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A MEASURE VALUED DIFFUSION PROCESS DESCRIBING
AN n LOCUS MODEL INCORPORATING GENE CONVERSION

AKINOBU SHIMIZU

§1. Introduction

Probability measure valued diffusion processes have been discussed
by many authors, in connection with population genetics. Most papers
studying probability measure valued diffusions are mainly concerned with
the ones describing single locus models. In this paper, we will discuss a
measure valued diffusion describing an n locus model. Random sampling,
mutation and gene conversion, a kind of interaction between loci, which
was introduced and investigated by T. Ohta in [5], [6], will be taken into
consideration.

The first aim of this paper is to give a mathematical justification to
the Ohta’s results. Let E be the set [0, 1] in R". Here, the interval [0, 1]
describes the set of alleles, and a point of E, which is an n-ple of alleles,
means a chromosome with n loci. The bounded operator B, introduced
in §2 describes mutation of the neutral infinitely many allele model in n
locus case. A positive constant v is mutation rate. We assume that
mutation occurs independently at each locus. The operator B, defined
in §2 describes the Ohta’s gene conversion. A positive constant 1 stands
for gene conversion rate. Let #(E) be the space of probability measures
on E. We consider the #(E)-valued diffusion process with the generator
G given in § 2. The known results on the diffusion with the generator
G will be stated in Propositions 2.1 and 2.2. For simplicity, it will be
omitted to explain the reason why our diffusion process is the stochastic
process existing behind the Ohta’s arguments. See the paper [8], where
the author explained the reason by means of giving a discrete model
describing the Ohta’s model in 2 locus case with the diffusion approxima-
tion. The argument on discrete models and the diffusion approximation
in n locus case is essentially the same as in [8].
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The quantity c¢,(!) defined in § 3 is the average identity probability of
genes at different loci. The quantities f(f) and c,(f) are the average proba-
bility of allelic identity and the average identity probability of two genes taken
from different loci of two homologous chromosomes of the population
respectively. In this paper, the quantities ¢,(¢), c,(¢) and f(¢) are defined
in terms of the first and the second moments of the measure valued diffu-
sion. We will show that these quantities satisfy the system of ordinary
differential equations

(dfdd)ei(t) = —2(2 + v)ey(t) + 22,
@dt)f®) =1 — (L + 2v + 2(n — DAf®) + 2(n — Dac(),
(dfdt)ey(t) = c,(t) + 22f() — (1 + 2v + 22)cx(D) .

The relation between our results and the Ohta’s results will be explained
at the end of §3.

The second aim is to give another proof of the formula given by the
author in [9], which has been further investigated by G.A. Watterson [10].
We consider the average probability at stationarity that we find B,-kinds
of alleles appearing [ times, [ = 1,2, - - -, n, in randomly chosen one chro-
mosome. The author showed in [9] that the probability is given by

(n'6(6 + 1)@+ 2) -+ (0 + n— 1)} [122. {6478,

where 6 = v/A. In [9], the author discussed a diffusion process taking
values in probability distributions on the Young diagrams. The proof does
not explain the reason why the sampling formula similar to the well-
known Ewens one holds in this case. Here, we will try to explain the
reason, giving the proof in terms of the measure valued diffusion.

The most important problem on our diffusion in the application to
population genetics is to count the average actual number of alleles
existing in a finite population at stationarity. However, it seems rather
difficult, and it is still open.

§2. Measure valued diffusion process describing an » locus model

In the following, for a topological space X, C(X) denotes the space
of bounded continuous functions on X, and #(X) stands for the space of
bounded Borel functions on X. Let N be the set of natural numbers.
For ke N, X* denotes the k-fold direct product of X.
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Let E be the set [0,1]" in R". Let B, be the bounded operator on
the space #(E) given by

(2'1) Blf(xla Xoy + 00y Xy
=v Z}Ll {Jof(xlr Xoy * 0y xn)dxj - f(xl, Xy * 0y xn)} ’

where (x;, X, - -+, x,) € E, f e #(E). The operator B, for n = 1 has already
been discussed in Chapter 10 of [1]. Next, we introduce another bounded
operator B, on #(E). Define B, by

(2'2> BZf(xla Xgy * 0y xn)
=1 Zh,h;jl#:jg {\!fjljgf(xly Koy "t vy xn) - f(xla Xoy * v 0y xn)} .

