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Abstract
We aimed to investigate the intricate interplay between genetic predisposition and lifestyle factors on stroke. We conducted a comprehensive
genome-wide association study to identify the genetic variants linked to stroke in the participants who experienced a stroke event (cases; n 672)
and those with no stroke history (non-stroke; n 58 029) in a large hospital-based cohort. Using generalised multifactor dimensionality reduction,
we identified genetic variants with interactive effects and constructed polygenic risk scores (PRS) by summing up the risk alleles from the genetic
variants. Food intake was measured with a validated semi-quantitative FFQ. No significant differences in stroke incidence were seen in
demographic variables between the two groups. Among the metabolic indicators, only serum TAG levels were higher in males with stroke than
thosewithout stroke. The daily nutrient intake, dietary inflammation index, glycaemic index, dietary patterns, alcohol consumption, exercise and
smoking did not display associations with the OR for stroke. The stroke-linked genetic variants were related to the IL-18 pathway. After
accounting for covariates, the PRS derived from the 5-, 6- and 7-SNP models were positively associated with stroke chance with 2·5-, 2·9- and
2·8-fold. Furthermore, interactions between genetic predisposition and dietary components, including energy, carbohydrates,n-3 fatty acids and
branched-chain amino acids (BCAA), that affected OR for stroke were observed. A high intake of energy, carbohydrates and BCAA and a low
intake of n-3 fatty acids were positively associated with the chances of stroke occurrence. In conclusion, understanding the interaction between
genetic variants and lifestyle factors can assist in developing stroke prevention and management strategies.
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Stroke is a multifactorial and complex neurological disorder
characterised by the sudden interruption of blood supply to the
brain, resulting in a cascade of cellular and molecular events that
leads to tissue damage and subsequent neurological deficits(1).
The worldwide incidence of stroke is estimated to be 17 million
cases annually(2). It is the second leading cause of death
worldwide and a significant cause of disability(2). The incidence
of stroke varies in different regions of the world. It is highest in
low- and middle-income countries, accounting for about 85 % of
all stroke cases. However, its incidence is also increasing in
developed countries due to a rise in the ageing population and
the increasing incidence of risk factors such as high blood
pressure, diabetes and obesity(3).

Stroke incidence, types and risk factors vary among ethnic
groups, including Asians and Caucasians(4). A complex interplay of
genetic, primary metabolic disorders, lifestyle and socio-economic

factors influences stroke risk(5). The prevalence of stroke is ten
times higher in Asians than in Caucasians. Moreover, over 20 years
ago, haemorrhagic strokes were more common among Asians,
while among Caucasians, up to 80% were likely to be ischaemic
stroke events(6). However, the incidence of ischaemic stroke
among Asians increased to about 76% in 2004, and this level has
been maintained. Damage caused by haemorrhagic stroke is more
extensive than ischaemic stroke, and post-stroke complications in
haemorrhagic stroke are severe(6).

Although hypertension, diabetes, smoking and obesity are
widely acknowledged as risk factors for stroke, recent findings
emphasise the substantial influence of genetic factors on an
individual’s susceptibility to stroke(7). Genetic variations are
pivotal in stroke risk by impacting various facets of vascular
biology, including endothelial function, blood clotting mecha-
nisms and overall vascular health(7). The genetic variants
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associated with stroke occurrence can exhibit variability
between Asian and non-Asian populations. In a comprehensive
genome-wide association study (GWAS) predominantly in
individuals of European ancestry, specific genes such as G
protein-coupled receptor kinase 5 (GRK5) and nitric oxide
synthase 3 (NOS3) were identified in connection with stroke.
Moreover, genetic variants of coagulation factor XI (F11),
Kallikrein B1 (KLKB1), protein C, inactivator of coagulation
factors Va and VIIIa (PROC), glycoprotein Ib platelet subunit
alpha (GP1BA), laminin γ2 (LAMC2) and vascular cell adhesion
molecule-1 (VCAM1) emerged as potential drug targets for
stroke prevention(8). The polygenic risk score (PRS) of the
genetic variants of F11, KLKB1, PROC, GP1BA and LAMC2
demonstrated a robust predictive capacity for ischaemic stroke
across diverse populations, including European (67 %), East
Asian and African ancestries(8). Additionally, two genetic loci,
such as apolipoprotein E (APOE) and polyamine-modulated
factor 1 (PMF1), have been identified as relevant to haemor-
rhagic stroke(9).

In addition to genetic factors, lifestyle factors, including diet,
physical activity, smoking, alcohol consumption and stress, play
a pivotal role in the pathogenesis of stroke. There is an interplay
between lifestyle-related risk factors and genetic factors, leading
to a stroke event(10). Genetic factors can influence an individual’s
response to these lifestyle choices, potentially amplifying or
mitigating their impact on stroke risk. Gene variants associated
with metabolism, blood clotting and vascular health can interact
with lifestyle factors to modulate an individual’s susceptibility to
stroke(11). However, few studies have been conducted on
identifying genetic variants linked to stroke and on the
interaction of genetic and lifestyle factors influencing chances
of stroke occurrence, especially in Asians. In the present study,
we aimed to elucidate the intricate interplay between genetic
predisposition and lifestyle-related factors on the chances of
having a stroke. By exploring how genetic factors interact with
lifestyle choices, we sought to elucidate the factors involved in
the OR for stroke in individuals. This understanding can
contribute to developing personalised strategies and targeted
interventions to reduce stroke prevalence and improve stroke
outcomes.

Methods

Study participants

Between 2010 and 2014, a voluntary enrollment process
included 58 701 individuals aged 40–74 years in a city
multicentred hospital-based cohort, part of the Korean
Genome and Epidemiology Study (KoGES)(9). The age range
was chosen to focus on health-related conditions and diseases,
with a longitudinal investigation incorporating an extended
follow-up period. The study adhered to the Declaration of
Helsinki guidelines, obtaining Institutional Review Board (IRB)
approvals from the Korea National Institute of Health (KBP-
2015-055) and Hoseo University (1041231-150811-HR-034-01)
for the KoGES protocol. All participants provided written
informed consent, which is securely stored in the Korea
Biobank.

Stroke definition, study design and sample size

Participantswere included if they affirmed at least one physician-
diagnosed stroke event, constituting the stroke group (case;
n 672), while the remaining individuals formed the control or
non-stroke group (control; n 58 029). The specific type of stroke
was not specified. Exclusions were made for individuals with
brain-related disorders such as Alzheimer’s and Parkinson’s
diseases, except for stroke cases.

The sample size for logistic analysis was calculated using the
Gpower calculator (Gpower Software, the University of
Dusseldorf, Germany). To achieve significance at α= 0·05,
β= 0·99, at an odds ratio of 1·05, and considering a stroke
incidence of less than 1 %, a total sample size of 53 254 in the city
hospital cohort was determined to be sufficient to meet the
significance goal.

