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Falling clouds
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The featured article ‘Break-up of a falling drop containing dispersed particles’ (Nitsche
and Batchelor, J. Fluid Mech., 1997, vol. 340, pp. 161–175) is G. K. Batchelor’s last
published paper with his former postdoctoral associate J. M. Nitsche. The objective
of the study was to investigate the randomness of the velocities of interacting rigid
particles falling under gravity through a viscous fluid at a small Reynolds number and
its consequence for the breakup of a falling cloud of particles. The study focused on a
quintessential problem of the collective dynamics of interacting particles and has been an
inspiration for subsequent work.
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1. Batchelor & Nitsche’s falling clouds

Nitsche & Batchelor (1997) examined the temporal evolution of an initially spherical cloud
of particles falling in a quiescent fluid in the Stokes regime. Their questions of interest
were as follows: Do particles leave the cloud, and if so, how? What is the lifetime of the
cloud as a cohesive entity? Their analysis was substantiated by a numerical simulation of
interacting particles (with a maximum particle number of N = 320), in which the particles
were supposed to act as Stokeslets. This approximation assumed that spherical particles
could be treated as point particles that interact with their leading fluid velocity disturbance
in Stokes flows, which decays as one over the distance to their centre. The cloud was
observed to maintain its initial shape, while particles were observed to leak from its rear
in a vertical tail that eventually led to its disintegration.

Notwithstanding the small gravitational slip of the particle phase (Batchelor 1974;
Ekiel-Jeżewska, Metzger & Guazzelli 2006), the flow around the suspension cloud is, in
fact, related to that of the settling of a spherical drop of heavy fluid in an otherwise lighter
fluid as described by Hadamard (1911) and Rybczyński (1911). Consequently, the cloud
falls like a dense, effective-fluid drop, with no surface tension, at a settling speed Vc ∼
NVSa/R, where a is the particle radius, R the cloud radius and VS = 2(ρp − ρf )a2g/9μ is
the Stokes velocity of an individual particle of density ρp settling in the quiescent fluid
of viscosity μ and density ρf under the gravitational acceleration g. In the reference
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Figure 1. A schematic representation of a falling particle cloud illustrating the toroidal circulation of particles
within the cloud and the particle leakage in the reference frame of the moving cloud (from a drawing of Sylvie
Pic in Guazzelli & Morris 2012).

frame of the moving cloud, the particles experience a circular motion along closed
toroidal trajectories (the well-known Hadamard–Rybczyński toroidal flow) within the
entire volume of the cloud. The hydrodynamic interactions between the particles cause
random displacements superposed on this toroidal motion. These random displacements
ultimately result in the particle crossing over into the region of the cloud where there is
no particle presence, as depicted in figure 1. In this region, the streamlines sweep around
the cloud surface and are no longer closed (as they are inside), but extend to infinity. Once
particles are swept around to the rear, they fall behind the faster-moving cloud and never
catch up again, and thus are lost in the aforementioned tail.

Having identified the mechanism of the cloud disintegration, Nitsche & Batchelor
(1997) sought a law governing the rate of particle loss. They proposed that the leakage
rate is given by −dN/dt ∝ Vc/d, considering that the rate-determining factor is the fall
velocity of the cloud, Vc, and that the relevant unit of length is the mean particle spacing,
d = (4π/3N)1/3R, as it describes the chaotic displacements of the particles which may
result in their escape from the cloud internal circulation. This was confirmed in their
simulations, which demonstrated a linear increase in the leakage rate over time.

2. Later fate of the clouds

The clouds described by Nitsche & Batchelor (1997) were composed of a relatively
small number of particles (20 � N � 320) and exhibited a high degree of cohesion until
they disintegrated due to the constant loss of particles. In contrast, clouds comprising a
larger number of particles (N � 500) were subsequently studied and were seen to become
unstable (see e.g. Adachi, Kiriyama & Yoshioka 1978; Machu et al. 2001; Metzger, Nicolas
& Guazzelli 2007). These clouds initially remained roughly spherical, with a leakage of
particles in a vertical tail, and then slowly evolved into a torus which subsequently broke
up into two droplets in a repeating cascade, as shown in figure 2.
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Figure 2. A schematic representation of the evolution of the cloud into a torus and subsequent breakup (the
time, t∗, is normalised by the time for the spherical cloud to fall its radius) (from a drawing of Sylvie Pic in
Guazzelli & Morris 2012).