Here, v, is the operator of #(E) to #(E), by which the variable x,, is
replaced by the variable x;,:

\lehf(xh Xoy =t 7y xn) = f(xl, Tty sz—h xjp xjg+1’ ft xn)-
The operator B, in 2 locus case was discussed by the author [8]. Define
B by
(2.3) B=B + B,.

Note that the operator B generates a Feller semigroup on C(E).
Let #(E) be the space of probability measures on E, and

2 = {pe CZE)): ¢(p) = F(fo, 1, - -+, {fes 117), KN,
F is a polynomial on R*, f, - -, f, e C(E)},
and
2" = {p e BPE): ¢(1) = (£, v*), keN, fe ZE")},

where p* ¢ #(E*) denotes the k-fold product measure for ;e #(E). Note
that 2 C 2*.
For ¢ € 2* of the form ¢(y) = {f, ¢*), define
24)  Go(p) = Disiciss (Fin, 17 — {f #9) + 225 (BOF vy,
where the operators ¥,,: #(E*) — #(E*-") and B®: Z(E*) - #(E) are
given by
w-ijf(Xls sz, ey Xk—l) = f(Xh Ty Xj-n Xt’ Xja ey Xk-l),
and
B(i)f(Xla XZ’ Tty Xk) = B[f(Xla DR Xi—ly b Xi+l’ Tt Xk)](Xz) )
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for fe #(E¥), and X,,eE, m= 1,2, ---,k The operator ¥,;, replaces the
variable X; of f by X,, and it changes the numbering of the variables
Xim to Xjymy for m=1,2,.--,k —j. To operate B to f means to
operate B regarding the k-variable function f as a function with one
variable X,. For k = 1, the first term of the right-hand side of (2.4) is
equal to zero.

Set A ={(¢,Gp): €2} and A* = {($, G¢): p€ 2*}. The space of
continuous functions w: [0, ) — Z(E) is denoted by C([0, ), #(E)). The
C[(0, o0), #(E))-martingale problem for A* which we will discuss is for-
mulated as follows. A stochastic process {u(t), ¢ = 0} with sample paths
in C(J0, ), #(E)) is called a solution to the C([0, o), Z(E))-martingale
problem for A (or for A*) if

(25) $1u0) = | du(pe)ds

is a martingale with respect to o(u(s): 0 < s < t) for any (¢, ¢,) € A (or
A+ respectively). The next statement is found in Ethier and Griffiths [3].

ProrosiTioN 2.1. The martingale problem for A mentioned above is
well posed. That is, there exists a solution {u(t), t = 0} of the martingale
problem for A with any initial distribution ©(0) = y,, and every solution
with arbitrarily given initial distribution induces the same distribution on
C[(0, o0), #(E)). The solution {;(t), t = 0} is also the solution of the mar-
tingale problem for A*, and the martingale given by (2.5) for (¢, ¢.) € A*
has sample paths belonging to C([0, o), R) with probability 1.

Hence, the measure valued process {u(f), ¢ = 0} is a diffusion process.
The set of purely atomic measure on E is denoted by P,(E). Then, we
have the next proposition.

ProprosITION 2.2. The diffusion process {u(t), t = 0} with arbitrarily
given initial distribution satisfies

(2.6) Plu(t)e P,(E) for any t > 0] = 1.

The process {u(t),t = 0} has a unique stationary distribution, which is
denoted by j and

2.7 H(P(E)) = 1.

Theorem 2.4 in [2] implies (2.6). The proof of the ergodocity is essen-
tially the same as the ones in [4], [7] and [3], and it is omitted.
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§3. Average identity probabilities introduced by T. Ohta

From now on, we will discuss the diffusion process {t), ¢t = 0} defined
in the previous section.

Define
3.1) Fute = Lo (s T2y -+, ) € BE),
(3.2) Piun(t) = {fuuw pp  for i, < 1z,
and
(3.9 B() = 2 T eincis Sl -

Define '(x) and c,(?) by
(3.4) F() = {Ln(n — DI

= {1/ (3)} Sucustulo,

and
(35) e(t) = EIF ).

