσρIφ4 − ρIgw cos θS, on ΓM1,
iσ(ρIφ4 − ρOφ2) + (ρO − ρI)gw cos θS, on ΓM2,

(2.27)

w = i
σ

∂φ4

∂n
, (2.28)

where n represents the normal vector pointing out from the corresponding fluid domain
enclosed by the boundaries. Since there is no separation between the fluid and the
membrane boundary, at the boundary ΓM2, it is necessary to meet the following equation:

∂φ2

∂n
= −∂φ4

∂n
on ΓM2. (2.29)

The radiation conditions in the far fields can be expressed as

∂(φ1 − φ0)

∂x
+ ik0(φ1 − φ0) = 0, as x → −∞,

∂φ3

∂x
− ik0φ3 = 0, as x → +∞,

⎫⎪⎪⎬⎪⎪⎭ (2.30)

where φ0 = eik0(x+l)f0(k0, z) is the incident wave, k0 is the wavenumber and f0(k0, z) is
expressed as (2.35).

The continuity of pressure and velocity on ΓL and ΓR are written as

φ2 =
{

φ1 on ΓL,

φ3 on ΓR,

∂φ2

∂n
=

⎧⎪⎪⎨⎪⎪⎩
−∂φ1

∂n
= −∂φ1

∂x
on ΓL,

−∂φ3

∂n
= ∂φ3

∂x
on ΓR.

(2.31)
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2.4. Solution of the EEBEM
Since there is a second-order differential term in (2.25), it is difficult to solve it by a
theoretical method. The EEBEM (Lv et al. 2022) is a numerical method combining the
eigenfunction expansion method and the multi-domain boundary element method, which
can solve the problem of wave-structure interaction. The complex potentials φ1 and φ3
in the outer region can be obtained by using the eigenfunction expansion method, and the
boundary value problem in the inner region can be transformed into an integral equation by
using the multi-domain boundary element method. To reduce the computational cost and
improve the accuracy, ΓL and ΓR are situated h/5 away from the FFMB, and the influence
of evanescent wave modes is considered.

The complex potential φ1 and φ3 in the outer region can be written as

φ1 = eik0(x+l)f0(k0, z) +
∞∑

m=0

Dm e−ikm(x+l)fm(km, z), (2.32)

φ3 =
∞∑

m=0

Tm eikm(x−r)fm(km, z), (2.33)

where Dm and Tm(m = 0, 1, 2, . . .) are the undetermined coefficients, m is the velocity
potential expansion terms, km(m = 0, 1, 2, . . .) satisfies

σ 2 = gkm tanh kmh, m = 0, 1, 2 . . . , (2.34)

where k0 is a real number and km(m = 1, 2, . . .) are imaginary numbers. It may be noted
that km(m = 1, 2, . . .) are in the form of km = k′

mi, where k′
m are the real positive roots of

σ 2 = −gk′
m tan k′

mh.
The eigenfunctions f (k0, z) and f (km, z) may be expressed as

f (km, z) = − igAi

σ

cosh km(z + h)

cosh kmh
, m = 0, 1, 2 . . . . (2.35)

Besides, 〈·, ·〉 is denoted the inner product. According to orthogonality, the inner product
of f (km, z) and f (kn, z) can be expressed as

〈 f (km, z), f (kn, z)〉 =
∫ 0

−h
f (km, z)f (kn, z) dz = Snδmn, (2.36)

where Sn = −(gAi/σ)2[(sinh(2knh) + 2knh)/4kncosh2(knh)] and δ is the Kronecker
function.

According to (2.32) and (2.36), the unknown coefficient Dm can be expressed as

Dm + δm0 = 1
Sm

〈φ̂2, fm(km, z)〉, (2.37)

where φ̂2 represents the velocity potential when the expansion term m is determined.
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According to (2.32), the normal derivative of φ1 can be written as

∂φ1

∂n
= ik0 eik0(x+l)f0(k0, z) −

∞∑
m=0

Dmikm e−ikm(x+l)fm(km, z). (2.38)

By substituting (2.37) and (2.38) into (2.31), the boundary condition on ΓL can be
written as

∂φ2

∂n

∣∣∣∣
x=−l

=
M∑

m=0

ikmfm(km, z)
Sm

〈φ̂2, fm(km, z)〉 − 2 ik0 f0(k0, z) on ΓL. (2.39)

Similarly, the boundary condition on ΓR can be expressed as

Tm = 1
Sm

〈φ̂2, fm(km, z)〉, (2.40)

∂φ2

∂n

∣∣∣∣
x=r

=
M∑

m=0

ikm fm(km, z)
Sm

〈φ̂2, fm(km, z)〉 on ΓR. (2.41)

As can be seen from the (2.25), (2.28) and (2.29), all the boundary conditions of
the membrane (ΓM1 and ΓM2) are the functions of φ and ∂φ/∂n. To calculate φ and
∂φ/∂n, ΓM1 and ΓM2 are divided into J1 and J2 finite elements, respectively. Because
the differential equation involves the second derivative of normal displacement w, it needs
to be solved by central difference. As shown in figure 4, the motion equation (2.25) of any
element Γ ( j) on the membrane can be discretized as

TS
i
σ

⎡⎢⎢⎢⎢⎣
∂φj+1

∂n
2

dSj(dSj+1 + dSj)
+ ∂φj−1

∂n
2

dSj(dSj + dSj−1)

+∂φj

∂n

(
1

R2
j

− 2(dSj+1 + 2 dSj + dSj−1)

dSj(dSj+1 + dSj)(dSj + dSj−1)

)
⎤⎥⎥⎥⎥⎦

+ iσρIφj +
(

iσρs� − ig cos θSjρI

σ

)
∂φj

∂n
− TD

Rj
= 0

onΓM1 . (2.42)

TS
i
σ

⎡⎢⎢⎢⎢⎣
∂φj+1

∂n
2

dSj(dSj+1 + dSj)
+ ∂φj−1

∂n
2

dSj(dSj + dSj−1)

+∂φj

∂n

(
1

R2
j

− 2(dSj+1 + 2 dSj + dSj−1)

dSj(dSj+1 + dSj)(dSj + dSj−1)

)
⎤⎥⎥⎥⎥⎦

+ iσ(ρIφj − ρOφOj) +
(

iσρs� + ig cos θSj(ρO − ρI)

σ

)
∂φj

∂n
− TD

Rj
= 0

on ΓM2,

(2.43)

TD = E�

Lm

J1+J2∑
q=1

wq

Rq
dSq = iE�

σLm

J1+J2∑
q=1

1
Rq

∂φq

∂n
dSq, (2.44)

where dSj represents the length of Γ ( j), Rj represents the radius of curvature of Γ ( j), wj
represents the normal displacement outside Γ ( j) and θSj represents the deflection angle
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Hydrodynamic performance of the FFMB

when the element is static; φj and ∂φj/∂n represent the velocity potential and its normal
derivative in the subdomain Ω4; φOj represents the velocity potential in the subdomain
Ω2.

Through (2.42) and (2.43), a total of (J1 + J2) equations can be established, and J2
equations can be established from (2.29). Other boundaries ΓL, ΓB, ΓR, ΓF1 and ΓF2
are divided into J3 elements, and according to the corresponding boundary conditions
((2.23), (2.24), (2.39) and (2.41)), J3 equations can be established. For more details of
computation length and mesh discretization, refer to § 2.5.1. Then, according to the above
boundary conditions, the (J1 + 2J2 + J3) equation system can be established. Besides, for
inner region Ω2 and Ω4, (J1 + 2J2 + J3) boundary integral equations can be established
by Green’s second theorem. Finally, the value of φ and ∂φ/∂n at the boundary can be
obtained through the 2(J1 + 2J2 + J3) equation system.