The leakage rate found by Nitsche & Batchelor (1997) was at least confirmed as the
cloud remains spherical while falling through the first 10 cloud diameters. At larger
times, when the cloud has evolved towards a toroidal shape, the loss slowed down, and
a t−1/3 leakage rate was observed (Metzger et al. 2007). What is more intriguing is the
later development that took place long after the early times of cloud evolution studied
by Nitsche & Batchelor (1997). This process involved the robust evolution of the initial
spherical cloud into a torus, followed by its subsequent breakup, which occurs even in
the complete absence of inertia and without the need to perturb the initial cloud shape.
The previously described leakage of particles from the outer streamlines of the toroidal
circulation results in a deficit of particles near the vertical axis in the central region of
the cloud, which in turn gives rise to the formation of a torus. The toroidal cloud is then
observed to expand and to break into two droplets for a critical horizontal to vertical aspect
ratio. While the precise mechanism by which the toroidal cloud expands remains unclear,
the breakup of the torus is a consequence of the change in flow configuration created by
the particles when the aspect ratio reaches a critical value (Metzger et al. 2007).

The point-particle approach, pioneered by Nitsche & Batchelor (1997), has proven
to be highly effective in capturing the evolution of the cloud. Subsequent numerical
simulations, which have employed a range of varying degrees of sophistication, have been
conducted to replicate this evolution (see, for example, one of the latest modelling attempt
by Zhan & Wenxiao 2024). These more evolved simulations capture the multi-body and
lubrication effects that are missed in the Stokeslet approximation and are certainly more
accurate at modelling more concentrated clouds. However, the primary objective of the
simplified Stokeslet simulation is to demonstrate the minimal physics required to describe
the long-range hydrodynamic interactions between the particles and to illustrate how the
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coupling between hydrodynamics and the microscopic arrangement of the particles gives
rise to a collective dynamics.

Up to this point, our attention has been directed towards clouds of spherical particles.
A comparable evolution and breakup has been observed in clouds of fibres, although at a
faster rate due to the self-motion of the anisotropic particles (Park et al. 2010).

3. Beyond Stokes flows

In §§ 1 and 2, inertia was ignored. However, in most phenomena involving the dispersion
of particles, such as turbidity currents, volcanic clouds, particle sedimentation in river beds
or dust particle transport in the atmosphere, the particulate flow is dominated by inertial
forces.

As the inertia of the falling cloud is increased, a transition occurs to a regime dominated
by macro-scale inertia. This transition happens when the inertia at the scale of the
cloud becomes large, which is indicated by the cloud Reynolds number, Rec = ρf VcR/μ,
reaching a value of approximately one, i.e. Rec ∼ 1 (Bosse et al. 2005). The subsequent
transition is toward a micro-scale inertial regime when the inertia at the particle scale
becomes important, i.e. when the individual particle wakes interact within the cloud
boundaries. In its most basic form, particles interact through their steady Oseen velocity
fields within the cloud and the micro-scale inertial regime occurs when the inertial length
is of the order of the cloud radius, i.e. a/Rea ∼ R, where Rea = ρf VSa/μ is the particle
Reynolds number (Subramanian & Koch 2008). In both inertial regimes, the cloud deforms
into a flat torus that eventually destabilises and breaks up into a number of secondary
droplets. However, particle leakage is much weaker if not null. While this evolution
resembles that observed in the Stokes regime, the physical mechanisms involved are
qualitatively different (Pignatel, Nicolas & Guazzelli 2011). In the inertial regimes, the
evolution towards a torus shape is due to fluid inflow at the rear of the cloud, which leads
to a decrease in particle leakage. The breakup process also differs, occurring at a larger
aspect ratio of the torus within the inertial regime.

The aforementioned studies consider finite-but-moderate-Reynolds-number clouds.
However, there are additional complexities in even larger-Reynolds-number clouds,
including turbulent clouds of particles whose behaviour may deviate from a turbulent
thermal model due to inertial particulate effects (see e.g. Kriaa et al. 2022). Furthermore,
the interactions between particles and flow structures, as well as the collective effects
between particles, are also important when particle clouds are settling in a complex flowing
fluid rather than a quiescent fluid (see e.g. Marchetti, Bergougnoux & Guazzelli 2011).

Although these cloud behaviours are considerably more complex than those studied by
Nitsche & Batchelor (1997), their work evidencing collective effects remains a great source
of inspiration.
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