Operate the generator G to ¢}.,(w), i; < i, then we have

(38 Gta() = o (Ti [ funts 1) = nfos 1)
+ 2 2hisniciisn Cpgefiie 1) + ianfon 12 — 2 irir 129)
= =20 fiyups 1)
+ A 2asicominzn (Vi £ — vt 129)
+ 2 2 s pienciasn CVpalom 1 — {frnw 1)
+ 2 Dhsicsminsn (b pslie 180 — {Fi 1)
+ 2 2hicsimtcinza (Vgaia i 10 — (i 1) -

Here, we have used the following simple properties.

37 @) Jlf d 0 if j=1i, or i,
. a X, =
o M T\ foe  Otherwise,

(3.8) (b) ‘hmfma = fi]ig if h=u<j.¥# 1L
or i, <iy,=j, <Js,
(3.9 ©  Vionfiva = fiua if jji<j=1u<i
or iy #ji <J. =1z,

and
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(3'10) (d) \[’thfhiz = ‘!’!zhfiliz = ftliz )
if ji =iy, Ji #F 0y, Jo # 1 and j, # 4.
Noting the facts that v, fii, = fiir Viisfinis = fins and that f,, = fi, = 1,
we get
(3.11) The right-hand side of (3.6) = —2v < fi,,,, 1>
+ 2 Zk {(<fkiz’ ﬂ> - <filiz’ F‘>) + (<fi1k, f’l> - <fi1i2’ /‘l>)} *
Note that (3.11) also holds for i, > i, Summing up the both sides of (3.11)
on i, and i, satisfying i, # i,, we obtain
(3.12) Go' () = —2v¢'(p) + A{2n(n — 1) — 2¢'(p)}
= —2(2 + v)¢'(p) + 2in(n — 1).

Hence, that

Gol(p) = —2Q + )¢ () + 24.

Furthermore, Proposition 2.1 implies that E[G¢'(u(s))] is continuous in s,
and that [E¢'(u(2))] is differentiable in ¢.
Thus, we obtain the next statement.

THEOREM 3.1. The average probability of allelic identity c,(t), defined
by (3.1)-(3.5), satisfies the ordinary differential equation

(3.13) (d/dt)e,(t) = —2(2 + v)ey(t) + 24.
Let ¢ = ¢ X p be the direct product of pe 2(E), and let g,,(X,, X;)
be a function on E* given by
(3'14) gij(le XZ) = gij(x}’ Tt xlm x%a tt x;zz = xAij(Xl’ XZ) s
(Xb XZ) = (x}a Ty x}n x%s t '>xi)eE21
where A,;; = {(X;, X): x} = x%}. Obviously, g,; € Z(E*). Define ¢},(1), (),
(), f(2) and cy(t) by

(3.15) B = {8y 17,

(3.16) ¢ = (Un) 20: %,

(3.17) $(w) = (Un(n — D} Zuioee <8 12 5
(3.18) f@® = E[* ()]

and

(3.19) e(t) = Elg(u@)].
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Now, we will try to derive the equation which the quantities f(¢)
and c¢,(f) satisfy.
By the definition of the generator G, we see

Goi () = V1a8ups 119 — P11 + 2001 {BVGuy 11 .
Note the following facts. The equalities

<B(1)gi]" F‘> = <Bgij('a Xz); F‘> = —’U¢2L'j(ﬁ) + 2 ZL (<gua ﬂ2> - <gij} /«‘2>) s

and
(BYgij, 1y = (Bgif Xy, ), 11y = —vgif(p) + 222, ((8u 17 — L8y 115)),
hold. Besides, we see that
Vg =1 for each i,
and that
Viu8is = fig = Xioymay (%1, -+, %) € B(E),

for (i,j) such that i +j.
Thus we can calculate G¢i(y), and obtain

Goi(pw) = 1 — (1 + 2v + 2(n — DAGL() + 2 2wt ({8 7 + {8us 1)) -
Hence, we get
3200  GYLgw) =n— (1 + 20+ 2n — DI T, 4
+ 22 2024800 £ -
By (3.16), (3.17) and (3.20), we obtain
321)  GF() =1 — (1+ 20 + 2n — DK + 20 — DAF( .
Since we have

Goiy(p) = diy(p) — (1 + 20)3,(1) + {20 (Bis() — di(p) + dip) — Si()}
for (i,j) such that i == j, we get

Gn(n — 1)@2(#) = G 2, pam®i(1) = 2wy O(1) — (U4 20) 2o, 5p:0m5 $14(12)
A+ A0 20 Dies G+ 20 200 2w Bul) — 21 2o, e B0}
= D2 peines D) — (L4 20) 2, pyeiws $2(10)
+ q2n — 1) 205 255 95() — 21 300, e B ()}
= n(n — DI — (1 + 200 — DF)
+ {2n(n — DF*(w) — 2n(n — D ()} .
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Thus, we obtain
(3.22) GF(p) = () — (1 + 2v + 2D () + 228%(p) -
Therefore, by (3.21) and (3.22), we get the next theorem.