Participant characteristics and biometric measurements

Demographic, anthropometric and lifestyle data were collected
from the participants during their initial visit. It included age,
gender, education, income, smoking habits, alcohol consump-
tion and physical activity(12). The participants’ smoking habits
were categorised into non-smokers, past smokers who had not
smoked in the past 6 months and current smokers who had
smoked at least twenty cigarettes in their lifetime(12). Alcohol
consumption was quantified by multiplying the alcohol content
per occasion with the frequency of alcohol consumption. Coffee
intake was measured like alcohol intake. Regular physical
activity was assessed by inquiring whether the subjects engaged
in 150 min or more of physical activity per week, with responses
recorded as ‘yes’ or ‘no’.

At the initial interview, height and weight were measured as
previously outlined(12) to calculate the BMI by dividing body
weight (in kilograms) by the square of height (in meters).
Obesity was defined as a BMI of≥ 25 kg/m2. Blood pressure was
measured by a medical professional using a sphygmomanom-
eter, while the participant was seated and at rest. Three readings
were taken, and the average systolic blood pressure and diastolic
blood pressure were determined. Blood samples were collected
under fasting conditions to measure lipid profiles, alanine
aminotransferase, aspartate aminotransferase and creatinine
concentrations in the circulation using a Hitachi 7600 Automatic
Analyzer (Hitachi). Plasma glucose and blood glycosylated Hb
(HbA1c) levels and leucocyte counts were measured using an
automatic analyser (ZEUS 9·9; Takeda). Serum high-sensitive C-
reactive protein concentrations were measured using an
enzyme-linked immunosorbent assay kit.

Assessment of typical food consumption through a semi-
quantitative FFQ

Food intake over the last year was evaluated using a Semi-
Quantitative FFQ (SQFFQ) administered by a skilled technician.
Specifically designed to capture typical dietary patterns of
Koreans, the SQFFQ’s accuracy and repeatability have been
validated(13). The SQFFQ was comprised of 106 common food
items in the Korean diet, and daily food intake was calculated by
multiplying food frequencies per day by relative to the standard
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portion size in grams, aided by visual references such as
photographs to reduce the bias. Participants provided food
frequency responses categorised into nine options: never or
rarely, once a month, two to three times amonth, once or twice a
week, three or four times a week, five or six times a week, daily,
twice daily and≥ 3 times daily. Daily food consumption was
estimated by multiplying the median daily frequency of each
food category by its respective portion size. Nutrient analysis for
the obtained food intake data utilised the CAN-Pro 2·0 nutrient
intake assessment software developed by the Korean Nutrition
Society (Seoul, Korea). Nutrient intake was compared with the
Korean Dietary Reference Intake, a set of dietary guidelines, to
assess adherence to recommended nutritional standards(12). The
dietary inflammation index (DII), glycaemic index and glycae-
mic loading index were computed utilising previously reported
equations(12).

Analysis of dietary patterns using principal components
analysis

We analysed thirty predefined food groups extracted from the
original 106 food items in the SQFFQ to assess dietary patterns,
as previously documented(14). The dietary patterns of these
predefined food groups were derived through principal
component analysis. The number of clusters was determined
based on eigenvalues exceeding 1·5, generating four distinct
dietary patterns(15). An orthogonal rotation procedure (varimax)
was applied to ensure independence, which yielded four
uncorrelated dietary patterns. Foods with factor-loading values
of≥ 0·40 were deemed to contribute substantially to the specific
pattern(16). These four dietary patterns were identified as the
Korean-balanced diet, plant-based diet, Western-style diet and
rice-main diet (refer to online Supplementary Table 1).

Genotyping and genome-wide association study quality
assurance for assessing the chances of stroke occurrence

Genomic DNA genotyping for 58 701 participants was
conducted by the Center for Genome Science at the Korea
National Institute of Health. GenomicDNA extracted fromwhole
blood was genotyped using the Affymetrix Genome-Wide
Human SNP Array 5·0 (Affymetrix). Genotyping accuracy and
quality were assessed utilising the genotyping algorithm,
Bayesian robust linear model, with Mahalanobis distance
classifier(17). The genotyping inclusion criteria were defined as
follows: genotyping accuracy of≥ 98 %, a genotyping call rate
of< 4 % for missing genotypes,≤ 3 % plate heterozygosity,
absence of gender biases and a Hardy–Weinberg equilibrium
P value greater than 0·05(17).

To investigate the genetic variant associated with stroke, a
GWAS was conducted between stroke and non-stroke groups,
adjusting for covariates such as age, gender, area of residence,
income, BMI, energy and alcohol intake, physical exercise and
smoking using PLINK (http://pngu.mgh.harvard.edu/∼purcell/
plink). The distribution and suitability of genetic variants were
examined through Manhattan and quantile–quantile plots. The
lambda value of the quantile–quantile plot approached 1,
indicating the appropriateness of the GWAS results. Genetic

variants exhibiting high linkage disequilibrium (D’ < 0·2,
r2> 0·05) were excluded using Haploview 4·2 in PLINK, as
they provided redundant genetic information for assessing the
chance of stroke. Multi-marker Analysis of GenoMic Annotation
gene-set analysis was performed for the curated gene sets and
the gene ontology terms obtained from the Molecular Signatures
Database using the FUMA GWAS (fuma.ctglab.nl/). The table
displayed the significance level of 5 × 10–4.

Expression quantitative trait locus analysis

The expression quantitative trait locus analysis involves directly
estimating the expression of candidate genes using genetic
variants found at risk loci. In the context of stroke risk, this
analysis identifies gene expressions associated with specific
genetic variants through expression quantitative trait locus
analysis, employing the genotype-tissue expression × expres-
sion quantitative trait locus calculator (https://gtexportal.org/ho
me/testyourown, accessed on April 22, 2023).

Molecular docking of cytochrome P450 (CYP), family 1,
subfamily a, polypeptide 1(1A1) (CYP1A1)_rs143070677
with food compounds

Among the genetic variants associated with stroke,
CYP1A1_rs143070677 had only missense mutation among
the identified genetic variants, and the food components were
screened for CYP1A1_rs143070677 wild and mutated types.
The sequences of the CYP1A1_rs143070677 were received
from the ensemble genome browser website, and its RNA
structure was generated using https://rnacomposer.cs.put.po
znan.pl/. The wild andmutated protein data bank formats were
converted into protein data bank, partial charge (Q) and atom
type (T) (PDBQT) files using AutoDock Tools 1·5·6 (Molecular
Graphics Laboratory, Scripps Research Institute, FL, USA)(18).
The PDBQT format of the CYP1A1_rs143070677 was simu-
lated with about 20 000 food components. The food
components were selected when the binding energy between
CYP1A1_rs143070677 and the food components was less than
–10·0 kcal/mol(19). The lower the binding free energy, the
tighter the binding and the greater the affinity.

