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Abstract. Given a sequence (πn) of irreducible representations of a liminal C∗-
algebra A, and a sequence (bn) of trace class operators with bn ∈ πn(A), we investigate
necessary conditions and sufficient conditions for the existence of a simultaneous lifting
a ∈ A such that, for each n, the trace of σ (a) is bounded for irreducible representations
σ in a neighbourhood of πn.
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1. Introduction. The starting point for this investigation is a result of Akemann
[1, II.10] that strengthened an earlier result of Tomiyama [10, 4.2.5] concerning
simultaneous lifting from irreducible representations. This states that if (πn)n≥1 is a
sequence of distinct elements in the spectrum Â of a liminal C∗-algebra A, if (πn) has
no cluster points and if (bn) is a null sequence with bn ∈ πn(A), for all n, then there
exists a ∈ A such that πn(a) = bn, for all n ≥ 1. In this paper, we consider the possibility
of obtaining a simultaneous lifting a ∈ A such that, for each n, if bn has finite rank
(respectively, bn is trace-class) then there exists a neighbourhood Vn of πn in Â such
that {rank(σ (a)) : σ ∈ Vn} is bounded (respectively, {Tr(σ (a)) : σ ∈ Vn} is bounded).

Even in the case of a single irreducible representation π1 and a positive element
b1, the existence of such a ∈ A and V1 necessarily forces the finiteness of the upper
multiplicity MU (π1). See Proposition 1. In view of this, it is natural to work in the
context of a bounded trace C∗-algebra A, so that MU (π ) < ∞, for all π ∈ Â [7, 2.6].
Furthermore, motivated by [7, 2.5], we quantify the boundedness requirements of the
first paragraph by asking that, for σ ∈ Vn, we have

rank(σ (a)) ≤ MU (πn) · rank(bn) (1)

and

|Tr(σ (a))| ≤ MU (πn) · Tr(|bn|). (2)

In Theorem 1, we give the following sufficient condition on (πn)n≥1 for the existence
of a ∈ A and (Vn)n≥1 satisfying (1) and (2):

φ(πn) /∈ {φ(πm) : m �= n} (n ≥ 1), (3)
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where φ is the complete regularization map on Â (see below). Elementary general
topology shows that condition (3) is equivalent to: φ(πn) = φ(πm) if and only if n = m,
and {φ(πn) : n ≥ 1} is discrete in the relative topology. This condition might, at first
sight, appear over-strong, in that it even allows us to construct the Vn(n ≥ 1) so as to
be pairwise disjoint and independent of the given sequence (bn). However, we show in
Theorem 2 (at least for separable, quasi-standard C∗-algebras with bounded trace) that
the condition (3) is actually necessary for the existence of a ∈ A and (Vn)n≥1 satisfying
(1) and (2) (given an arbitrary null sequence (bn)n≥1).

We briefly recall some properties of the complete regularization of the primitive
ideal space Prim(A) of a C∗-algebra A. See [9, 6] for further details. For P, Q ∈ Prim(A)
let P ≈ Q if and only if f (P) = f (Q), for all f ∈ Cb(Prim(A)). Then ≈ is an equivalence
relation on Prim(A) and the equivalence classes are closed subsets of Prim(A). It
follows that there is a one-to-one correspondence between Prim(A)/ ≈ and a set of
closed two-sided ideals of A given by

[P] →
⋂

[P] (P ∈ Prim(A)),

where [P] denotes the equivalence class of P. The set of ideals obtained in this way is
called Glimm(A) (in the unital case these ideals are generated by maximal ideals of the
centre of A [12, Section 4]). The map φ : Prim(A) → Glimm(A) given by

P →
⋂

[P] (P ∈ Prim(A))

is called the complete regularization map.
There are two natural Hausdorff topologies on Glimm(A): the completely regular

topology τcr, that is the weakest topology for which the functions on Glimm(A) induced
by Cb(Prim(A)) are all continuous, and the quotient topology τq. The second is stronger
than the first, but they coincide if A is unital or if φ is either τcr-open or τq-open (and
so we may speak unambiguously of φ being open).