The boundary integral equations of Ω2 and Ω4 are expressed as

λ(ξ, η)φ(ξ, η) =
∫

Γ

[
φ(x, z)

∂G(x, z; ξ, η)

∂n
− G(x, z; ξ, η)

∂φ(x, z)
∂n

]
dΓ (x, z), (2.45)

λ(ξ, η) =
{

0.5 if (ξ, η) on the Γ,

1 if (ξ, η) ∈ Ω, but not on the Γ,
(2.46)

where (ε, η) is the source point; Γ represents the boundary of Ω2 or Ω4; G(x, z; ξ, η) is
the Green’s function and it is written as

G(x, z; ξ, η) = ln(r)
2π

, r =
√

(x − ξ)2 + (z − η)2 for (x, z) /=(ξ, η). (2.47)

Actually, the boundary integral equations of Ω2 and Ω4 are independent, and they are
coupled together by (2.25) and (2.29). Then, through (2.23)–(2.25), (2.29), (2.39), 2.41 and
2.45, φ and ∂φ/∂n at the boundary of Ω2 and Ω4 can be obtained. The wave transmission
coefficient Kt and reflection coefficient Kr can be expressed as

Kr = |D0| =
∣∣∣∣ 1
S0

〈φ̂2, f0(k0, z)〉 − 1
∣∣∣∣ =

∣∣∣∣∣ 1
S0

∫ 0

−h
φ̂2, f0(k0, z) dz − 1

∣∣∣∣∣ on ΓL, (2.48)

Kt = |T0| =
∣∣∣∣ 1
S0

〈φ̂2, f0(k0, z)〉
∣∣∣∣ =

∣∣∣∣∣ 1
S0

∫ 0

−h
φ̂2, f0(k0, z) dz

∣∣∣∣∣ on ΓR. (2.49)

Also, the wave energy dissipation coefficient Kd is defined as

Kd = 1 − K2
t − K2

r . (2.50)

Wave force F on the FFBM can be written by integrating the pressure on the membrane
surface ΓM2:

F = (Fx, Fz) =
∫

ΓM2

iσρOφn dΓ . (2.51)

Here n = (nx, nz) is the unit normal vector of the membrane surface, Fx is the horizontal
wave force and Fz is the vertical wave force.
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Wave transmission coefficient Kt

kh M = 0 1 2 3 4 5 7 10

0.2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.0 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999
1.5 0.242 0.866 0.944 0.953 0.954 0.954 0.954 0.954
2.0 0.870 0.811 0.713 0.672 0.664 0.664 0.664 0.664
2.5 0.845 0.831 0.813 0.807 0.807 0.807 0.807 0.807
3.0 0.750 0.752 0.760 0.765 0.767 0.767 0.767 0.767

Table 1. Convergence tests of Kt with different expansion terms M. Here h = 0.7 m, RC = 0.2 m,
ρI = 800 kg m−3, ρO = 1000 kg m−3, ρs = 1000 kg m−3, γ = 0.98, E = 107 N m−2, Δ = 0.001 m,
dS = 0.01 m.

Wave transmission coefficient Kt

kh dS = 0.02 m 0.01 m 0.005 m 0.004 m 0.0025 m 0.002 m 0.001 m

0.2 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.0 0.999 0.999 0.999 0.999 0.999 0.999 0.999
1.5 0.954 0.954 0.954 0.954 0.954 0.954 0.954
2.0 0.661 0.664 0.664 0.664 0.664 0.664 0.664
2.5 0.806 0.807 0.807 0.807 0.807 0.807 0.807
3.0 0.768 0.767 0.767 0.767 0.767 0.767 0.767

Table 2. Convergence tests of Kt with different boundary element length dS (m). Here h = 0.7 m, RC = 0.2 m,
ρI = 800 kg m−3, ρO = 1000 kg m−3, ρs = 1000 kg m−3, γ = 0.98, E = 107 N m−2, Δ = 0.001 m, M = 5.

2.5. Verifications of the EEBEM

2.5.1. Convergence tests of the EEBEM
The selection of the expansion term M of the velocity potential φ and the boundary
element length dS will affect the calculation accuracy of the EEBEM. Appropriate M and
dS must be selected to ensure the accuracy of the model and to reduce the computation
time. In the following, the wavenumber k0 of a linear wave is simplified to k and kh
represents the dimensionless water depth.

Table 1 shows the convergence tests of the wave transmission coefficient Kt with
different expansion terms M. It is found that as M increases, the results converge when
M ≥ 4. However, when M is small, there is a large difference between the results with
different M. For example, when kh = 1.5, the difference between M = 0 and M = 4
is three times, indicating that the evanescent mode has a large influence and cannot
be ignored in the calculation. Table 2 shows the convergence test of the transmission
coefficient Kt under different boundary element lengths dS. It is observed that the result is
accurate to three decimal places when dS ≤ 0.01 m. Since the increase in computational
cost with increasing M is small, dS = 0.01 m and M = 10 are chosen in the following
calculations to improve the accuracy of the numerical results.

2.5.2. Verifications of the EEBEM
The motion equation considering the dynamic tension of the membrane and the
explicit integral expression of the dynamic tension TD (2.25) and (2.26) are the major
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Wave

probe 2

Wave

probe 1

Wave

generator

Horizontal section

Longitudinal section

Floating and liquid-filled

membrane structure

Carriage 2

Filling ratio = 0.9 0.307 m

1 2 3 4
5 6 7 8

–3.0 –2.7 –2.6 –2.4 –2.2 2.1

Measuring
tensions

Centreline

Parallel part = 2.22 m

1 2 3 4 5 6 7 8

Volume of fluid inside membrane = 0.935 m3

z

x y

Measuring tensions

z

x

y

0.042 m

0.316 m

Carriage 1

(b)

(a)

(c)

Figure 5. Experimental set-up for measuring the tension of a floating liquid-filled membrane structure in the
wave flume (Zhao & Aarsnes 1998). (a) Experimental set-up of the model. (b) Horizontal section of the model
and (c) longitudinal section of the model.

contributions of this paper. To verify the accuracy and reliability of the model in solving
wave–membrane interactions, the model is applied below to solve wave interactions with
floating and submerged fluid-filled membrane structures, respectively, and compared with
the corresponding numerical and experimental results.

Zhao & Aarsnes (1998) measured the membrane tension of a floating liquid-filled
membrane structure under a regular wave by the model experiments and compared it
with the numerical results. Figure 5 represents the corresponding experimental set-up for
measuring the membrane tension in the wave flume. The model was made of an elastic
coated fabric and the fluid inside the membrane was a mixture of fresh water and alcohol.
The stern and bow sections are equal, i.e. the model is doubly symmetric about the x and y
axes. The filling ratio γ of the model is 0.9; the density of the liquid inside the membrane
is 914 kg m−3; the volume of the liquid inside the membrane is 0.935 m3; the length over
the whole model is 6 m; the length of the parallel part of the model is 4.44 m; and the
circumferential length of the parallel part of the model is 1.566 m. The dynamic tension
TD was obtained by measuring the stretch of the membrane and was located at x = 2.1 m.
The sampling frequency for these recordings was 50 Hz.