Analysis of interactions between genetic variants using
generalised multifactor dimensionality reduction

The generalised multifactor dimensionality reduction method is
a flexible genetic model designed to identify and characterise
complex interactions among discrete genetic features. We
applied generalised multifactor dimensionality reduction to
pinpoint the genetic variants that interact and were linked with
the risk of stroke. We chose the best genetic model based on
specific criteria: a significant P value (P< 0·05) from the sign test
of trained balance accuracy and test balance accuracy, along
with a strong cross-validation consistency score of 9 or 10 out of
10(20). We computed a PRS to quantify genetic risk by summing
the risk alleles across the genetic variants within the selected
optimal model.
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Analysis of the association of stroke OR with lifestyle
factors according to the polygenic risk score groups

We used adjusted logistic regression analysis to evaluate the
association between chances of stroke and various factors, such
as anthropometric measurements, biochemical data and genetic
parameters.We utilised twomodels: the first adjusted for gender,
age, area of residence, education level and BMI; the second
included additional adjustments for energy intake, smoking and
drinking habits and overall physical activity. OR and 95 % CI
were calculated using logistic regression, considering the low-
PRS group as the reference. Two models were considered: one
adjusting for age, gender, education, residence area and BMI
(model 1), and another adjusting for model 1 covariates plus
smoking status, alcohol intake, physical activity and daily energy
intake (model 2).

Assessing the interaction between the polygenic risk score
and lifestyle factors influencing the chances of stroke

Weconducted amultivariate generalised linearmodel analysis to
investigate potential interactions between PRS and lifestyle
factors affecting stroke chances. This analysis incorporated the
main effects of PRS and lifestyle factors, including nutrient
intakes, along with their interactions and relevant covariates.
Participants were stratified into higher or lower lifestyle groups
based on recommended values for each variable, such as dietary
reference intake. After adjusting for covariates, we used a
multivariate interaction model to assess the interplay between
PRS and lifestyles, including dietary intake. An adjusted logistic
regression analysis was also conducted, utilising cut-off values
determined within each lifestyle group. These cut-offs were
established considering dietary reference intake and the thirty-
third percentiles for specific parameters.

Statistical analysis

Statistical analysis was conducted using the SAS software
(version 9.3). We chose not to exclude observations with
missing data in our analysis since there were missing values in
some variables in individual participants while others were
complete. Missing data were not imputed, and the analysis was
conducted using the available data. The descriptive statistics of
the categorical variables were computed based on gender and
stroke incidence, and χ2 tests were employed to analyse the
frequency distributions of classification variables. Adjusted
means and SD were assessed for continuous variables with
consideration for gender and stroke incidence. Significant
differences between groups were determined using a two-way
ANOVA that accounted for covariates such as age, gender,
residence area, BMI, education, smoking, alcohol intake, daily
energy intake and physical activity. Multiple group comparisons
were conducted using Tukey’s test. Usual food intake was
estimated from the SQFFQ without imputation. The PRS derived
from the selectedmodel were categorised into low-, middle- and
high-PRS groups. The distribution of categorical variables among
these groupswas examined using the χ2 test. Additionally, a one-
way ANOVAwas applied to analyse continuous variables across
PRS groups, adjusting for factors including age, sex, BMI,

education, income, daily energy intake, alcohol consumption,
smoking and physical activity. Statistically significant results
were defined as those with P values< 0·05.

Results

Association of participants’ demographics and nutrient
intake with stroke prevalence

The stroke prevalence was 1·20 % (n 672) among the
participants (Table 1). Demographic variables like age, educa-
tion and income did not vary significantly based on stroke
occurrence or gender and were not linked to chances of stroke
(Table 1). When assessing the daily nutrient intake using the
SQFFQ, we observed no differences in the intake of carbohy-
drates (CHO), fat, protein, branched-chain amino acids (BCAA),
fibre, Ca, Na, vitamin C, vitamin D, cholesterol and flavonoids
between the stroke and non-stroke groups (online
Supplementary Table S1). Only energy intake was positively
associated with stroke. Similarly, indicators like the DII,
glycaemic index and glycaemic load showed no association
with the chances of stroke. Moreover, dietary patterns identified
through PCA did not show variations regarding stroke
prevalence or gender (online Supplementary Table S1).
Additionally, lifestyle factors such as alcohol intake, exercise
and smoking were not associated with stroke chances (Table 1).

Association of anthropometric and biochemical
parameters with stroke incidence

There was no significant difference in the prevalence of
metabolic syndrome between the groups with and without
stroke (online Supplementary Table S2). There were no
significant variations in the various components of metabolic
syndrome, such as waist circumference indicating abdominal
obesity, hyperglycaemia, blood HbA1c levels, serum HDL-
cholesterol and LDL-cholesterol levels and hypertension,
between the groups with and without stroke. However, there
were gender-based differences in these components (online
Supplementary Table S2). Interestingly, serum TAG concen-
trations were notably higher in the stroke group compared with
the non-stroke group, particularly among men (online
Supplementary Table S2). On the other hand, indicators like
the estimated glomerular filtration rate, serum alanine amino-
transferase and aspartate aminotransferase concentration, serum
C-reactive protein (CRP) concentration and leucocyte counts did
not show significant variations between the stroke and non-
stroke groups (online Supplementary Table S2). Furthermore,
metabolic syndrome and metabolic parameters did not demon-
strate an association with the chances of stroke (online
Supplementary Table S2).

Interaction of genetic variants with each other using
generalised multifactor dimensionality reduction

We visualised the statistical significance of genetic variants
associated with stroke using a Manhattan plot (online
Supplementary Fig. S1(a)). A Q-Q plot, which compares the
observed data distribution to an expected theoretical
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distribution, is presented in online Supplementary Fig. S1(b).
The lambda value (λ= 1·007), a measure of inflation, indicated
that the GWAS results were not inflated (online Supplementary
Fig. S1(b)). No genetic variants with a significance level below
P< 5×10–8 were found for the chance of stroke. Therefore, we
opted for amore liberal significance level (P< 5×10–5) to identify
significant genetic variants.

Among the genetic variants associated with stroke risk,
eleven showed interactions with each other through generalised
multifactor dimensionality reduction. The optimal SNP–SNP
interaction models encompassed 5–8 genetic variants (Table 2).
The 5-, 6- and 7-SNP models demonstrated a P value< 0·001 for
the sign test of trained balance accuracy and test balance
accuracy after adjusting for age, gender, residence area,
education and BMI for covariate set 1 and additionally
considering energy intake, physical activity, alcohol intake
and smoking status for covariate set 2 (Table 2). Both models
exhibited a cross-validation consistency score of 10/10 (Table 2).