There is another relation on Prim(A) defined by: P ∼ Q if and only if P and Q
cannot be separated by disjoint open subsets of Prim(A). It is immediate that if P ∼ Q
then P ≈ Q but the converse fails in general because ∼ need not be transitive. A C∗-
algebra A is said to be quasi-standard [6] if ∼ is an open equivalence relation. In this
case, ∼ necessarily coincides with ≈, φ is open, τcr = τq and A can be represented
as a continuous field of C∗-algebras over the base space Glimm(A). If A is separable
then the fibre algebras are primitive for a dense subset of the base space. Thus the
quasi-standard C∗-algebras may be viewed as a well-behaved class that is significantly
larger than the class of C∗-algebras with Hausdorff primitive ideal space; for example,
all von Neumann algebras and several group C∗-algebras are quasi-standard [6, 13].

If A is a C∗-algebra of type I, then Â may be identified with Prim(A) via the
homeomorphism π → ker π (π ∈ Â) and so we may regard φ as a map from Â
to Glimm(A) given by φ(π ) = ⋂

[ker π ]. For π ∈ Â, we write [π ] for the closed set
φ−1(φ(π )) in Â (which corresponds to the closed set [ker π ] in Prim(A)).

For π ∈ Â, the upper and lower multiplicities MU (π ) and ML(π ) are defined in
[4]. Upper and lower multiplicities for π relative to a net in Â are defined in [8]. (See
also [7].) These numbers are related to the integers occurring in trace formulae and
they are also related to the number of orthogonal nets of pure states that can converge
to a common pure limit associated with π . A C∗-algebra A is said to have bounded
trace [14, 15] if there is a dense two-sided ideal J of A such that, for each a ∈ J+,
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{Tr(π (a)) : π ∈ Â} is a bounded set of non-negative real numbers. This holds if and
only if MU (π ) < ∞, for all π ∈ Â [7].

2. Results.

PROPOSITION 1. Let A be a C∗-algebra and let π be an irreducible representation
such that π (A) contains LC(Hπ ), the algebra of compact (linear) operators on the Hilbert
space Hπ .

(i) Suppose that b is a nonzero positive operator of trace-class on Hπ and that there
exists a neighbourhood V of π in Â and an element a ∈ A+ such that π (a) = b and
{Tr(σ (a)) : σ ∈ V} is bounded. Then MU (π ) < ∞.

(ii) Suppose that b is a nonzero operator of finite rank on Hπ and that there exists a
neighbourhood V of π in Â and an element a ∈ A such that π (a) = b and {rank(σ (a)) :
σ ∈ V} is bounded. Then MU (π ) < ∞.

Proof. (i) Suppose that MU (π ) = ∞. Since 0 �= b ∈ π (A) ∩ LC(Hπ ), {π} is not
open in Â. (See the proof of [4, Proposition 4.11].) It follows from [8, Propositions
2.2 and 2.3] that there exists a net � = (πα)α∈� in Â\{π} that is convergent to π and
satisfies

ML(π,�) = MU (π ) = ∞.

Since Tr(b) > 0, it follows from generalized lower semi-continuity [8, Theorem 4.3]
that

lim inf Tr(πα(a)) ≥ ML(π,�) · Tr(b) = ∞.

This contradicts the hypothesis that {Tr(σ (a)) : σ ∈ V} is bounded, because πα ∈ V
eventually.

(ii) Since π (a∗a) = b∗b �= 0 and rank(σ (a∗a)) ≤ rank(σ (a)), for all σ ∈ V , we may
assume that b and a are positive. Also, by scaling, we may assume that ‖b‖ = 1.
Let f : [0,∞) → [0, 1] be defined by f (t) = t (0 ≤ t ≤ 1) and f (t) = 1 (t > 1), and let
c = f (a). Then π (c) = b, 0 ≤ c ≤ a and ‖c‖ = 1.

For σ ∈ V ,

Tr(σ (c)) ≤ rank(σ (c)) ≤ rank(σ (a)).