Figure 6 shows the comparisons of TD between the EEBEM results, the experiments
and the numerical results of Zhao (1995), Zhao & Aarsnes (1998). In their numerical
results, the governing equations of the membrane are based on the equilibrium of the
circumferential tension and pressure, and the dynamic response of the membrane is
obtained by high-order polynomial fitting due to the unknown dynamic tension and
curvature variation of the membrane. It can be seen that the EEBEM results are in good
agreement with those obtained by Zhao (1995), Zhao & Aarsnes (1998), indicating that
the explicit integral expression of the dynamic tension derived in this paper is reliable.
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0.2 0.4 0.6 0.8
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1.0 1.2 1.40
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0.4

T
D

/(
ρ

gA
iR

C
)

0.6

0.8

1.0

0 0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

2.5

3.0

Present, γ = 0.90

Present
Present, γ = 0.80

Zhao et al. (1995)

Num., Zhao et al. (1998)
Exp., Zhao et al. (1998)

Present, γ = 0.85
Zhao et al. (1995)

Zhao et al. (1995)

(b)(a)

Figure 6. Comparisons of dynamic tension TD between the EEBEM results, the experiments (Zhao &
Aarsnes 1998) and the numerical results (Zhao 1995). Results are shown for (a) ρI/ρO = 0.7, RC/h = 0.2,
E = +∞ N m−2; (b) ρI/ρO = 0.9, γ = 0.9, RC/h = 0.133, E = +∞ N m−2.

z

SF

Flexible membrane

h s

R

SE
SD

e
Ω2

Ω1

B

n

x

Wave

o

θ

Figure 7. Schematic diagram of wave interaction with the FFMB (Ohyama et al. 1989).

Ohyama et al. (1989) investigated the hydrodynamic performance of a SFMB by model
experiments and compared it with the numerical results. Figure 7 shows a schematic
diagram of a wave interaction with an SFMB. In their experiments, the model was made
of a rubber membrane with E = 58 kN m−2, membrane density ρS = 1.26 ton m−3,
membrane thickness Δ = 1.65 mm and it was filled with water. In addition, the model
width B = 1.6 m, water depth h = 0.8 m, incident wave height Hi = 0.04 m, internal
membrane pressure pi0 and the structure height e were varied.

Figure 8 shows the comparisons of the wave transmission coefficient Kt between the
EEBEM results, the experiments and the numerical results (Ohyama et al. 1989) under
different structure heights and internal membrane pressures. In their numerical results,
the wave–membrane interaction is solved by the displacement coordination equation. It
can be seen that the present results are close to the experimental results, and the resonant
frequency of the structure can be captured more accurately, indicating that the present
model is correct and reliable.
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B/L
0
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0.4

0.6

0.8
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0.6

0.8

1.0

Kt

Present
Num., Ohyama et al. (1989)

Exp., Ohyama et al. (1989) 

0.2 0.4 0.6 0.8 1.0 1.2

B/L
0 0.2 0.4 0.6 0.8 1.0 1.2

(b)(a)

Figure 8. Comparisons of wave transmission coefficient Kt between the EEBEM results, the experiments
and the numerical results (Ohyama et al. 1989). Results are shown for (a) e/h = 0.537, pi0/ρOgh = 0.065;
(b) e/h = 0.556, pi0/ρOgh = 0.208.
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Figure 9. Schematic diagram of the experiments.

3. Physical experiments

3.1. Set-up of experiments
Physical model experiments are conducted in a large cross-section wave flume at the Port
Engineering Hall of Zhejiang University. Figure 9 depicts a schematic diagram of the
experimental set-up. The wave flume is 75 m in length, 1.8 m in width and 2.0 m in height,
with a maximum test depth of 1.5 m, a test wave period of 0.5 s to 5.0 s and a test wave
height of 0.02 m to 0.60 m. The horizontal direction is defined as the x axis, with positive
values indicating a direction from the head to the end of the flume. An active absorption
push plate wavemaker is installed in front of the flume at the point x = 0 m, which is
capable of generating unidirectional two-dimensional regular waves and absorbing the
reflected wave. In addition, a wave absorber is installed at the end of the flume to absorb
transmitted and reflected waves.
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Figure 10. Schematic diagram of FFMB. (a) Schematic diagram of the FFMB. (b) Model of the FFMB (side
view). (c) Model of the FFMB (top view).

Eight wave gauges, named G1–G8, are located at x = 20, 25.2, 25.5, 26, 31, 35.5, 41
and 41.5 m. These gauges are employed to collect data on wave height with a sampling
frequency of 50 Hz. In accordance with the two-point method proposed by Goda & Suzuki
(1976), the wave reflection coefficient is calculated using G1, G2 and G3, while the wave
transmission coefficient is determined by G7 and G8.

The FFMB is placed at x = 34 m, with a length of 1.75 m, a radius RC of 0.2 m, a
thickness Δ of 0.001 m and an elasticity modulus E of 107 N m−2. Since the length of
the FFMB is approximately equal to the width of the flume, the wave energy that passes
through freely at the end of the FFMB is minimal, and the axial direction of the FFMB
is always parallel to the width direction of the flume when subjected to a unidirectional
regular wave. Moreover, eight wave gauges are positioned on the central axis of the tank,
which serves to minimize the impact of transmitted waves near the flume wall on the data
acquisition process. Consequently, the corresponding end effect can be disregarded, as it
will not have a significant impact on the FFMB.

Furthermore, a high-speed camera with a sampling frequency of 50 Hz is positioned in
front of the FFMB (x = 34 m) to observe the motion response of the FFMB at different
times. Given that the motion response of the FFMB under the action of a regular wave is
periodic, when the interaction between the FFMB and wave achieves a dynamic balance,
the motion response of the FFMB under the same phase at different times is the same.
Consequently, the subsequent figures illustrating the structural motion response, such
as figures 13, 15 and 17, depict the instantaneous membrane cross-section shape in one
period.

Figure 10 shows the schematic diagram of the FFMB. It is made of polyvinyl chloride
(PVC) and comprises two air bags and a water bag, with the air bag situated within the
water bag and located on either side of the water bag. The air bag contains only air and no
water, while the water bag contains only water and no air. The water inside the water bag
is tightly enclosed by the membrane, with no free surface. Since the maximum volume of
the water bag is fixed and the air bag is located inside the water bag, the density change of
the FFMB can be realized by adjusting the volume ratio of water to air.

The method of adjusting the density and filling ratio of the FFMB in the experiment is
as follows. Firstly, the water bag is filled with water through the water inlet and the air
bag is exhausted through the air inlet, ensuring the filling ratio of the FFMB is 1 and the
density is 1000 kg m−3. Subsequently, the volume of water that should be contained in the
water bag can be calculated according to the expected filling ratio and density. Then, the
excess water in the FFMB can be released through the water inlet, and it is ensured that
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Case h/m ρI (kg m−3) γ Hi (m) Ti (s)

1–19 0.7 550 0.999 0.03 0.9–3.5
20–38 0.7 645 0.999 0.03 0.9–3.5
39–57 0.7 735 0.999 0.03 0.9–3.5
58–76 0.7 800 0.999 0.03 0.9–3.5
77–114 0.7 835 0.999 0.03, 0.07 0.9–3.5
115–171 0.7 835 0.983, 0.988, 0.993 0.03 0.9–3.5
172–190 1.0 835 0.999 0.03 0.9–3.5
191–209 0.7 880 0.999 0.03 0.9–3.5
210–228 0.7 930 0.999 0.03 0.9–3.5

Table 3. Conditions of experiments.

Note: in all case, the membrane radius RC = 0.2 m, ρO = 1000 kg m−3, Ti = 0.9−3.5 means it can be
selected as 0.9, 0.95, 1.0, 1.05, 1.1, 1.15, 1.2, 1.25, 1.3, 1.35, 1.4, 1.45, 1.5, 1.6, 1.8, 2.0, 2.4, 3.0, 3.5.

outside air does not enter during operation. Finally, the expected filling ratio and density
of the FFMB can be obtained by inflating the air bags on both sides with the inflatable
tube.