Specifically, the 5-SNP model comprised vesicle amine
transport 1 like (VAT1L)_rs7500920, nuclear factor-IA (NFIA)
_rs10489906, RNA-binding Fox-1 homolog 1 (RBFOX1)
_rs1220140931, mitogen-activated protein kinase 10 (MAPK10)
_rs1436529 and peptidoglycan recognition protein 3 (PGLYRP3)
_rs1433679 (Table 2). The 6-SNPmodel included the SNP from the
5-SNPmodel and Egl-9 family hypoxia-inducible factor 3 (EGLN3)

_rs4432178, while the 7-SNP model incorporated genetic variants
from the 6-SNP model and myosin-Va (MYO5A)_rs62015995
(Table 2). The 5-, 6- and 7-SNP models with interactions between
genetic variants were found to be associated with a 2·5-, 2·9- and
2·8-fold chances of stroke, respectively, after adjusting for
confounders (Fig. 1).

Genetic characteristics of variants linked to stroke risk
identified via genome-wide association study

Table 3 presents the genetic attributes of the chosen variants
(P < 5×10–5) associated with the chance of stroke. Among
these, one SNP (MAPK10_rs1436529) showed an inverse
association (0 <OR < 1), while ten SNP were positively
associated with stroke risk (OR > 1). Their minor allele
frequency exceeded 0·01, and the P value for Hardy–
Weinberg equilibrium was greater than 0·05, meeting the
inclusion criteria (Table 3). PGLYRP3_rs1433679 was located in
the 3’untranslated regions (UTR), and CYP1A1_rs143070677
represented a missense mutation. Notably, NFIA_rs10489906,
MAPK10_rs1436529, discs large MAGUK scaffold protein
2 (DLG2)_rs74731624 and phospholipase C beta 4 (PLCB4)
_rs77987151 were situated in the nonsense-mediated RNA
decay (NMD) transcript, while the rest were within the intronic
regions (Table 3).

Table 1. Demographic and lifestyle characteristics according to gender and stroke and their association with the occurrence of stroke

Men (n 20 293) Women (n 38 408)

Adjusted OR 95% CI

Non-stroke
(n 19 189) Stroke (n 235)

Non-stroke
(n 36 294) Stroke (n 437)

n % n % n % n %

Age (years)†
Mean 57·2 56·7 52·0 52·2 1·036 0·878, 1·224
SE 0·07a 0·39a 0·04b 0·36b***

Gender‡ 19 189 98·8 235 1·21 36 294 98·8 437 1·19 1·005 0·780, 1·294
Education
≤ Middle school 1655 98·4 27 1·61 6352 98·7 81 1·26 1
High school 8934 98·8 107 1·18 20 702 98·8 236 1·13 0·870 0·685, 1·106
≥ College 1199 98·2 22 1·80 1681 98·8 21 1·23 0·993 0·670, 1·473

Income
≤ $2000 1516 8·29 15 6·67 3938 11·5 51 12·4 1
$2000–4000 7746 42·4 108 48·0 15 132 44·2 174 42·1 1·066 0·798, 1·424
> $4000 9026 49·4 102 45·3 15 134 44·3 188 45·5 1·047 0·769, 1·425

Energy intake (EER %)§
Mean 89·4 91·6 99·6 100 1·205 1·027, 1·412
SE 0·29b 2·02b 0·19a 1·48a***

Alcohol (g/week)||
Mean 205 224 60·0 56·3 1·060 0·888, 1·265
SE 2·95a 20·7a 1·92b 15·1b***

Exercise (Yes, %)¶ 93 1·17 141 1·23 216 1·24 220 1·15 1·014 0·866, 1·187
Non-smokers 5545 28·5 60 25·2 35 443 96·8 424 97·0 1
Former smokers 8449 43·5 98 41·2 445 1·22 4 0·92 0·972 0·721, 1·310
Smokers (%) 5425 27·9 80 27·9 715 1·95 9 2·06 1·267 0·939, 1·709

The values represent means ± SE or number of the subjects (percentage of each group). Adjusted OR and 95% CI with the covariates of adjusting for age, gender, BMI, physical
activity, education, smoking and intake of alcohol and energy. The cut-off points of the reference were as follows:
a,b Different alphabets indicated significantly different among the groups in Tukey’s test at P< 0·05.
† < 55 years old for age.
‡Men.
§ < Estimated energy requirement (EER).
|| < 20 g/d alcohol intake.
¶ < 150 min/week moderate-intensity exercise.
*** Significantly difference by gender at P< 0·001.
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Gene expression by expression quantitative trait locus
according to genetic variants

Specific genetic variants associated with stroke risk demon-
strated distinct gene expressions across various tissues. The risk
allele of NFIA_rs10489906 exhibited elevated expression levels
in adipose tissue (β= 0·28, P= 0·0029) and the tibial nerve
(β= 0·2, P= 0·013). Similarly, the risk allele of MAPK10_
rs1436529 showed increased expression in the tibial nerve
(β= 0·077, P= 0·0083) and aorta artery (β= 0·11, P= 0·0034).
On the other hand, PLCB4_rs77987151 (β= –0·42, P= 0·0023)
and VAT1L_rs7500920 (β= –0·3, P= 0·0078) displayed altered
expression in the tibial artery (online Supplementary Fig. S2).

Associations of stroke-related genes by multi-marker
analysis of genomic annotation gene-set analysis

In Table 4, the outcomes of themulti-marker analysis of genomic
annotation gene-set analysis are depicted, revealing the
relationship between the curated gene sets, gene ontology
terms and stroke. The analysis highlighted significant associa-
tionswith gene ontology biological processes such as ‘regulation
of IL-18 production’, ‘positive regulation of IL-18 production’ and
‘interferon-γ (IFN-γ) biosynthetic process’ (P< 5×10–5). The beta
value represents the effect size or the regression coefficient
associatedwith genetic variants related to stroke risk in the linear
regression model and the pathways related to stroke risk per

Table 2. The characteristics of the ten genetic variants of genes in the risk of stroke used for the generalised multifactor dimensionality reduction analysis