By part (i) of the proposition, MU (π ) < ∞. �
Let L(H) be the algebra of bounded linear operators on a Hilbert space H. For

vectors ξ, η ∈ H, let θξ,η ∈ L(H) be the operator defined by θξ,η(ζ ) = 〈ζ, η〉ξ , ζ ∈ H.

LEMMA 1. Let A be a C∗-algebra, π ∈ Â and assume that π (A) ⊇ LC(Hπ ). There
is an open neighbourhood V of π such that, for every one-dimensional projection e in
L(Hπ ), there exists a ∈ A+ with ‖a‖ = 1, π (a) = e, and rank(σ (a)) ≤ MU (π ), for all
σ ∈ V.

Proof. Firstly, suppose that MU (π ) = ∞. Then we may take V = Â. Given e, let
b ∈ A be any lifting and then set a = f (b∗b), where f is the function used in the proof
of Proposition 1. From now on, we may suppose that MU (π ) < ∞.

Let p be a fixed one-dimensional projection in L(Hπ ). By [7, Theorem 2.5], there
is an open neighbourhood V of π in Â and b ∈ A+ such that ‖b‖ = 1, π (b) = p and
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rank (σ (b)) ≤ MU (π ), σ ∈ V . Now let e be any one-dimensional projection in L(Hπ ).
Choose unit vectors ξ and η in the ranges of p and e respectively. By [2, Theorem 4.3]
there is x ∈ A such that ‖x‖= 1 and π (x) = θξ,η. For a = x∗bx we have a ∈ A+, ‖a‖ ≤ 1,
π (a) = θ∗

ξ,ηpθξ,η = e and rank(σ (a)) = rank(σ (x)∗σ (b)σ (x)) ≤ rank(σ (b)) ≤ MU (π ),
for all σ ∈ V . �

LEMMA 2. Let A be a C∗-algebra, π ∈ Â and assume that π (A) ⊇ LC(Hπ ). There
is a neighbourhood V of π in Â such that, for every trace class operator b on Hπ , there
exists a ∈ A, which may be chosen to be positive if b is positive, satisfying ‖a‖ = ‖b‖,
π (a) = b, |Tr(σ (a))| ≤ MU (π )Tr(|b|) and rank(σ (a)) ≤ MU (π )rank(b), for all σ ∈ V.

Proof. Firstly, suppose that MU (π ) = ∞. Then we may take V = Â. Given b, there
is a lifting a ∈ A such that ‖a‖ = ‖b‖, by [2, Theorem 4.3] (and if b ≥ 0 we may then
replace a by |a|). From now on, we may suppose that MU (π ) < ∞.

Let V be a neighbourhood of π as given by Lemma 1. Let b be an operator of
trace class on Hπ . By [16, Theorem 1.9.3 and Lemma 2.1.2],

b =
∑

i

λiuipi, (4)

where λi ≥ 0, {pi} are mutually orthogonal one-dimensional projections, {ui} are partial
isometries whose initial domains are the ranges of pi, respectively, and whose final
domains are mutually orthogonal, and Tr(|b|) = ∑

iλi < ∞. If b ≥ 0, we take ui = pi,
for each i.

By Lemma 1, for each i = 1, 2, , . . . , there exists ai ∈ A+ such that ‖ai‖ = 1, π (ai) =
pi and rank(σ (ai)) ≤ MU (π ), for every σ ∈ V . By [2, Theorem 4.3], there exists vi ∈ A
with ‖vi‖ = 1 and π (vi) = ui, for i = 1, 2, . . . . If b ≥ 0, we choose vi = ai, for each i. Put
x = ∑

i λiviai ∈ A and let x = u|x|, with u ∈ A∗∗, be its polar decomposition (unless
x ≥ 0 in which case we let u = 1 ∈ A∗∗). Then |x| = u∗x, and π (x) = ∑

λiπ (vi)π (ai) =

λiuipi = b. For σ ∈ V , let σ be the unique normal extension of σ to A∗∗. Then the
finite dimensional operator σ (u∗viai) satisfies

‖σ (u∗viai)‖C1 ≤ ‖σ (u∗vi)‖ ‖σ (ai)‖C1 ≤ Tr(σ (ai)) ≤ MU (π )

and so
∑

i λiσ (u∗viai) is absolutely convergent in the trace class norm C1, and hence in
the operator norm. We have,

Tr(σ (|x|)) = Tr(σ (u∗x)) = Tr

(
σ

(∑
i

λiu∗viai

))

= Tr

(∑
i

λiσ (u∗vi)σ (ai)

)
≤

∑
i

λi|Tr(σ (u∗vi)σ (ai))|

≤
∑

i

λi‖σ (u∗vi)‖Tr(σ (ai)) ≤ MU (π )
∑

i

λi = MU (π )Tr(|b|).

