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Aline Vidotto from Leiden University (The Netherlands) listening to questions after her
talk on the evolution of the solar wind.

https://doi.org/10.1017/S1743921322004756 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921322004756


The Era of Multi-Messenger Solar Physics
Proceedings IAU Symposium No. 372, 2023
G. Cauzzi & A. Tritschler, eds.
doi:10.1017/S1743921322004756

How has the solar wind evolved to become
what it is today?
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Abstract. In this contribution, I briefly review the long-term evolution of the solar wind (its
mass-loss rate), including the evolution of observed properties that are intimately linked to the
solar wind (rotation, magnetism and activity). I also briefly discuss implications of the evolution
of the solar wind on the evolving Earth. I argue that studying exoplanetary systems could open
up new avenues for progress to be made in our understanding of the evolution of the solar wind.

Keywords. stars: mass loss, stars: winds, outflows, stars: evolution

1. Introduction

The Sun is the best studied star in the whole Universe: we can measure its properties
with accuracy like no other star. However, all this information just tells us about how
the Sun looks like now. Understanding how the winds of cool stars evolve is key to
understand, for example, how has the solar wind and the solar system planets evolved
during the past 4 billion years or what the implication of a strong wind is for young
exoplanets.
To understand the past, and future, evolution of the Sun, including its wind, mag-

netism, activity, rotation, and irradiation, we rely on data of solar-like stars, in an effort
to better place the Sun and the solar wind in a stellar context. Solar-like stars form a
broad group of stars with spectral types from early M to late F (0.4<∼M/M� <∼ 1.3) in
the main sequence. These stars have in common a convective outer envelope, which is
linked to the generation of magnetism, which ultimately drives their high-energy radi-
ation and winds. In this contribution, I review the evolution of some key ingredients
associated to stellar winds.

2. Evolution of mass-loss rates

Detecting winds of cool dwarf stars can be very tricky, as they are in general tenuous
and more difficult to detect. By modelling the observed interaction between stellar winds
and the interstellar medium (ISM) Wood et al. (2002) proposed a correlation between
X-ray flux and mass-loss rate. He showed that stars that have higher X-ray fluxes in
general have winds with higher mass-loss rates. In addition to the method proposed
by Wood et al. (2002), other methods have also been proposed to detect winds of cool
dwarfs. In Vidotto (2021), I reviewed some of the methods proposed so far – this is now
summarised in Figure 1, while Figure 2 † shows a compilation of these results. Following

† The values used in this plot were compiled from the following works: Drake et al. (1993);
Lim et al. (1996); Gaidos et al. (2000); Wood et al. (2001, 2002, 2005, 2014); Wood & Linsky
(2010); Wood (2018); Wargelin & Drake (2002); Bourrier et al. (2013); Kislyakova et al. (2014);
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Figure 1. Table summarising (most of) the proposed methods to detect tenuous winds of
cool dwarf stars (adapted from Vidotto 2021).

the suggestion from Wood et al. (2002), I present a fit for the solar-like stars (black line
in Fig 2):

Ṁ

R2
�

= 10−2.75±0.68

[
FX

erg cm−2s−1

]0.66±0.12
2× 10−14M�/yr

R2�
. (2.1)

In general, stars that have higher X-ray surface fluxes are younger (see Section 4). With
age, stellar activity decreases. Therefore, the x-axis in Fig. 2 can also be interpreted as
a roughly age indicator, whereby younger stars (which are more active and with faster
rotation) are shown to the right while the older stars (which are less active and show
slower rotation) are shown to the left of the plot. Using the relation from Guedel (2007),
who found that LX ∝ t−1.5±0.3 (for solar-like stars in the non-saturated regime) and
Eq. (2.1), we have that

Ṁ ∝ age−1.5×0.66 ∼ 1/age (roughly) . (2.2)

Therefore, the mass-loss rates of solar-like stars, in the non-saturated regime, should
decrease with age.

3. Stellar magnetism evolution

Because winds of cool dwarf stars are magnetic in origin (similar to the solar wind),
magnetic field measurements are one of the essential input quantities in models of stellar
winds†. In particular, it is interesting to note that the (large-scale) topology of the
magnetic field evolves during solar cycle (e.g., DeRosa et al. 2012; Vidotto et al. 2018),
which affects the observed structure of the solar wind. For example, at minimum, when

Fichtinger et al. (2017); Vidotto & Bourrier (2017); Vidotto & Donati (2017); Jardine & Collier
Cameron (2019); Finley et al. (2019); O Fionnagain et al. (2020).