Model TRBA TEBA P value CVC TRBA TEBA P value CVC

VAT1L_rs7500920 0·5412 0·5213 0·1719 7 0·5436 0·5342 0·0547 9
NFIA_rs10489906 plus model 1 0·5588 0·5489 0·001 8 0·5617 0·5501 0·001 7
RBFOX1_rs1220140931 plus model 2 0·569 0·5378 0·001 5 0·5724 0·5422 0·001 4
MAPK10_rs1436529 plus model 3 0·5909 0·557 0·001 8 0·5956 0·5642 0·001 9
PGLYRP3_rs1433679 plus model 4 0·6256 0·5636 0·001 10 0·6307 0·5639 0·001 10
EGLN3_rs4432178 plus model 5 0·6562 0·5484 0·001 10 0·6631 0·5476 0·001 10
MYO5A_rs62015995 plus model 6 0·6834 0·5366 0·001 10 0·6911 0·5404 0·001 10
DLG2_rs74731624 plus model 7 0·7032 0·5428 0·0107 10 0·7118 0·5444 0·001 10
MACROD2_rs6110324 plus model 8 0·7145 0·5337 0·0107 8 0·7238 0·5356 0·0107 9
RNF213_rs532400927 plus model 9 0·7245 0·534 0·0107 10 0·7345 0·5363 0·001 10
CYP1A1_rs143070677 plus model 10 0·7285 0·5372 0·001 10 0·7387 0·5384 0·001 10

Adjusted for the covariates of adjusting for age, gender, BMI, physical activity, education, smoking and intake of alcohol and energy.
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Fig. 1. Adjusted OR and 95%CI of stroke with polygenic chance score (PRS) of the 5-, 6- and 7-SNPmodels. PRS was calculated with the genetic variants associated
with stroke chance selected by GWAS and GMDR. They were calculated using logistic regression analysis after adjusting with the covariates of age, area of residence,
BMI, energy intake, smoking and drinking habits, overall physical activity and energy intake. GWAS, Genome-Wide Association Study; GMDR, generalised multifactor
dimensionality reduction.
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Table 3. The characteristics of the ten genetic variants related to stroke used for the generalised multifactor dimensionality reduction analysis

Chr* SNP† Position Mi‡ Ma§ OR|| SE P value adjusted¶ Gene names Functional consequence MAF** P value for HWE††

1 rs10489906 61911351 C T 1·332 0·07292 3·44E-05 NFIA Nmd transcript 0·1498 0·9871
1 rs2771110 153270362 C G 1·307 0·0605 9·63E-06 PGLYRP3 3’ UTR 0·3309 0·4121
4 rs1436529 86979082 T C 0·7955 0·05794 1·87E-05 MAPK10 Nmd transcript 0·4780 0·2304
11 rs74731624 84817481 C T 1·768 0·1462 4·75E-05 DLG2 Nmd transcript 0·0228 0·4047
15 rs143070677 75015255 G C 1·834 0·1535 4·70E-05 CYP1A1 Missense 0·0207 0·0523
16 rs1220140931 6 425 415 T G 1·271 0·05772 3·24E-05 RBFOX1 Intron 0·4954 0·1417
16 rs7500920 77961259 C G 1·399 0·06817 8·51E-07 VAT1L Intron 0·1731 0·2669
17 rs532400927 78267829 T C 2·457 0·1875 9·72E-08 RNF213 Intron 0·0101 0·537
20 rs77987151 9 296 484 A G 1·337 0·06121 2·05E-06 PLCB4 Nmd transcript 0·2598 0·9316
20 rs6110324 14534025 C G 2·293 0·1973 2·60E-05 MACROD2 Intron 0·0101 0·8377
21 rs115711179 44075277 T C 1·861 0·1258 7·80E-07 PDE9A Intron 0·0313 0·4542

* Chromosome.
† SNP.
‡Minor allele.
§ Major allele.
|| OR; SE.
¶ P value for OR after adjusting for age, gender, BMI, residence area, physical activity, education, smoking and intake of alcohol, dietary fibre and energy.
** Minor allele frequency.
†† Hardy–Weinberg equilibrium. NFIA, nuclear factor-IA; PGLYRP3, peptidoglycan recognition protein-3; MAPK10, mitogen-activated protein kinase-10; DLG2, discs large MAGUK scaffold protein-2; CYP1A1, cytochrome P450 family-1

subfamily A member 1; RBFOX1, RNA-binding fox-1 homolog 1; VAT1L, vesicle amine transport 1-like protein; RNF213, ring finger protein 213; PLCB4, phospholipase C beta 4; MACROD2, MACRO domain containing 2; PDE9A,
phosphodiesterase-9A.
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one-unit change in the genetic variants (Table 4). Since IL-18 is
an IFN-γ-inducing factor, stroke risk is potentially involved in
IFN-γ biosynthesis (Table 4). This finding suggests a noteworthy
genetic connection between stroke risk and autoimmune or
inflammatory diseases due to dysregulated innate and adaptive
immunity.

Molecular docking of CYP1A1_rs143070677 with food
compounds

When the wild type (WT) and the mutated type (MT) of
CYP1A1_rs143070677, a missense mutation of CYP1A1, bound
to anthocyanins, flavonoids, hydrolyzable tannins and alkaloids,
the binding free energy was lower than –10 kcal/mol (WT: 1352
bioactive compounds; MT: 1357 bioactive compounds; data not
shown). The binding free energy of some bioactive compounds
to the WT and the MT CYP1A1_rs143070677 was similarly
lowered with polyphenols. However, the binding energy of
other compounds to CYP1A1_rs143070677 was higher than –9
kcal/mol. Specifically, cyanidin 3-caffeoyl-sophoroside 5-gluco-
side, theaflavate A, artobiloxanthone, delphinidin 3,5-di
(6”-malonyl glucoside), gambiriin B3, (9Z,9’Z)-7,7’, 8,8’-tetrahy-
dro-lycopene and acrimarine had higher binding free energy
with the CYP1A1_rs143070677major allele (non-risk allele) than
theminor allele (risk allele), and dimalonylawobanin, lepidine E,
cis-geranylgeranyl bixin, zucchini factor B, isoscoparin
7-glucoside, epoxy fumitremorgin C and avenalumin II had
higher binding free energywith theCYP1A1_rs143070677minor
allele (risk allele) than the major allele (non-risk allele) (online
Supplementary Table S3).

Figures 2(a)–(f) illustrate the interactions between the WT
CYP1A1_rs143070677 protein and isoscoparin 7-glucoside, a
member of the class of compounds known as flavonoid-7-o-
glycosides. It is found in barley leaves. Fig. 2(a) depicts the binding
free energy, highlighting the hydrogen bond interactions with pink
and green, indicating hydrogen donors and acceptors, respectively.
The two-dimensional representation in Fig. 2(b) shows their
specific binding positions and intermolecular forces. Furthermore,
Fig. 2(c) displays the binding affinity and interactions between
isoscoparin 7-glucoside and the WT CYP1A1_rs143070677. The
binding free energies for isoscoparin 7-glucoside with WT and MT
CYP1A1_rs143070677 were calculated to be -10·7 and -8·2 kcal/
mol, respectively (Fig. 2(d)). In addition, Fig. 2(e) and Fig. 2(f)
present the root mean square deviation (RMSD) and root mean

square fluctuation (RMSF) for WT and MT CYP1A1_rs143070677
binding to punicafolin. The RMSD for WT CYP1A1_rs143070677
binding with punicafolin remained stable at around 3 Å over 100
nanoseconds (Fig. 2(e)). Similarly, the RMSF for WT CYP1A_1
rs143070677 binding with isoscoparin 7-glucoside indicated
stability, not exceeding 3 nm, except at the 580-residue index in
the RMSF (Fig. 2(f)). These findings strongly support the stable
binding of isoscoparin 7-glucoside to the WT CYP1A1_
rs143070677.