(5)

Consider the function f : [0,∞) → [0,∞) defined by

f (t) =
{

t, 0 ≤ t ≤ ‖b‖,
‖b‖, t > ‖b‖.
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Put a = u f (|x|) ∈ A. Then ‖a‖ ≤ ‖b‖ and

π (a) = π (u)f (π (|x|)) = π (u)f (|b|) = π (u)|b|
= π (u)π (|x|) = π (u|x|) = π (x) = b.

Note that if b ≥ 0 then x ≥ 0 and so, by our choice of u, a = f (|x|) ≥ 0. Let σ ∈ V .
Then

|Tr(σ (a))| = |Tr(σ (u)σ ( f (|x|))| ≤ ‖σ (u)‖Tr(σ (f (|x|)))
≤ Tr(σ ( f (|x|))) ≤ Tr(σ (|x|)) ≤ MU (π )Tr(|b|),

by (5). We also have rank(σ (a)) ≤ Mu(π ) · rank(b). Indeed, if the range of b is infinite
dimensional there is nothing to prove. Otherwise, we may assume that the number of
summands in (4) is rank(b). Then, for σ ∈ V ,

rank(σ (x)) ≤
∑

i

rank(σ (viai)) ≤
∑

i

rank(σ (ai)) ≤ MU (π ) · rank(b)

and so

rank(σ (a)) = rank(σ (u)f (σ (|x|))) ≤ rank(f (σ (|x|)))
≤ rank(σ (|x|)) = rank(σ (x)) ≤ MU (π ) · rank(b). �

We shall need two elementary topological lemmas.

LEMMA 3. Let X and Y be topological spaces, Y regular, ϕ : X → Y a continuous
map and (xn) a finite or infinite sequence in X. Suppose that ϕ(xn) �∈ {ϕ(xm) : m �= n}
for each n. Then there is a sequence (Vn) of open sets in X, pairwise disjoint, such that
xn ∈ Vn for every n.

Proof. Let U1 and O1 be disjoint open sets in Y such that ϕ(x1) ∈ U1 and
{ϕ(xm) : m �= 1} ⊆ O1. Put V1 = ϕ−1(U1), W1 = ϕ−1(O1). Then V1, W1 are disjoint
open sets in X , x1 ∈ V1 and {xn : n ≥ 2} ⊆ W1.

Suppose we have chosen open sets {Vi}n
i=1, {Wi}n

i=1 in X such that {Vi}n
i=1 are

pairwise disjoint, Vi ∩ Wi = ∅, xi ∈ Vi, {xm : m �= i} ⊆ Wi for 1 ≤ i ≤ n. There are
disjoint open sets Un+1 and On+1 in Y such that ϕ(xn+1) ∈ Un+1, {ϕ(xm) : m �= n + 1} ⊆
On+1. Put V ′

n+1 = ϕ−1(Un+1), Wn+1 = ϕ−1(On+1) and Vn+1 = V ′
n+1 ∩ (

⋂n
i=1 Wi). Then

{Vi}n+1
i=1 , {Wi}n+1

i=1 satisfy the induction hypothesis. �
LEMMA 4. Let X and Y be topological spaces and let ϕ : X → Y be a continuous,

open mapping. For x ∈ X, let [x] = ϕ−1(ϕ(x)). Let S be a non-empty subset of X and let
x ∈ S. The following are equivalent:

(1) x �∈ ∪{[y] : y ∈ S\{x}},
(2) ϕ(x) �∈ {ϕ(y) : y ∈ S\{x}}.
Proof. (1) ⇒ (2). Suppose that ϕ(x) ∈ {ϕ(y) : y ∈ S\{x}}. Let V be a neighbour-

hood of x. Since ϕ is open, ϕ(V ) is a neighbourhood of ϕ(x). By assumption, there
exists y ∈ S\{x} such that ϕ(y) ∈ ϕ(V ). Thus V ∩ [y] �= ∅ and so x ∈ ∪{[y] : y ∈ S\{x}}.