Since it is difficult to choose a fluid with a low density in practice, the fluid employed in
the experiments differs slightly from that used in the numerical model. The fluid employed
in the numerical model is uniform, whereas that used in the experiments is non-uniform,
comprising water and air. Nevertheless, when the fluid filling ratio γ is large (greater
than 0.97), the hydrodynamic performance of the two is basically the same because the
structural deformation is small.

Table 3 illustrates the conditions of the experiments, with a total of 228 cases. During
the experiments, the data of the stable section are selected to calculate the corresponding
transmission coefficient and reflection coefficient. The experiments were conducted in
triplicate for each case and the mean of the three resulting data sets was calculated as the
final result. The experiments are primarily designed to examine the influence of filling
ratio and density on the hydrodynamic performance of the FFMB, as well as the dynamic
response of the FFMB. Moreover, the influence of wave nonlinearity, which cannot be
investigated through the EEBEM, is also included in the experiments.

3.2. Comparisons of the EEBEM and experimental results
Figures 11 and 12 show the comparisons of wave transmission coefficient Kt and reflection
coefficient Kr between the experimental and EEBEM results, under the conditions of
different filling ratio γ , density ρI and water depth h. The point where Kt = 0 is defined
as the first-order resonant point, and the corresponding wave frequency is the first-order
resonant frequency.

It is found that the EEBEM results are in good agreement with the experimental results,
indicating that the corresponding motion equation and the dynamic tension expression
of the membrane, as well as the numerical model proposed in this paper are accurate
and reliable. As the wavelength decreases, the numerical results become increasingly
smaller than the experimental results due to the dissipation of energy caused by fluid
viscosity and collision. Experimental results indicate that the FFMB exhibits an effective
short-wave attenuation performance, with a greater effect observed at lower densities. As
the density of the FFMB increases, the first-order resonant frequency shifts to a lower
frequency. When the relative density ρI/ρO is between 0.735 and 0.835, and the relative
water depth kh > 1.45, the FFMB can achieve a satisfactory effect on wave attenuation.
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Figure 11. Comparisons of wave transmission coefficient Kt and reflection coefficient Kr between the
EEBEM results and the experiments. Here ρO = 1000 kg m−3, RC = 0.2 m, E = 107 N m−2, Δ = 0.001 m,
Hi = 0.03 m. Results are shown for (a) ρI = 550 kg m−3, γ = 0.999, h = 0.7 m; (b) ρI = 835 kg m−3,
γ = 0.999, h = 0.7 m; (c) ρI = 835 kg m−3, γ = 0.988, h = 0.7 m; (d) ρI = 835 kg m−3, γ = 0.999,
h = 1.0 m.

Furthermore, with the decrease of the filling ratio γ , the wave attenuation effect of
the FFMB becomes worse, so the FFMB should have a higher filling ratio in practical
application.

Figure 13 illustrates the comparison of the motion response of the FFMB between the
EEBEM and experimental results when Ti = 1.0 s (short wave). It is observed that the
FFMB is dominated by horizontal swing and rolling, with minimal deformation. Figure 14
shows the wave surface and spectrum curve of the experimental results under the condition
of figure 13. Figure 14(a) illustrates that the transmitted wave is obviously lower than the
incident wave, indicating that the FFMB can effectively attenuate short waves. Figure 14(b)
reveals that the second-order amplitude is relatively small and that the first-order energy
at different wave gauges (G1–G5) in front of the FFMB is different.

The above phenomenon can be attributed to the fact that when the wave period is
relatively short, the majority of the wave is reflected by the FFMB, with only a minor
portion of energy transferred to the leeside of the FFMB. Then, the superposition of
the incident and reflected waves results in the formation of standing waves in front of
the FFMB. In particular, when the wave is totally reflected, a complete standing wave is
formed in front of the FFMB, while when the wave is partially reflected, the front of the
FFMB is the superposition of a standing wave and a travelling wave. Therefore, when the
wave period is short (figure 14), the wave in front of the FFMB is predominantly by a
standing wave, with varying wave heights at different positions. However, when the wave
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Figure 12. Comparisons of wave transmission coefficient Kt and reflection coefficient Kr between the
EEBEM and experimental results at different internal fluid densities. Here ρO = 1000 kg m−3, RC = 0.2 m,
E = 107 N m−2, Δ = 0.001 m, Hi = 0.03 m. Results are shown for (a) ρI = 645 kg m−3, γ = 0.999,
h = 0.7 m; (b) ρI = 735 kg m−3, γ = 0.999, h = 0.7 m; (c) ρI = 800 kg m−3, γ = 0.999, h = 0.7 m;
(d) ρI = 880 kg m−3, γ = 0.999, h = 0.7 m.
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Figure 13. Comparisons of the motion response of the FFMB between the EEBEM and experimental results
when Ti = 1.0 s (short wave). Here ρI = 835 kg m−3, γ = 0.999, RC = 0.2 m, h = 0.7 m, Hi = 0.03 m,
E = 107 N m−2, Δ = 0.001 m. Results are shown for (a) Ti = 1.0 s, EEBEM; (b) Ti = 1.0 s, Exp.
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Figure 14. Experimental wave surface and wave amplitude spectra when Ti = 1.0 s (short wave).
Here ρI = 835 kg m−3, γ = 0.999, RC = 0.2 m, h = 0.7 m, E = 107 N m−2, Δ = 0.001 m. (a) Wave surface
and (b) wave amplitude spectra.

period is long (figure 18), the wave in front of the FFMB is dominated by the travelling
wave, while the reflection wave and the corresponding standing wave is small, and the
wave height at different wave gauges is essentially uniform.

For the transmitted wave behind the FFMB, since the wave absorber is effective in
absorbing the transmitted wave, the reflection wave from the end of the flume is small.
The waveforms of the different wave gauges (G6–G8) are essentially similar, exhibiting
the characteristics of travelling waves. In addition, due to the dissipation and conversion
of different order waves, with the increase of propagation distance, the first-order wave
energy gradually decreases.

Similar to figures 13 and 14, figures 15 and 16 demonstrate the corresponding variations
when Ti = 1.4 s (first-order resonance, see figure 11b).

As shown in figure 15, when the FFMB is in resonance, the FFMB is dominated
by heaving, with small swaying and almost no rolling. Figure 16(a) demonstrates
that the transmitted wave height is significantly lower than the incident wave
height, indicating that the FFMB has a good effect on wave attenuation at the
resonant frequency. At the same time, the transmitted wave exhibits a sub-peak
phenomenon, which signifies that the radiated wave can be superimposed with the
scattered wave due to the vibration of the FFMB. As illustrated in figure 16(b), the
waveform comprises both first-order and second- and third-order wave components.
The reflected wave in front of the FFMB is mainly composed of first-order and
second-order waves. As the distance from the FFMB is reduced, the proportion of
higher-order waves increases. Moreover, the energy of the transmitted wave in the
first order remains relatively constant, whereas the energy of the third order decreases and
that of the second order increases with increasing propagation distance. This indicates that
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Figure 15. Comparisons of the motion shape of the FFMB between the EEBEM and the experimental results
when Ti = 1.4 s (first-order resonant mode). Here ρI = 835 kg m−3, γ = 0.999, RC = 0.2 m, h = 0.7 m,
Hi = 0.03 m, E = 107 N m−2, Δ = 0.001 m. Results are shown for (a) Ti = 1.4 s, EEBEM; (b) Ti = 1.4 s,
Exp.
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Figure 16. Experimental wave surface and wave amplitude spectra when Ti = 1.4 s (first-order resonant
mode). Here ρI = 835 kg m−3, γ = 0.999, RC = 0.2 m, h = 0.7 m, E = 107 N m−2, Δ = 0.001 m. (a) Wave
surface and (b) wave amplitude spectra.

the energy of the transmitted wave in the first- and second-order frequencies is more stable,
while the higher-order wave energy is more susceptible to dissipation or transformation.