THEOREM 3.2. The quantities f(t) and c(t), defined by (3.14)-(3.19),
satisfy the system of ordinary differential equations

(3.23) @ldft) =1 — 1 + 2v + 2(n — DAFE) + 2(n — Dic(d),
(d/dt)c(t) = c,(t) + 22f(t) — (1 + 2v + 22)cy(t) .

At the end of this section, we will explain the relation between our
results (3.13), (3.23) and Ohta’s results [5]. In our formulation, roughly
speaking, the quantities f, ¢, and ¢, change in one generation (1/2N)
times of their derivatives, where N stands for the population size in the
discrete model. Using Ohta’s notation, we see

(dldn)f(t) = 2N 4f,
(d/dt)e,(t) = 2N e,
(d/dt)ey(t) = 2N dc,

where 4 denotes the change per one genération. Since the mutation rate
in one generation is roughly equal to v (1/2N) in our case, the rate v
should be replaced by 2N v in Ohta’s discussion, where the parameter v
in [5] means the mutation rate in one generation. As for the rate of
gene conversion, (n — 1)1 in our equation should be replaced by 2N 1.
Then, we have

Af = —{2v + (1/2N) + 22}f + 22c; + (1/2N),
de, = —{2v + 2Q/(n — )}e, + 2(3/(n — 1)),
de, = 22/(n — 1)f + (1/2N)e; — {2v + (1/2N) + 2(2/n — D)}e,.

These equations are just the same as (8), (5) and (7) in [5], when we do
not consider interchromosomal crossing-over.

§ 4. Sampling formula similar to the Ewens one

Let B, - -, B, be non-negative integers such that > ;18 = n. A point
(%, X3y -+ +, %,) in E is defined to be belonging to Ez; B = {8, -+, .}, if
and only if there exist distinct >, 3, real numbers y,, s, -+, ¥54 € [0, 1]
such that
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i %=y} = 1 for k=1,---, 8,

where #(I) equals >/z}7' B, for I = 2 and #1) = 0. The formula stated in
the introduction can be formulated as follows.

@D [ wE)rd) = Y60 + DO +2) - @+ n — D} I3, 07,1},

where 8 = v/A. The proof of (4.1) in this section is essentially due to a
private discussion with Professor S.N. Ethier.

First, recall the single locus case which was discussed in [1]. Let
E,=[0,1], p € 2(Ey), and fe #(Ef). Define ¢() = {f, p*), where x* is the
k-fold direct product of px. The diffusion process taking values in Z(E,)
describing the so-called infinitely many neutral allele model has the
generator G given by

Go(p) = 2ucs Yty 171 — Lf, 1)
+ v Xt ([ fdx, ) = <£,15)  (Chapter 10in [1]).
0
Let A, A,, ---, A, be a measurable partition of E, such that each A, has

the mass (1/L) with respect to the Lebesgue measure. Let A, be the
indicator function of the set A, [ = 1,2, ..., L, and put

¢a(ﬂ) = <hla la>al<h2a Ia>a2 e <hL) ;u>aL ’

where «, [ =1,2, ---,L, are non-negative integers, a = (a;, a, * -+, ;)
and >, @, = k. Then, we have

(42)  Goup) = (1/2) 2iies ey — Dpa-o (1) — {k(k — 1)/2}¢a(r2)
+ v 20 [e{(D)da- (1) — pa(}]
= 2inaf(er — D2 + W/DYa-o (1) — k{(k — 1)/2 + vlda(p),

where &, = (0;),1,....., and 6,;, stands for Kronecker’s 4. Let i be the
stationary distribution of the %(E,)-valued diffusion process. Since

quS,(y)ﬂ(d,u) — 0, we obtain by (4.2)
(4.3) Zriaf(a, — D2 + W/L)da- (@) — k{(k — 1/2 + v}d(2) = 0,

where 4.(2) = [ 6.(i(dp .