(2) ⇒ (1). This is immediate from the continuity of ϕ. �
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THEOREM 1. Let A be a bounded trace C∗-algebra and ϕ : Â → Glimm(A) be the
complete regularization map, the latter space being considered with its τcr topology. Let
(πn) be a finite or infinite sequence in Â satisfying

ϕ(πn) �∈ {ϕ(πm) : m �= n} , n = 1, 2, . . . (6)

in Glimm(A). Then there are pairwise disjoint open neighbourhoods Vn of πn (n ≥ 1)
such that for each sequence (bn) of trace class operators bn ∈ L(Hπn ) with limn ‖bn‖ = 0
(if the sequence (πn) is infinite) there exists a ∈ A (which may be chosen to be positive if
all bn are positive) such that for n ≥ 1 : πn(a) = bn and, for all σ ∈ Vn, σ (a) is of trace
class, |Tr(σ (a))| ≤ MU (πn) · Tr(|bn|) and rank(σ (a)) ≤ MU (πn) · rank(bn).

Proof. By Lemma 3, there is a sequence (Un) of pairwise disjoint open sets in X such
that πn ∈ Un for n = 1, 2, . . . . Let In be the closed two-sided ideal of A corresponding
to the open subset Un of Â, n = 1, 2, . . . and let I be the closed two-sided ideal of A for
which Î = ⋃

n Un, so that I is the (restricted) direct sum of the In. For each n, we may
apply Lemma 2 to In to obtain an open neighbourhood Vn of πn such that Vn ⊆ Un

and for each bn ∈ L(Hπn ) of trace class there exists an ∈ In (which may be chosen to be
positive if bn is positive) such that ‖an‖ = ‖bn‖, πn(an) = bn, and for all σ ∈ Vn, σ (an)
is of trace class, |Tr(σ (an))| ≤ MU (πn) · Tr(|bn|), and rank(σ (an)) ≤ MU (πn) · rank(bn).
Given (bn) as in the statement of the theorem, there exists (an) as above, and then
a = 
an ∈ I ⊆ A has the required properties. �

REMARKS 1. If we suppose that the bounded trace C∗-algebra A is quasi-standard,
then ϕ is open and so, by Lemma 4, the sequence (πn) satisfies (6) if, for every n, πn �∈
∪{[πm] : m �= n}. Thus, in particular, if (πn) is a sequence of separated points in Â such
that πn �∈ {πm : m �= n} for each n, then (6) will be satisfied because [πm] = {πm} = {πm}
for each m. For instance, any sequence (πn) of distinct separated points that has no
cluster points in Â will satisfy (6).

The strong hypothesis (6) on (πn) is justified for quasi-standard C∗-algebras in
Theorem 2 below. Nevertheless, one may ask if it is always implied by (πn) being a
sequence of distinct points of Â that has no cluster points (which is all that is required
for Akemann’s result quoted in the introduction). The negative answer is illustrated by
the following example.

EXAMPLE 1. Let A be the C∗-algebra of all continuous functions f : [0, 1] → M2(�)
such that f ( 1

n ) = (
λn( f ) 0

0 µn( f )
), f (0) = (

λ( f ) 0

0 0
), where λ( f ) ∈ �, λn( f ) ∈ � and µn( f ) ∈ �

for n ≥ 1. Then A is a quasi-standard, bounded trace C∗-algebra (in fact, it is a Fell C∗-
algebra). The sequence λ,µ1, µ2, . . . has no cluster points in Â. However, since λn → λ

in Â and [µn] = {λn, µn}, for n ≥ 1, we have λ ∈ {[µn] : n ≥ 1}. Since ϕ is continuous,
condition (6) fails for the sequence λ,µ1, µ2, . . . . Furthermore, the conclusion of
Theorem 1 fails for this sequence: this will follow from Theorem 2 but also can be
easily seen directly.