Similar to figures 13 and 14, figures 17 and 18 show the corresponding variations when
Ti = 2.4 s (long wave).

Figure 17 shows the motion response of the FFMB and the trajectory of the peak point,
it is found that the motion response of the FFMB is similar to that of the water particle.

1001 A21-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

77
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.770


C. Lv and others

Static
Peak point trajectory

–2.0

–1.5

–1.0

–0.5

0

0.5
z/

R
C

(a)

–2.0

–1.5

–1.0

–0.5

0

0.5

(b)

–1.5 –1.0 –0.5 0 0.5 1.0 1.5
 x/RC

–1.5 –1.0 –0.5 0 0.5 1.0 1.5
 x/RC

σt = 0
σt = π/2
σt = π
σt = 3π/2

σt = 0
σt = π/2
σt = π
σt = 3π/2

Figure 17. Comparisons of the motion response of the FFMB between the EEBEM and the experimental
results when Ti = 2.4 s (long wave). Here ρI = 835 kg m−3, γ = 0.999, RC = 0.2 m, h = 0.7 m, Hi = 0.03 m,
E = 107 N m−2, Δ = 0.001 m. Results are shown for (a) Ti = 2.4 s, EEBEM; (b) Ti = 2.4 s, Exp.
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Figure 18. Experimental wave surface and wave amplitude spectra when Ti = 2.4 s (long wave).
Here ρI = 835 kg m−3, γ = 0.999, RC = 0.2 m, h = 0.7 m, E = 107 N m−2, Δ = 0.001 m. (a) Wave surface
and (b) wave amplitude spectra.

The roll of the FFMB is negligible and the whole structure moves elliptically around
its equilibrium position. As illustrated in figure 18, at the beginning of the interaction
between the FFMB and wave, the transmitted wave is basically the same as the incident
wave, which shows that FFMB has poor wave attenuation performance under the action
of a long wave. Furthermore, as time progresses, the waveforms at different positions are
gradually variable. This is due to the fact that the wave absorber is unable to fully absorb
the transmitted long wave, resulting in a superimposition of the reflected waves with the
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transmitted and incident waves. The spectrum provides a more intuitive explanation of
the phenomenon described above. It is observed that the energy of different wave gauges
is essentially identical, indicating that the FFMB has a minimal shielding effect on long
waves. Consequently, the majority of the energy can pass through the structure and is
transferred directly to the rear of the structure.

4. Results and discussion

According to § 3.2, when the frequency band is situated between the first-order and
second-order resonant points, the FFMB exhibits a good wave attenuation effect, with
the wave transmission coefficient in this band less than a specific threshold. For
ease of description, the frequency band near the first-order and second-order resonant
points satisfying Kt < 0.6 is defined as the effective wave attenuation frequency band.
Furthermore, when the wave frequency is greater than the third-order resonant frequency,
the motion response is minimal, and the corresponding wave occurrence probability
in the ocean is low. Therefore, the following figures only analyse the hydrodynamic
performance of the FFMB when the dimensionless wavelength kh < 5. As the wave
reflection coefficient Kr and transmission coefficient Kt satisfy the equation K2

t + K2
r = 1,

the reflection coefficient is not considered in the following sections.

4.1. Motion response of the FFMB
Section 3.2 verified the reliability and accuracy of the EEBEM, and revealed the
resonance characteristics of the FFMB to a certain extent, but it only analysed the motion
response of first-order resonance, and the mechanism of wave and structure resonance
was still not fully explained. To explore the motion response of the FFMB under the
resonant conditions, consider the following working conditions: ρI/ρO = 0.80, γ = 0.90,
RC = 0.2 m, h = 0.7 m, E = 107 N m−2, Δ = 0.001 m.

4.1.1. Resonant mode
Figure 19 depicts the wave transmission coefficient Kt, horizontal wave force Fx, vertical
wave force Fz and dynamic tension TD as a function of dimensionless wavelength kh.
It can be seen that there are many resonant points in the interaction between waves and
the FFMB. The resonant point with the largest period (corresponding to the minimum
value of kh) is defined as the first-order resonant point (kh = 2.16), followed by the
second-order (kh = 3.11), third-order (kh = 6.70) and fourth-order (kh = 11.95) resonant
points. Besides, the first-, third-, fifth- and higher-order modes are defined as odd-order
resonant modes, while the second-, fourth- and higher-order modes are defined as
even-order resonant modes. It is noted that when kh = 10.94, the wave transmission
coefficient is also equal to 0. But it can be seen from the following that this mode is a
third-order to fourth-order transitional mode, rather than a fourth-order resonant mode.

It is observed that there exists a frequency band between the first-order and second-order
resonance points where the value of Kt is less than a certain extreme value. This frequency
band is defined as the effective wave attenuation frequency band. As shown in figure 19(a),
the effective wave attenuation frequency band is defined as 1.95 < kh < 3.13. In practical
engineering, the structural parameters of the FFMB can be controlled and the range of this
frequency band can be altered, thus enabling the FFMB to be tuned to exhibit a superior
wave attenuation effect for waves with specific frequencies. In particular, when the FFMB
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Figure 19. Plots of Kt, Fx and Fz and TD as a function of dimensionless wavelength kh (EEBEM results).
Here ρI/ρO = 0.80, γ = 0.90, RC = 0.2 m, h = 0.7 m, E = 107 N m−2, Δ = 0.001 m. (a) Wave transmission
coefficient Kt. (b) Horizontal wave force Fx. (c) Vertical wave force Fz. (d) Dynamic tension TD.

is in a state of resonance, due to the superposition of the incident, scattered and radiated
waves, the value of Kt decreases significantly and tends to zero.

It can be seen that as the relative water depth kh increases, the wave transmission
coefficient Kt tends to decrease. When the frequency is less than the first-order resonant
frequency, the wave transmission coefficient Kt is approximately equal to 1. This is due
to the fact that when the wavelength is longer, the length of the FFMB is much smaller
than the wavelength, resulting in a weak wave attenuation effect of the FFMB. However,
when the relative water depth kh > 11.95, the wave transmission coefficient Kt exhibits a
gradual increase rather than a decrease. This phenomenon can be attributed to the fact that
although the scatter wave behind the FFMB is absent when kh is large, the FFMB also
generates radiated waves, resulting in Kt > 0.

Figure 19(b) shows that the horizontal wave force Fx exhibits a general tendency to
increase and then decrease with increasing kh. When kh is less than the second-order
resonant frequency, the horizontal wave force increases significantly and reaches a
maximum value near the second-order resonant frequency. As kh increases, Fx shows
a decreasing trend and gradually tends to 0. In particular, near the even-order resonant
point (kh = 3.11, 11.95), Fx reaches a maximum value. This is due to the fact that when
the FFMB is in the even-order resonant mode, the motion response of the FFMB is
approximately anti-symmetric (figure 20b,d), and the stress phases of the FFMB on the
left and right sides are opposite.
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Figure 20. Resonant mode of the FFMB over one wave period under the conditions of figure 19 (EEBEM
results). Results are shown for (a) kh = 2.16, Ai = 0.005 m, first-order mode; (b) kh = 3.11, Ai = 0.005 m,
second-order mode; (c) kh = 6.70, Ai = 0.005 m, third-order mode; and (d) kh = 11.95, Ai = 0.1 m,
fourth-order mode.