Hence we see

$u(@) = {1/k(k — 1 + 20)} s afler — 1) + (u/D)ga-ul@) -
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Noting that

(4.4) [ it =1L,

by (4.3) we obtain the well-known result

45) | gatdp) = (@I @VILYY T1Ea T + 20/LITN@0 + K.

Let By, - - -, B. be non-negative integers such that >, /8, = n, as the bigin-
ning of this section. Now consider the next problem. What is the average
probability at stationarity that we find f;-kinds of alleles appearing [ times,
l=1,2,---,n, in randomly chosen n genes? The answer to this ques-
tion is the well-known Ewens sampling formula. That is, the probability
is given by (4.1) with ©® = 2v. The proof of this formula can be found
in Chapter 10 in [1], which is a little complicated. The Ewens’ sampling
formula can be shown directly from (4.5) by modifying the proof in [1].
We will omit the details here, because it seems known.

Now, consider the n locus model. First take a partition of the set of
loci. Let {S;};-0,1,2,..... be a family of disjoint subsets of {1,2, -- -, n} such
that S, has «; elements for each i. Here, «; are non-negative integers
and >/ ,«, = n. Note that S, may be empty. Define f, by

(4.6) fo(Se, Sy -+, 8p) = [1 1 ntesi hi(x,),

where A, is the indicator function of the set A, for each i, i = 1,2, ---, n.
Obviously, f,e #(E), E = [0, 1]*, and f, does not depend on the variables
x,, 1eS,. Define the degree of f, by

degfo= 2 11t
Put
(4.7) $u(So, Sy, -+, S = {fuSy, Sy, - -+, S0), 1y € BH(P(E)).

Define the degree of ¢,(u) by the degree of f,, When p is fixed, ¢,(u)
means the probability that we find genes belonging to A, at loci belonging
to S, for i > 1. Let e, be the vector with components 0 or 1 such that
only the i-th coordinate equals 1. Put

¢a—zi,L = <fa—|i(SO U {l}9 Sh Tty Sz - {l}9 thty ‘S’L)q ‘Ll>,
for /e S,, and
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¢a,L,m,i = <fa(SO U {m} - {l}a Sh Y Si U (l} - {m}’ thty Tty SL)9 ﬂ) ’
for leS,, and me S,, i = 1. Then, we get

(48) G¢¢(‘U) =V Zf:l ZleSi {(1/L)¢a—si,t(;u) - ¢u(#)}
+ A (e, — 1) Zzesi (]5,,_,1.,1(/1)
+ Zzi;l Zteso Zmesi ¢¢,z,m,i(/1) - {k(k - 1) + aok}¢a(#)] s

if deg ¢.(¢) = k. Note the fact that any h e #(E) satisfies
(4.9) [ exp (<A, 3, -+, 2, bt

- j exp {(AXorry) Koy * *» Xocu), £5}A(AR) |

for any permutation ¢ of {1, 2, - - -, n}, which is deduced from the symmetry
of the generator G and the property of the stationary distribution /.
Define

b= [ suwtdp),

and d,,_.,.;» $eim: In the same manner, then we see by the above fact
(4.9) that ¢,_,,, is independent of [ for each i, and that ¢, ., is inde-
pendent of I, m, and i. Hence, they can be written by ¢,_,, and 4,

respectively. Combining this with (4.8) and JG¢,(/¢)/§(d/¢) = 0, we obtain
(4'10) v ZE'L:J ai{(l/L)(/;a—Ei - g/;a} + Z{Z:zL=1 ai(ai - 1)¢A¢—si - k(k - 1)¢A¢}

= AT afler — ) + D/ LYha-., — {k(k — 1 + v/D]
=0,

for ¢, with degree k. Making use of (4.9), we see that
(4.11) é., = 1/L, for each i > 1.

Note that (4.10) and (4.11) have the same form as (4.3) and (4.4). If we
replace 2v in (4.3) by v/i, then we get (4.10). This is the essential part
of our argument.

Thus we obtain the next theorem.

THEOREM 4.1. The average of (S, S,, « -+, S.)(p), defined by (4.6) and
(4.7), with respect to fi is equal to

{LOIrOIL)} i Lo + 0/L)TO + k),

where 0 is v/A.
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By the argument similar to the single locus case, we can see that
Theorem 4.1 implies the formula (4.1) given at the beginning of this
section.
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