The next example shows that, for separable, bounded trace C∗-algebras, condi-
tion (6) is not necessary for the conclusion of Theorem 1 to hold. It follows that, in
Theorem 2 below, the hypothesis of quasi-standardness cannot be deleted.

EXAMPLE 2. Let A be the C∗-algebra of all the continuous functions

f : {(x, i) : 0 ≤ x ≤ 1, i = 0, 1} → M2(�)
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such that

f (0, 1) = 0, f
(

1
n
, 1

)
=

(
λn( f ) 0

0 µn( f )

)
, f (0, 0) =

(
0 0
0 λ( f )

)
,

f ( 1
n , 0) = (

µn( f ) 0

0 νn( f )
), where λn( f ), µn( f ), νn( f ), λ( f ) are scalars for n ≥ 1. Then A is a

separable, bounded trace C∗-algebra. However, the relation ∼ is not transitive and so
A is not quasi-standard. It is easily checked that the conclusion of Theorem 1 holds for
the sequence λ, λ1, λ2, . . . . Nevertheless, λ ∈ ∪{[λn] : n ≥ 1} because [λn] = {λn, µn, νn}
for each n and νn → λ in Â. Since ϕ is continuous, ϕ(λ) ∈ {ϕ(λn) : n ≥ 1}, which shows
that condition (6) fails.

The next two lemmas will be needed in the proof of Theorem 2.

LEMMA 5. Let A be a separable, quasi-standard, liminal C∗-algebra. For each π ∈ Â
there is a sequence (ρn)n≥1 in Â such that

ML(π, (ρn)n≥1) = MU (π, (ρn)n≥1) = MU (π )

and (ρn)n≥1 converges to each ρ ∈ [π ].

Proof. Let π ∈ Â. The set of separated points of Â is dense in A by [10, Proposi-
tion 2]. By [5, Lemma 1.2], there is a sequence (ρn)n≥1 of separated points in Â that
converges to π and satisfies

ML(π, (ρn)n≥1) = MU (π, (ρn)n≥1) = MU (π ).

Now let ρ ∈ [π ]. For each open neighbourhood N of ρ, ϕ(N) is an open neighbourhood
of ϕ(ρ) = ϕ(π ). Hence ϕ(ρn) ∈ ϕ(N) for n sufficiently large. Since A is quasi-standard
and liminal, ϕ−1(ϕ(ρn)) is the singleton {ρn}, for each n, and so ρn ∈ N eventually. �

LEMMA 6. Let m be a positive integer and let ξ1, . . . , ξm+1 be unit vectors in a
Hilbert space such that |〈ξi, ξj〉| < 1

m , for 1 ≤ i < j ≤ m + 1. Then {ξ1, . . . , ξm+1} is
linearly independent.

Proof. Suppose that
∑m+1

i=1 αiξi = 0, where not all of the complex coefficients
α1, . . . , αm+1 are zero. Choose j such that |αj| ≥ |αi| for all i. Then

1 = 〈ξj, ξj〉 =
∣∣∣∣∣∣
∑
i �=j

〈
αi

αj
ξi, ξj

〉∣∣∣∣∣∣ < m · 1
m

= 1,

a contradiction. �
THEOREM 2. Let A be a separable, quasi-standard C∗-algebra with bounded trace and

let (πn) be a finite or infinite sequence in Â. Suppose that, for every sequence (bn), where
bn is a positive operator of finite rank in πn(A) and limn→∞ ‖bn‖ = 0 (if the sequence (πn)
is infinite), there exist a ∈ A and a sequence (Vn) of open subsets of Â such that

(i) for all n, πn ∈ Vn and πn(a) = bn,
(ii) either, for all n and for all σ ∈ Vn, σ (a) is a positive operator and

Tr(σ (a)) ≤ MU (πn) · Tr(bn)
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or, for all n and all σ ∈ Vn,

rank(σ (a)) ≤ MU (πn) · rank(bn).