Figure 19(c) illustrates that the vertical wave force Fz shows an overall decreasing trend
with increasing kh and changes near the odd-order resonant point, such as first-order
and third-order resonance points. This is due to the fact that when the FFMB is in the
odd-order resonant mode, the motion response of the FFMB is approximately symmetric
(figure 20a,c), and the stress phases of the FFMB on the left and right sides are similar.
Here Fz is the integral of the stresses acting on the entire surface of the FFMB, and the
unilateral side of the left and right also show the characteristics of periodic fluctuations.
Hence, the horizontal wave force under this condition is easy to reach extreme values (0
or maximum values).

Similar to the vertical wave force, with the increase of kh, the dynamic tension TD
(figure 19d) of the membrane first increases and then decreases, and the maximum value
appears at the first-order resonant point, and then it appears at the third-order resonant
point. In short, Fz and TD are related to the first-order and third-order resonances; Fx is
mainly related to the second-order and fourth-order resonances. There are still higher-order
resonant modes in the structure, but the resonance caused by higher-order frequencies is
not considered in this paper because the probability of waves at the third-order resonant
frequency is small in reality.

Figure 20 intuitively shows the resonant response of the FFMB in one wave period under
four resonant modes. It can be observed that when the FFMB is in a state of resonance,
there are numerous wave nodes present on the FFMB. The response of the FFMB is
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analogous to that of a standing wave, with the membrane element vibrating between two
adjacent nodes. The resonant order of the FFMB is twice the number of nodes when the
membrane vibrates. When the structure is in the first-order resonant mode (figure 20a), the
structure displays obvious heave motion, and the vertical wave force and dynamic tension
on the structure are large at this time. The movement of the structure is primarily driven
by the displacement of the entire rigid body, with minimal deformation of the FFMB. Two
distinct wave nodes are evident in the membrane, exhibiting a standing wave-like motion.

For the second-order resonant mode (figure 20b), it is found that the FFMB exhibits
an anti-symmetric deformation, centred on the mass centre of the FFMB, with four wave
nodes. At the same time, near the second-order resonant point, the horizontal wave force
on the structure is the smallest, which can reach 0. This is mainly because the second-order
vibration of the structure is dominated by its own anti-symmetric motion. When the
left and right sides of the structure are in completely opposite motion states, the phase
difference between them is π, which makes the resultant force of the horizontal wave
force equal to zero.

For the third-order resonant mode (figure 20c), it is evident that the structure will
exhibit significant self-deformation, with the presence of six wave nodes. Different from
the second order, the structure moves symmetrically about the z axis, so the dynamic
tension and vertical wave force are huge. This demonstrates that in practical applications,
the third-order resonant mode exerts the greatest influence on structural stability.

The variation of the fourth-order resonant mode (figure 20d) is similar to that of
the second-order resonant mode, but the difference is that there are eight wave nodes
in the fourth-order mode, and its motion response is small. When the wave amplitude
Ai = 0.1 m, the overall deformation is close to that under the second-order condition when
the wave height Ai = 0.005 m, so this mode can be ignored in practice.

4.1.2. Transitional mode
Only in rare cases does the FFMB resonate under wave action, as in the vast majority of
cases its response is transitional. Therefore, its transitional modes are analysed in detail
below. Figure 21 shows the response of the FFMB in one wave period when it is in the
transitional mode.

When the FFMB is in zeroth-order to first-order transitional mode (figure 21a), the
movement of the structure is similar to that of the water particle, and the whole structure
makes an elliptical movement around its equilibrium position. Because the deformation of
the FFMB is rather small, its dynamic tension can be ignored, which is mainly affected
by horizontal and vertical wave forces. Accordingly, because the structure hardly acts on
waves, its transmission coefficient is extremely high, and waves can directly penetrate
through the structure, which further explains the experimental phenomena in figures 17
and 18.

When the structure is in the first-order to second-order transitional mode (figure 21b),
the structural motion is dominated by the first-order mode, and gradually transits to the
second-order mode with the increase of wave frequency. Correspondingly, the motion
response is smaller than that of the resonance. At these frequencies, since the FFMB is
mainly in heave motion, the radiated waves generated by its motion are superimposed on
the transmitted waves, giving the structure a better wave attenuation effect.

The above results show that it is feasible to adjust the absorbing frequency band range
between the first-order and second-order resonant points by controlling the structural
parameters.
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Figure 21. Motion response of the FFMB over one period under the conditions of figure 19 (EEBEM
results). Results are shown for (a) kh = 1.2, Ai = 0.02 m, zeroth-order to first-order mode; (b) kh = 2.5, Ai =
0.02 m, first-order to second-order mode; (c) kh = 5.0, Ai = 0.05 m, second-order to third-order mode; and
(d) kh = 10.7, Ai = 0.1 m, third-order to fourth-order mode.

When the structure is in the second-order to third-order transitional mode (figure 21c),
the structural motion is dominated by the second-order mode, and gradually transits to
the third-order mode with the increase of frequency, and the structural motion is similar
to the second-order mode motion at most frequencies, but the structural response is
small. Correspondingly, due to the anti-symmetric movement of the structure, the phase
difference between the left and right sides of the structure changes, so the horizontal wave
force is larger at this time, while the vertical wave force and dynamic tension are smaller.

When the structure is in the third-order to fourth-order transitional mode (figure 21d),
the structural motion gradually transits from the third-order mode to the fourth-order
mode, and the wave transmission coefficient is relatively small. Compared with
figure 20(c), it can be considered that this state is the second state of third-order resonance.
With the increase of wave frequency, the deformation of the structure gradually changes
from a central symmetry to an anti-symmetry state, and then the transformation to a
higher-order mode is realized.

On the whole, the odd-order resonant modes of the structure mainly exhibit symmetric
motion with the z axis as the symmetry axis, while the even-order resonant modes mainly
exhibit anti-symmetric motion with the structural centroid. With the change of wave
frequency, structural deformation is constantly changing between symmetrical motion and
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Figure 22. Experimental results of Kt, Kr and Kd as a function of dimensionless wavelength kh under different
wave height Hi. Here ρI/ρO = 0.835, γ = 0.999, RC = 0.2 m, h = 0.7 m, E = 107 N m−2, Δ = 0.001 m.
(a) Wave transmission coefficient Kt and reflection coefficient Kr. (b) Energy dissipation coefficient Kd .

anti-symmetric motion. In addition, when the frequency is higher than the second mode,
the structure is mainly deformed by itself, and there is almost no heave motion.

4.2. Wave nonlinearity of the FFMB
Figure 22 shows the wave transmission coefficient Kt, reflection coefficient Kr and energy
dissipation coefficient Kd as a function of dimensionless wavelength kh for different wave
heights Hi. It can be seen that with the enhancement of wave nonlinearity, Kr decreases,
while Kt and Kd increases slightly. When the first-order resonance occurs, Kd reaches the
maximum. When Hi = 0.03 m, Kd can reach 0.5 and when Hi = 0.07 m, Kd is about 0.6.
The reason for this phenomenon can be attributed to the fact that wave energy passing
through the FFMB does not change greatly with the increase of wave nonlinearity. When
the structure overtops, some waves that should have been reflected will pass through the
structure, making the wave transmission coefficient larger. Due to wave breaking, the wave
reflection coefficient decreases and the energy dissipation further increases. Therefore, in
practical applications, FFMB will have a better wave attenuation performance than linear
waves.