Genetic interplay between lifestyle factors and the
chances of stroke occurrence

The impact of energy, CHO, n-3 fatty acids and BCAA intake on
chances of stroke was found to interact with the PRS (Table 5).
Specifically, the genetic impact was more significant with a high
energy intake than a low one. The stroke incidence in the
participants with medium-PRS and high-PRS was much higher in
the high-energy intake group than in the low-energy intake
group (Fig. 3(a)). Similar patterns emerged for CHO and BCAA
intake, wherein stroke prevalence was notably higher with high-
CHO and high-BCAA intake within the high-PRS group than in
the low-CHO and low-BCAA intake groups (Fig. 3(b) and (c)).
Furthermore, stroke prevalence within the high-PRS group was
higher in individuals with low-fat and low-n-3 fatty acid intake
compared with those with high-fat and high-n-3 fatty acid intake
(Fig. 3(d)).

Among the four identified dietary patterns, the RMD
exhibited a significant interaction with the PRS in influencing
the chances of stroke (Table 5). Participants adhering to a high
RMD displayed a more pronounced impact of the PRS on stroke
prevalence than those on a low RMD (Fig. 3(e)). However, no
significant interactions were observed between the PRS and
alcohol intake, exercise or smoking status for chances of stroke.

Discussion

No studies have shown an interaction between the SNP in the
PRS or PRS and environmental factors regarding stroke
occurrence(20,21). The present study investigated the intricate
interplay between genetic predisposition and lifestyle-related
risk factors in the context of stroke in a large hospital-based
cohort. The results revealed that some genetic variants of
PTPRD, DLG2 and GCLC were similar to those in a previous

Table 4. MAGMA gene-set analysis of stroke-associated genes in curated gene sets and gene ontology (GO) terms

Gene Set n genes Beta Beta STD SE P value

GO BP: GO regulation of IL-18 production 9 1·225 0·0268 0·2893 1·15×10–5

GO BP: GO positive regulation of IL-18 production 6 1·372 0·0245 0·3480 4·06×10–5

GO CC: GO immunoglobulin complex 7 1·043 0·0201 0·2692 5·40×10–5

GO CC: GO sperm annulus 5 1·240 0·0202 0·3261 7·16×10–5

GO MF: GO tRNA cytosine methyltransferase activity 8 0·958 0·0198 0·2556 8·90×10–5

GO BP: GO protein localisation to juxta paranode region of axon 5 1·529 0·0249 0·4214 1·43×10–4

GO BP: GO IL-18 production 11 0·952 0·0230 0·2665 1·77×10–4

GO BP: GO negative regulation of Ca ion transmembrane transport 36 0·460 0·0201 0·1316 2·38×10–4

GO BP: GO neurotransmitter receptor localisation to postsynaptic specialisation membrane 19 0·680 0·0216 0·2038 4·29×10–4

GO BP: GO negative regulation of DNA damage checkpoint 5 1·249 0·0203 0·3813 4·30×10–4

MAGMA, multi-marker analysis of genomic annotation; BP, biological process; CC, cellular component; MF, molecular function; n, number; STD, standardisation.
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(a) (b)

(c) (d)

Fig. 2. Molecular docking and molecular dynamic simulation (MDS) of isoscoparin 7-glucoside on wild (WT) and mutated type (MT) CYP1A1_rs143070677.
(a) Molecular docking of isoscoparin 7-glucoside on CYP1A1_rs143070677WT. (b) The interaction force between isoscoparin 7-glucoside and CYP1A1_rs143070677
WT. (c) Molecular docking of isoscoparin 7-glucoside on CYP1A1_rs143070677 MT. (d) The interaction force between isoscoparin 7-glucoside and
CYP1A1_rs143070677 MT. (e) The root-mean-square deviation (RMSD) of isoscoparin 7-glucoside on WT and MT of CYP1A1_rs143070677. (f) The root-mean-
square fluctuation (RMSF) of isoscoparin 7-glucoside on WT and MT of CYP1A1_rs143070677. Isoscoparin 7-glucoside lowered the binding energy to cytochrome
P450(CYP), family 1, subfamily A, polypeptide 1(1A1a)_rs143070677 WT and MT. Binding affinity with a hydrogen bond, carbon–hydrogen bond, pi-allyl and Van der
Waal’s force was shown between the WT or MT CYP1A1_rs143070677 proteins and isoscoparin 7-glucoside with a hydrogen bond. RMSD and RMSF between
isoscoparin 7-glucoside and WT and MT CYP1A1_rs143070677 were presented, and they were higher in the MT than in the WT.
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study(22). However, genetic variants were mainly linked to the
IL-18 and IFN-γ pathways. The PRS of the genetic variants linked
to stroke chance interacted with energy, carbohydrates, n-3 fatty
acids, BCAA intake and RMD. The results could be applied to
personalised nutrition to prevent the prevalence of stroke.

The known non-modifiable risk factors for stroke are age, sex
and race/ethnicity and the modifiable risk factors are obesity,
hypertension, dyslipidaemia, hyperglycaemia, smoking, diet
and physical inactivity. There is emerging evidence of the impact
of genetic factors, which is a non-modifiable risk factor, on stroke
chance and their interaction with lifestyle factors to influence the
chance of stroke. Recent research has also revealed that
inflammatory disorders, infection, pollution and cardiac atrial
disorders may also trigger a stroke event(7). Nevertheless, the
current study revealed no clear distinctions in established risk
factors between the stroke and non-stroke groups. It suggests
that individuals who experienced a stroke may have actively
regulated their energy, glucose and lipid metabolism to forestall
further stroke occurrences. Stroke patients included in this study
exhibited no differences in the metabolic risk factors between
the stroke and non-stroke groups, indicating effective manage-
ment of dyslipidaemia, hyperglycaemia and hypertension in
stroke patients.