Then ϕ(πn) /∈ {ϕ(πm) : m �= n} for every n.

Proof. First of all, we show that ϕ(πn) �= ϕ(πm) whenever m �= n. Suppose, on the
contrary, that ϕ(πn) = ϕ(πm) for some distinct m and n. Since A is quasi-standard,
πn ∼ πm (that is, πn and πm cannot be separated by disjoint open subsets of Â) and
so there is a net (σα) in Â that is convergent to both πm and πn. Define bn to be a
nonzero operator of norm one in πn(A) and define bj = 0 for j �= n. By hypothesis,
there exists a ∈ A and a neighbourhood Vm of πm such that πn(a) = bn and σ (a) = 0,
for all σ ∈ Vm. Eventually, σα ∈ Vm and then σα(a) = 0. By lower semi-continuity [11,
3.3.2],

1 = ‖bn‖ = ‖πn(a)‖ ≤ lim inf ‖σα(a)‖ = 0,

a contradiction.
Since ϕ(πm) �= ϕ(πn) for m �= n and Glimm(A) is Hausdorff, the conclusion of the

theorem is now clear if the sequence (πn) is finite. From now on we assume that (πn) is
an infinite sequence. Suppose that the conclusion of the theorem fails. By renumbering,
we may as well suppose that ϕ(π1) ∈ {ϕ(πn) : n ≥ 2}. Since A is quasi-standard, ϕ is
open and so, by Lemma 4,

π1 ∈ ∪n≥2[πn]. (7)

Since A is separable, there exists a decreasing base (Uk)k≥2 of open neighbourhoods of
π1 in Â. By (7), there exists n2 ≥ 2 such that there is σ2 ∈ U2 ∩ [πn2 ]. Since ϕ(π1) �= ϕ(πn)
for n ≥ 2, we have π1 /∈ [πn] for n ≥ 2 and so U3\ ∪n2

r=2 [πr] is an open neighbourhood
of π1. Hence there is n3 > n2 such that there is σ3 ∈ U3 ∩ [πn3 ]. Proceeding in this way,
we may construct a strictly increasing sequence of integers (nk)k≥2 (with n2 ≥ 2) and
σk ∈ Uk ∩ [πnk ] for all k ≥ 2. Since (Uk) is decreasing, σk → π1 as k → ∞.

For each n ≥ 1, let pn be a projection of rank one in πn(A). Let (λn)n≥1 be a strictly
decreasing null sequence in � with λ1 = 1, and let bn = λnpn (n ≥ 1). By hypothesis,
there exists a ∈ A and a sequence (Vn)n≥1 of open subsets of Â such that (i) and (ii) hold.
The set {σ ∈ Â : ‖σ (a)‖ > 1

2 } is an open neighbourhood of π1 [11, 3.3.2] and so, since
‖πnk (a)‖ = λnk → 0 as k → ∞, there exists K ≥ 1 such that σK ∈ V1, ‖σK (a)‖ > 1

2 and
σK �= πnK . By Lemma 5, there is a sequence (ρk)k≥1 in Â that is convergent to both σK

and πnK and satisfies

MU
(
πnK , (ρk)

) = ML
(
πnK , (ρk)

) = m,

where m = MU (πnK ). Since ρk → πnK as k → ∞, there exists L ≥ 1 such that ρk ∈ VnK for
all k ≥ L.

We have to consider the two possibilities for a and (Vn) in (ii). Firstly, suppose that
a and (Vn) satisfy the tracial condition. Then

Tr(σ (a)) ≤ mTr
(
bnK

) = mλnK

(
σ ∈ VnK

)
and, since σK ∈ V1, σK (a) is positive. It follows that Tr(ρk(a)) ≤ mλnK for all k ≥ L.
Hence, by generalised lower semi-continuity [8, Theorem 4.3] and the fact that σK (a)
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is a nonzero positive operator,

mλnK ≥ lim inf Tr(ρk(a))≥ML
(
πnK , (ρk)

) ·Tr
(
πnK (a)