Figure 23 shows the experimental results of the interaction between nonlinear waves
and the FFMB at resonant conditions, in which the wave period is 1.4 s and the interval
between adjacent images is Ti/6. It is observed that the structure experiences a pronounced
heave motion in response to the wave action. As the FFMB moves from trough to peak
(figure 23a–d), the water surface exhibits a downward movement from the high point as
a whole. The interaction of the incident wave with the FFMB results in the generation
of a reflected wave. In particular, when the FFMB is at the lowest point (t = 0Ti), the
wave front near the FFMB is elevated, and some incident waves pass over the FFMB,
resulting in overtopping of the wave and dissipation of energy. As the FFMB moves to
the peak (t = 2/6Ti), the wave surface near the FFMB declines, and the fluid-structure
interface is separated. A large amount of air is caught in the water. As the structure
progresses from the peak to the trough (figure 23a–d), the water surface exhibits an
upward movement from the lowest point as a whole. The FFMB may be considered as a
wavemaker, which compresses the water body to generate radiation waves. Consequently,
due to the superposition of scattered waves and radiation waves on the leeside, the water
surface behind the breakwater remains relatively unchanged and the wave transmission
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Figure 23. Experimental results of the interaction between nonlinear waves and the FFMB at resonant
conditions. Here γ = 0.999, RC = 0.2 m, h = 0.7 m, E = 107 N m−2, Δ = 0.001 m, Hi = 0.07 m, Ti = 1.4 s.
Results are shown for (a) t = 0 Ti, (b) t = 1/6 Ti, (c) t = 2/6 Ti, (d) t = 3/6 Ti, (e) t = 4/6 Ti and ( f ) t =
5/6 Ti.

is minimal. This demonstrates that the FFMB has a good attenuation effect on transmitted
waves.

4.3. Effect of different terms in the membrane’s governing equation
The differences between the arcuate and linear membranes are reflected in the curvature
(R) and dynamic tension (TD). In the following, the effects of different terms in the
governing equation of the membrane, such as the dynamic tension, mass and curvature
of the membrane are investigated. To illustrate the differences between these terms, the
governing equation of the membrane is categorized into four different types: normal (2.17),
ignored mass (4.1), ignored curvature (4.2) and ignored dynamic tension (4.3). In fact,
when the curvature is not considered, the corresponding governing equation (4.2) becomes
the linear membrane equation

PD − TD
dθS

dS
+ TS

(
w
R2 + d2w

dS2

)
= 0, (4.1)

PD + TS
d2w
dS2 = ρs�

d2w
dt2

, (4.2)

PD + TS

(
w
R2 + d2w

dS2

)
= ρs�

d2w
dt2

. (4.3)

Figure 24 shows the wave transmission coefficient Kt and vertical wave force Fz as a
function of the dimensionless wavelength kh for different terms (through the EEBEM). As
demonstrated in § 3.2, the present results agree well with the experiments, so the normal
results are considered a reliable benchmark in this section. It is found that the mass (4.1)
exerts a minimal impact on the simulation results, while the curvature (4.2) and dynamic
tension (4.3) exert a significant influence on the mechanical behaviour of the membrane.
These factors can significantly alter the resonant frequency of the membrane, resulting
in a downward shift and a concurrent increase in the vertical wave force. Given that the
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Figure 24. Plots of Kt and Fz as a function of dimensionless wavelength kh (EEBEM results). Here
ρI/ρO = 0.8, γ = 0.9, RC = 0.2 m, h = 0.7 m, E = 107 N m−2, Δ = 0.001 m. (a) Wave transmission
coefficient Kt. (b) Vertical wave force Fz.

dynamic tension is inherently linked to the curvature, when the curvature is not taken into
account (4.2), the dynamic tension is also equal to zero. Therefore, the curvature has a
more profound effect on the hydrodynamic performance of the FFMB than the dynamic
tension. The findings demonstrate that the arcuate membrane equation derived in this
paper is a generalization of the linear membrane equation, with universal applicability.
Consequently, it can be employed as a replacement for the existing linear membrane
equation.

4.4. Effects of the internal fluid density
Figure 25 shows wave transmission coefficient Kt, horizontal wave force Fx, vertical wave
force Fz and dynamic tension TD as a function of dimensionless wavelength kh for different
internal fluid density ρI (through the EEBEM). As can be seen from figure 25(a), with
the decrease of the density, the first-order resonant frequency of the structure gradually
moves to high frequency, and the corresponding effective wave attenuation frequency band
has a better wave attenuation effect. However, given that the wavelength in the ocean is
mainly concentrated in the middle, when the relative density ρI/ρO is small, the frequency
corresponding to the first-order resonant point is too high. Since the effective wave
attenuation frequency band of the FFMB does not match the wave frequency in the ocean,
a small relative density has little significance on practical engineering. Similarly, when
the relative density ρI/ρO is large, the FFMB can not achieve a good wave attenuation
effect. Therefore, from the perspective of practical engineering, it is of greater importance
to select an appropriate density according to the actual wave situation, to achieve a more
effective wave attenuation effect within specific frequency bands.

With the increase of ρI/ρO, the extreme points of horizontal wave force, vertical wave
force and dynamic tension become larger, and the frequency corresponding to the extreme
points moves to low frequency. This is because the initial tension and the draft of the
FFMB increase with the increase of the relative density. When the draft is large, the stress
area of the structure increases, and the corresponding horizontal wave force and vertical
wave force increase. The membrane dynamic tension is related to the initial tension and
the structural motion response. From § 4.1, it can be seen that when the FFMB is at the
first-order resonant frequency, the structure has obvious heave motion. The radiated waves
and the incident waves generated by the structural movement cancel each other, which
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Figure 25. Plots of Kt, Fx, Fz and TD as a function of dimensionless wavelength kh under different internal
fluid density ρI (EEBEM results). Here γ = 0.98, RC = 0.2 m, h = 0.7 m, E = 107 N m−2, Δ = 0.001 m.
(a) Wave transmission coefficient Kt. (b) Horizontal wave force Fx. (c) Vertical wave force Fz. (d) Dynamic
tension TD.

makes the structure achieve a better wave attenuation effect. However, since the membrane
dynamic tension is related to the deformation of the FFMB, and when the FFMB is in the
odd-order resonant mode, the deformation is significant. It is necessary to improve the
strength of the structure so that the structure can play the role of wave absorption without
being damaged.

Generally speaking, considering the numerical and experimental results comprehensively,
it is suggested that ρI/ρO should be between 0.735 and 0.835, so as to make the structural
stress smaller and achieve a better wave attenuation effect.

4.5. Effects of the filling ratio
Figure 26 represents the variations corresponding to figure 25 for different filling ratios
γ (γ = 0.89, 0.92, 0.95, 0.98). As shown in figure 26(a), with the decrease of the filling
ratio γ , the first-order resonance point gradually moves to high frequency, and the
second-order resonance point gradually moves to low frequency. In the effective wave
attenuation frequency band, the wave attenuation effect of the FFMB is further enhanced.
Due to the low probability of high-frequency waves in the ocean, a better wave attenuation
effect can be obtained by appropriately reducing the filling ratio γ .