A meta-analysis of the GWAS from 2000 onward presented
several genetic variants for ischaemic stroke identified in various
studies(23). These included angiotensin-converting enzyme
(ACE), angiotensinogen (AGT) variant (M235T) and aldosterone
synthase CYP11B2 (C344T) linked to renin-angiotensin, tissue

plasminogen activator (tPA), plasminogen activator inhibitor 1
(PAI-1) and factor VII related to coagulation/fibrinolysis, GTP
cyclohydrolase I (GCH1) and glutathione peroxidase 3 (GPx-3)
linked to antioxidants, and apolipoprotein-E (APOE), apolipo-
protein A5 (APOA5), and paraoxonase 1 (PON1) related to lipid
metabolism, IL-1, IL-6, TNF-a and arachidonate 5-lipoxygenase
activating protein (ALOX5AP) involved in inflammation(23). The
present study showed that the genes of the variants for stroke
chance were related to IL-18 and IFN-γ pathways, which are
known to regulate the immune response of its target cells such as
T-cells, natural killer cells, macrophages and other immune cells
through the Janus kinase/signal transducers and activators of
transcription (JAK-STAT) signalling pathway. They are involved
in innate and adaptive immunity against viruses, some bacteria
and protozoan infections. Overexpression of IFN-γ is involved in
autoimmune diseases(24). Therefore, a stroke event may be
linked to immune disorders and potentially autoimmune
diseases(25). Consistently, the present study showed the genetic
relationship between immune disorders, autoimmune diseases
and stroke.

The genetic variants selected to evaluate stroke chance in the
present study included VAT1L, NFIA, RBFOX1, MAPK10,
PGLYRP3, EGLN3, MYO5A and DLG2, and they interacted with
each other to elevate stroke chance. The chance of stroke due to
the genetic variants was 0·796∼ 1·786-fold in the 5-, 6- and 7-SNP
models. However, their PRS was positively associated 2·8 times
with stroke chance, indicating that the genetic variants interacted
to elevate stroke chance. The VAT1L protein has an

0

0·5

1

1·5

2

2·5

(e)

(f)

3

C
1

C
4

C
7

C
10

C
13

C
16

C
19

C
22

C
25

C
28

C
31

C
34

C
37

C
40

C
43

C
46

C
49

C
52

C
55

C
58

C
61

C
64

C
67

C
70

C
73

C
76

C
79

C
82

C
85

C
88

C
91

C
94

C
97

C
10

0

R
M

SD
 (Å

)

Conformations

CYP1A1_62ala CYP1A1_62pro

0

1

2

3

4

5

6

M
ET

1
AL

A1
5

SE
R

29
PR

O
43

LY
S5

7
G

LY
71

VA
L8

5
G

LN
99

TH
R

11
3

SE
R

12
7

G
LY

14
1

TH
R

15
5

VA
L1

69
H

IS
18

3
VA

L1
97

H
IS

21
1

G
LY

22
5

IL
E2

39
AS

P2
53

LY
S2

67
IL

E2
81

AS
P2

95
AS

N
30

9
TH

R
32

3
PR

O
33

7
IL

E3
51

LE
U

36
5

SE
R

37
9

AS
P3

93
VA

L4
07

TR
P4

21
PR

O
43

5
IL

E4
49

AL
A4

63
AR

G
47

7
TH

R
49

1
H

IS
50

5

)
mn(

FS
M

R

Amino acids of CYP1A1

CYP1A1_62ala CYP1A1_62pro

Fig. 2. (Continued).

1822 S. Park

https://doi.org/10.1017/S0007114524000394 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0007114524000394


oxidoreductase activity and zinc ion-binding activity. It is
overexpressed in the brain-hypothalamus (×9·5), nucleus
accumbens (basal ganglia) (×6·2), cerebellar hemisphere
(×4·8), caudate (basal ganglia) (×4·8), cerebellum (×4·7) and
putamen (basal ganglia) (×4·0). However, in the tibial artery, the
GG allele of VAT1L_rs7500920 expression was higher than the
CC allele. NFIA is a critical transcriptional regulator of astrocyte
development, and it is highly expressed in reactive astrocytes in
human neurological injury. NFIA-deficient astrocytes exhibit
defects in remodelling of the blood–brain barrier after white
matter injury, which correlates with suppression of remyelina-
tion(26). Moreover, after cerebral ischaemia/reperfusion,
microRNA 424 (MiR-424) prevents astrogliosis by enhancing
trimethylation of histone H3 lysine 27 (H3K27me3) via NFIA/
DNA methyltransferase-1 signaling in elderly mice(27). RBFOX1
is a splicing factor of Ca/calmodulin-dependent protein kinase

IIγ(CAMK2G), and its expression is reduced in patientswith post-
myocardial infarction(28). Monocyte locomotion inhibitory factor
(MLIF) protects against ischaemic stroke by lowering MAPK10
(JNK3) and decreasing proinflammatory cytokines(29). TheDLG2
gene encoding postsynaptic density protein-93 (PSD-93) and its
inhibition activates nuclear factor erythroid 2-related factor 2
(Nrf2)/antioxidant response element (ARE) antioxidant signal-
ling in oxygen-glucose deprivation and reoxygenation (OGD/
R)-exposed neurons(30). DLG2 can be an essential regulator of
neuroprotection through the antioxidant system during an
ischaemic stroke(30). Although CYP1A1_rs143070677 was not
included in 6- and 7-SNPmodels, it was only amissensemutation
in selected ten SNP. The food components were screened
CYP1A1_rs143070677 wild and mutated types. The activity of
both wild and mutated types could be modulated with food
components. CYP1A1 is an extrahepatic monooxygenase

Table 5. Adjusted OR for the chances of stroke by polygenic risk scores of the 6-SNP model (PRS) after covariate adjustments according to low- and high-
lifestyle factors

Medium-PRS High-PRS

Low-PRS OR 95% CI OR 95% CI P value for interaction

Energy intake (EER%)* 1 1·397 1·114, 1·751 2·464 1·835, 3·309 0·0172
1 1·723 1·317, 2·254 3·505 2·514, 4·887

CHO (En%)† 1 2·035 1·286, 3·220 1·927 0·961, 3·864 0·0043
1 1·450 1·203, 1·748 3·026 2·399, 3·818

Fat (En%)‡ 1 1·454 1·212, 1·743 2·894 2·300, 3·641 0·0695
1 2·311 1·314, 4·063 2·712 1·253, 5·868

n-6 fatty acid (En%)§ 1 1·536 1·260, 1·871 3·067 2·390, 3·935 0·0707
1 1·505 1·057, 2·141 2·299 1·440, 3·671

n-3 fatty acid (En%)|| 1 1·537 1·260, 1·874 3·153 2·462, 4·038 0·0132
1 1·501 1·059, 2·127 2·040 1·255, 3·316

Protein (En%)¶ 1 1·546 1·209, 1·977 3·236 2·380, 4·400 0·1239
1 1·503 1·179, 1·914 2·552 1·861, 3·499