)+ML(σK , (ρk)) ·Tr(σK (a))>mλnK,

a contradiction.
Secondly, suppose that a and (Vn) satisfy the condition on rank. Then

rank(σ (a)) ≤ m rank
(
bnK

) = m
(
σ ∈ VnK

)
and so rank(ρk(a)) ≤ m for all k ≥ L. Let ξ be a unit vector in the range of the projection
pnK and let η be a unit vector in the Hilbert space for σK such that ‖σK (a)η‖ > 1

2 . Let ψ

be the pure state of A defined by ψ(x) = 〈πnK (x)ξ, ξ 〉 for x ∈ A. Since A is separable, a
simple adaptation of the proof of [7, Lemma 5.2(i)] shows that there is a subsequence
(ρkr )r≥1 of (ρk) and an orthonormal set {ξ i

r : 1 ≤ i ≤ m} in the Hilbert space for ρkr

(r ≥ 1) such that, for x ∈ A and 1 ≤ i ≤ m,

lim
r→∞

〈
ρkr (x)ξ i

r, ξ
i
r

〉 = ψ(x). (8)

Hence, for 1 ≤ i ≤ m,

lim
r→∞

∥∥ρkr (a)ξ i
r

∥∥2 = lim
r→∞

〈
ρkr (a

∗a)ξ i
r, ξ

i
r

〉 = ψ(a∗a) = λ2
nK

and

lim
r→∞

∥∥ρkr (a)ξ i
r − λnK ξ i

r

∥∥2 = lim
r→∞

[∥∥ρkr (a)ξ i
r

∥∥2 + λ2
nK

− λnK

〈
ξ i

r, ρkr (a)ξ i
r

〉 − λnK

〈
ρkr (a)ξ i

r, ξ
i
r

〉] = 0.

Thus

lim
r→∞

〈
ρkr (a)ξ i

r, ρkr (a)ξ j
r

〉 = 0 (1 ≤ i < j ≤ m). (9)

(This also follows from (8) by [8, Lemma 2.5].)
Since A is separable, the w∗-topology on A∗ is first countable. Hence, since the

canonical mapping from the set of pure states of A to Â is open, we may assume, by
passing to a subsequence of (ρkr ) if necessary, that there exists a unit vector ηr in the
Hilbert space for ρkr (r ≥ 1) such that

lim
r→∞〈ρkr (x)ηr, ηr〉 = 〈σK (x)η, η〉 (x ∈ A).

In particular,

lim
r→∞ ‖ρkr (a)ηr‖2 = lim

r→∞〈ρkr (a
∗a)ηr, ηr〉 = 〈σK (a∗a)η, η〉 = ‖σK (a)η‖2 > 1/4 .

Thus for r large enough, ‖ρkr (a)ηr‖ > 1/2.
Since πnK �= σK , the pure states ψ and 〈σK (·)η, η〉 are inequivalent and so

Lemma 2 of [3] implies that for x ∈ A

lim
r→∞

〈
ρkr (x)ηr, ξ

i
r

〉 = 0 (1 ≤ i ≤ m).
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In particular,

lim
r→∞

〈
ρkr (a)ηr, ρkr (a)ξ i

r

〉 = 0 (1 ≤ i ≤ m). (10)

Since limr→∞ ‖ρkr (a)ξ i
r‖ = λnK (1 ≤ i ≤ m) and ‖ρkr (a)ηr‖ > 1

2 eventually, there
exists R ≥ 1 such that, for r ≥ R, ui

r = ρkr (a)ξ i
r/‖ρkr (a)ξ i

r‖ (1 ≤ i ≤ m) and um+1
r =

ρkr (a)ηr/‖ρkr (a)ηr‖ are well-defined unit vectors for which (using (9) and (10))

lim
r→∞

〈
ui

r, uj
r

〉 = 0 (1 ≤ i < j ≤ m)

and

lim
r→∞

〈
ui

r, um+1
r

〉 = 0 (1 ≤ i ≤ m).

It follows from Lemma 6 that, for r sufficiently large, the set {u1
r , . . . , um+1

r } is linearly
independent. This contradicts the fact that rank(ρk(a)) ≤ m for all k ≥ L. �
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