From figure 26(b), it is found that the horizontal wave force Fx shows a trend of first
increasing and then decreasing with the increase of kh. Near the second-order resonant
point, the horizontal wave force drops sharply and reaches zero. This is mainly because the
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Figure 26. Plots of Kt, Fx, Fz and TD as a function of dimensionless wavelength kh under different ratios γ

(EEBEM results). Here ρI = 800 kg m−3, RC = 0.2 m, h = 0.7 m, E = 107 N m−2, Δ = 0.001 m. (a) Wave
transmission coefficient Kt, (b) Horizontal wave force Fx. (c) Vertical wave force Fz. (d) Dynamic tension TD.

phase of each side of the FFMB is opposite π, and the unilateral wave forces cancel each
other. Moreover, with the increase of γ , the peak value and the corresponding frequency
of the horizontal wave force Fx increase significantly, while the vertical wave force Fz
decreases. This is because as the filling ratio increases, the height of the FFMB increases
and the cross-sectional area of its upstream side decreases, then the horizontal wave force
Fx increases and the vertical wave force Fz decreases. As for the dynamic tension TD,
with the decrease of γ , the peak value of TD obviously decreases and the corresponding
resonant point moves to high frequency. This is mainly because TD is related to the
circumferential tension of the static structure. With the decrease of γ , the initial tension
of the structure decreases significantly, and the natural frequency of the structure changes,
which reduces the dynamic tension.

Therefore, considering the numerical and experimental results comprehensively, a filling
ratio γ above 0.95 is appropriate, which can achieve a better wave attenuation effect,
reduce the acting force of waves on the structure and is conducive to the structural stability.

4.6. Effects of the radius
Figure 27 represents the variations corresponding to figure 25 for different radii
RC(RC/h = 0.214, 0.286, 0.357 and 0.429). It can be seen that RC has a great influence
on the hydrodynamic performance of the structure. With the increase of RC, the first-order
resonant point obviously moves to the low frequency. In the effective wave attenuation
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Figure 27. Plots of Kt, Fx, Fz and TD as a function of dimensionless wavelength kh under different membrane
radii RC (EEBEM results). Here ρI = 800 kg m−3, γ = 0.98, h = 0.7 m, E = 107 N m−2, Δ = 0.001 m. (a)
Wave transmission coefficient Kt. (b) Horizontal wave force Fx. (c) Vertical wave force Fz. (d) Dynamic tension
TD.

frequency band, the maximum transmission coefficient of different radii is similar,
showing that adding RC improves the wave attenuation effect of the FFMB on waves.

Since horizontal wave force Fx, vertical wave force Fz and dynamic tension TD are all
dimensionless parameters, as can be seen from figure 27(c,d), with the increase of RC,
the peak value corresponding to horizontal wave force and vertical wave force increase,
and the frequency corresponding to the peak point gradually moves down. It shows that
changing the radius of the structure has a great influence on the wave force. As for the
dynamic tension TD, with the increase of RC, the dynamic tension becomes smaller.
This is primarily due to the fact that the dynamic tension of the FFMB is related to the
circumferential tension of the FFMB. As the radius increases, the circumferential tension
decreases.

Increasing the radius RC is beneficial to improve the hydrodynamic performance of the
FFMB. On the one hand, it can produce better wave attenuation effects. On the other
hand, it makes the dynamic tension of the FFMB smaller, which is beneficial to improve
the stability of the structure. Given that the horizontal and vertical wave forces almost
increase in proportion to the radius, it would be prudent to devote greater attention to the
anchoring of the structure rather than the material of the structure. The aforementioned
results demonstrate that the larger the FFMB, the better the hydrodynamic performance of
the FFMB.
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Figure 28. Plots of Kt, Fx, Fz and TD as a function of dimensionless wavelength kh under different elastic
moduli E (EEBEM results). Here ρI = 800 kg m−3, γ = 0.98, RC = 0.2 m, h = 0.7 m, Δ = 0.001 m.
(a) Wave transmission coefficient Kt. (b) Horizontal wave force Fx. (c) Vertical wave force Fz. (d) Dynamic
tension TD.

4.7. Effects of the elasticity modulus
Figure 28 represents the variations corresponding to figure 25 for different elastic moduli
E(E/ρOgh = 0, 10, 103 and 105). It is observed that when the elastic modulus E is small,
the result is consistent with that of E = 0. With the increase of the elastic modulus,
the first-order resonant point moves to high frequency and the second-order resonant
point moves to low frequency, which makes the length of the effective wave attenuation
frequency band decrease. Besides, the wave attenuation effect becomes better.

In addition, it is found that the horizontal wave force Fx is completely consistent under
different elastic moduli. It first increases and then decreases with the increase of relative
water depth kh. With regard to the vertical wave force Fz, it would appear that under the
condition of the long wave, there is little difference between the various elastic moduli.
With the increase of the relative water depth, when the first-order resonant point is reached,
the larger the elastic modulus, the smaller the vertical wave force. With the increase
of the elastic modulus, the first-order dynamic tension TD becomes larger and the peak
frequency corresponding to the tension moves up to high frequency. This is mainly due
to the linear correlation between dynamic tension and elastic modulus, so the greater the
elastic modulus, the greater the dynamic tension.

To sum up, a lower elastic modulus E can reduce the vertical wave force and dynamic
tension of the FFMB. At the same time, it can reduce the first-order resonant frequency,
making the FFMB have a better hydrodynamic performance.
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5. Conclusions

The hydrodynamic performance of a FFMB was analysed through physical model
experiments and the coupled EEBEM. A motion equation was derived that considers
the dynamic tension and curvature of the membrane and an integral expression for the
dynamic tension was provided. By optimizing the structural parameters of the FFMB,
the structure can effectively attenuate waves and reduce wave forces within a specific
frequency band, which has important engineering significance. The following conclusions
can be drawn.

(1) The theoretical derivation of the motion equation and the integral expression of
the dynamic tension for the arcuate membrane is highly accurate, and the EEBEM
results are in good agreement with the experimental results.

(2) The interaction between waves and the FFMB induces resonance. The radiated
waves generated by the resonance are superimposed on the transmitted and scattered
waves, which can reduce the wave transmission coefficient to zero at some
frequency. The resonant modes can be ordered from lowest to highest and divided
into first-order, second-order, and n-order resonant modes. Additionally, the motion
response of the transitional mode is similar to that of the lower-order resonant mode.

(3) In the zeroth-order to first-order transitional mode, the structural motion is analogous
to that of a water particle, and the wave attenuation effect is poor. At first-order
resonance, the FFMB is dominated by heave and the self-deformation is small.
There are two wave nodes on the FFMB and the wave attenuation is excellent.
At second-order resonance, the FFMB is dominated by self-deformation and the
membrane response resembles a standing wave with four distinct nodes. The
transitional mode between the first- and second-order resonant frequencies is mainly
similar to the first-order resonance, and this frequency range is an effective wave
attenuation frequency band.

(4) The odd-order (first-order, third-order, etc.) resonant modes of the FFMB mainly
exhibit symmetric motion about the z axis, while the even-order (second-order,
fourth-order, etc.) resonant modes mainly exhibit anti-symmetric motion with the
centre of the structure’s mass.

(5) As the wave frequency changes, the deformation of the FFMB constantly changes
between symmetry and antisymmetry. When the resonant frequency is higher
than the second-order resonant frequency, the structure exhibits a predominantly
self-deforming behaviour, with minimal heave motion.

(6) The FFMB exhibits a superior wave attenuation effect for nonlinear waves than
linear waves. With the enhancement of wave nonlinearity, wave reflection coefficient
decreases, wave transmission coefficient increases slightly and energy dissipation
increases.

(7) When the relative density is between 0.735 and 0.835, and the filling ratio is above
0.95, as well as a large radius, the FFMB can achieve a good wave attenuation effect
and reduce the wave force, which is beneficial to improve the stability of the FFMB.
Besides, lower elastic modulus can reduce the vertical wave force, dynamic tension
and the natural vibration frequency of the FFMB.

Although the motion equation of the membrane under two-dimensional conditions has
been presented in this paper, the analytical solution for the interaction between waves and
the FFMB has not yet been provided. Moreover, the hydrodynamic performance of the
FFMB under three-dimensional conditions requires further investigation. These will be
the subject of future research.
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