BCAA (g/d)** 1 1·489 1·218, 1·820 2·636 2·030, 3·424 0·0362
1 1·619 1·155, 2·270 3·532 2·344, 5·322

KBD†† 1 1·522 1·281, 1·809 2·866 2·300, 3·571 0·0696
1 1·472 1·188, 1·823 3·143 2·413, 4·093

PBD†† 1 1·522 1·281, 1·809 2·866 2·300, 3·571 0·8061
1 1·482 1·197, 1·833 2·877 2·199, 3·763

WSD†† 1 1·522 1·281, 1·809 2·866 2·300, 3·571 0·1700
1 1·525 1·215, 1·914 2·710 2·016, 3·643

RMD†† 1 1·522 1·281, 1·809 2·866 2·300, 3·571 0·0053
1 1·427 1·152, 1·768 3·202 2·468, 4·155

Alcohol (g/d)‡‡ 1 1·529 1·216, 1·922 2·787 2·075, 3·743 0·3746
1 1·504 1·156, 1·957 2·943 2·115, 4·096

Exercise§§ 1 1·730 1·335, 2·244 3·380 2·451, 4·660 0·1861
1 1·403 1·115, 1·766 2·479 1·830, 3·358

Smoking|||| 1 1·561 1·275, 1·911 2·752 2·114, 3·584 0·1543
1 1·454 1·045, 2·023 3·112 2·087, 4·639

BCAA, branched-chain amino acids; KBD, Korean balanced diet; PBD, plant-based diet; WSD, Western-style diet; RMD, rice-main diet.
Multiple logistic regressionmodels include the correspondingmain effects, interaction terms of PRS andmain effects (lifestyle factors) and potential confounders such as age, gender,
BMI, residence area, physical activity, education, smoking and intake of alcohol, dietary fibre and energy. The reference was the low-PRS.
Values represent OR and 95% CI. PRS with seven SNP were divided into three categories (1–5, 6–7 and≥ 8) by tertiles as the low, medium and high groups of the best model of
GMDR. The cut-off point was as follows:
* < EER.
† < 70 energy percent (En%).
‡ < 15 En%.
§ < 3·0 En%.
|| < 0·7 En%.
¶ < 13 En%.
** < 18·6 g/d.
†† < 33th percentiles.
‡‡ < 20 g/d alcohol intake.
§§ < 150 min/week moderate-intensity exercise.
|||| Non-smoking.
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involved in the metabolism of endogenous substrates and drugs
and activating certain toxins and environmental pollutants,
suggesting the elimination of toxins plays a pivotal role in stroke
incidence. Therefore, the genes and the associated proteins
identified for this study are linked to brain and nervous system
regulation, inflammation, toxin elimination and oxidative stress
and their expressions might be involved in stroke risk.

Although obesity, hypertension, diabetes, dyslipidaemia and
smoking arewell-known risk factors for stroke, the prevalence of
these conditions did not vary significantly between the stroke
and non-stroke groups. Few studies have reported a significant
association between genetic variants and lifestyle factors in
stroke prevalence. In a Chinese study, the aldehyde dehydro-
genase 2 (ALDH2)_rs671 variant was found to interact with

alcohol consumption, influencing stroke chance (Meta-
P= 3·39 × 10–17)(31). In the present study, the PRS indicated that
the interaction between genetics and several lifestyle factorsmay
modulate stroke chance. Energy, CHO, n-3 fatty acids and BCAA
intake influenced the chances of stroke occurrence. Among the
dietary patterns, RMD interacted with genetic risk factors for
stroke. The genetic impact was more significant with a high
energy intake than a low one. The stroke prevalence in the
participants with medium-PRS and high-PRS was much higher in
the high-energy intake than in the low-energy intake group.
Moreover, stroke prevalencewasmuch higher in the participants
with a high PRS having a high CHO intake than those having a
low CHO intake. Since the participants in the RMD group had a
high CHO intake, the RMD group showed a trend similar to that
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Fig. 3. Stroke incidence according to the parameters that interact with polygenic risk scores of the 6-SNP model. (a) Stroke incidence in the participants according to
daily energy intake (cut-off value: estimated energy intake (EER)). (b) Stroke incidence in the participants according to carbohydrate intake (cut-off value: 70 energy
percent). (c) Stroke incidence in the participants according to branched-chain amino acids (BCAA) intake (cut-off value: 18·6 g/d). (d) Stroke incidence in the participants
according to n-3 fatty acid intake (cut-off value: 0·7 energy percent). (e) Stroke incidence in the participants according to the consumption of a rice-main diet (cut-off value:
33rd percentile). The P value indicates the interaction between PRS and designated parameters. PRS, polygenic risk score.
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of a high CHO diet. The results suggested that although dietary
patterns and nutrient intake did not impact stroke prevalence,
they influenced it, according to the PRS.

The strength of this study was the multifaceted approach to
investigating metabolic and dietary factors, thus providing a
comprehensive assessment of their relationships with the
chances of stroke occurrence in a large hospital-based cohort.
The study also included various lifestyle factors, such as alcohol
consumption, exercise and smoking, providing a holistic view of
their potential associations with the chances of stroke. The study
explored the interaction between genetic predisposition and
specific dietary components, offering valuable insights into how
lifestyle factors can modify the genetic chance of stroke. The
study also had several limitations as follows: the study could not
present a cross-sectional analysis, which limits the ability to
establish causality or infer the temporal relationship between
variables. Further, the application of the study findings could be
limited to Asians. The type of stroke among the participants was
not specified as ischaemic or haemorrhagic stroke. However,
considering Korean stroke prevalence and post-stroke compli-
cation severity, the cohort was believed to include ischaemic
stroke patients primarily.

In conclusion, this study investigated the intricate interplay
between genetic predisposition and lifestyle-related risk factors
on the likelihood of stroke occurrence. We identified the
specific SNP associated with stroke chance through a
comprehensive GWAS and subsequent analyses. Our findings
suggest that a combination of genetic factors, particularly those
related to IL-18 and the IFN-γ pathway, significantly influences
an individual’s susceptibility to stroke. Interestingly, we
observed that lifestyle choices, particularly dietary compo-
nents, can modulate the impact of genetic predisposition to
stroke. The interaction between genetic variants and specific
dietary elements, including energy, carbohydrates, n-3 fatty
acids and BCAA, is crucial in determining the chances of stroke.
Tailoring dietary patterns based on these interactions may
provide an effective stroke prevention and management
strategy. Understanding these genetic and lifestyle interactions
is paramount for devising personalised prevention and
intervention strategies, thereby improving outcomes and
reducing the burden of stroke on individuals and the healthcare
systems.
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