† What makes solar-like stellar winds so effective at removing angular momentum is the
stellar magnetic field (Weber & Davis 1967).
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Figure 2. Relation between mass-loss rates and X-ray surface flux. Colour indicates the method
used in the derivation of mass-loss rates (see panel on the left), with grey arrows indicating upper
limits. The solid line is a power-law fit through the larger circles (Equation 2.1). The smaller
symbols are either evolved stars or M dwarfs, which were not included in the fit and neither
were the stars for which only upper limits exist (arrows). Figure from Vidotto (2021).

the solar large-scale field can be characterised by an aligned dipole, the solar wind velocity
shows a bimodal structure, with fast streams coming from the polar regions, where the
solar magnetic field has open field lines (McComas et al. 2008).

To measure surface magnetic fields, I highlight two different methods. (1) Zeeman-
Doppler imaging (ZDI) maps the large scale field of the stellar surface, through an image
reconstruction algorithm which uses as input time-series of spectropolarimetric data. (2)
By measuring the broadening of magnetically sensitive lines, the Zeeman broadening
technique derives the total field strength at the stellar surface.
While the former technique is able to reconstruct the topology of the magnetic field,

it can only do so on the large-scale component. While the latter technique is able to
derive the total field strength (including the ZDI-undetected small-scale component), it
only obtains the unsigned field (i.e., no topology indicator). As a result the two tech-
niques are highly complementary. In depth reviews of these techniques can be found in
Donati & Landstreet (2009) and Reiners (2012).

While stellar magnetism has been expected to decrease with age, it was only by group-
ing a relatively large sample of magnetic field observations that we finally were able
to quantitatively assess this decay (Vidotto et al. 2014). Figure 3 shows that the large
scale field of solar-like stars decay with ∼ age−0.6, which is a rather similar slope as
the “Skumanich-law”, whereby rotation is observed to decay with ∼ age−0.5 (Skumanich
1972). Rotational evolution will be discussed next.

4. Evolution of stellar rotation and high-energy radiation

A key concept of winds of cool dwarf stars is that they carry away angular momen-
tum. Therefore, during the main sequence, as a star ages, its rotational velocity decreases
(spin down). On the other hand, rotation is observed to be linked with (magnetic) activ-
ity, therefore, as a star spins down, its activity also decreases. Hence, older stars are
characterised by slower rotation and less intense activity. There is, thus, a feedback-
loop between age, rotation and (magnetic) activity, which is mediated by the angular
momentum carried away by stellar winds.
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Figure 3. Evolution of the average large scale magnetic field of a sample of solar-like stars,
as measured from the ZDI technique. The large scatter shown around the fit (black line) are
attributed to variability of the stellar magnetic field (e.g., cycles) as well as a large uncertainty
in determining stellar ages. Figure from Vidotto et al. (2014).

Activity is a broad term that is usually related to a number of processes. Activity can
be identified in the form of spots (which can be probed through photometric monitoring).
Activity can also be identified through spectroscopic lines formed in the chromosphere
(e.g. CaII H&K). Alternatively, it can be linked to coronal diagnostic measurements, such
as X-ray emission and high-energy radiation in general. Note that all these processes
(spots, chromospheric and coronal emission) are magnetic in nature, albeit they are
indirect measurements of magnetism. More directly, activity can be probed by measuring
stellar magnetic fields (see previous section). As activity (in the broad term) decreases
with age, each of these processes are also observed to decrease with age (albeit with
different slopes).
In terms of rotation, there are several observational studies dedicated to mapping

the evolution of surface rotation. To reduce the uncertainty in age measurements, stars
in open clusters (which are coeval) have been frequently used to to measure how stellar
rotation varies as a function of age (e.g. Irwin & Bouvier 2009). In recent years, thousands
of measurements of rotation periods of low-mass stars have become available thanks
to new telescopes, such as Kepler (e.g. McQuillan et al. 2014). In the main sequence,
stellar winds brake the rotation of stars. Therefore, models that describe stellar rotational
evolution usually parameterise the evolution of angular momentum loss through stellar
winds, albeit in different scales of complexity. Examples of such models are: Kawaler
(1988); Spada et al. (2011); Gallet & Bouvier (2013); Johnstone et al. (2015); Matt et al.
(2015); Amard et al. (2019); Pezzotti et al. (2021).

Because high-energy radiation is linked to rotation, and high-energy radiation (in
particular in the ultra-violet) is very hard to measure, in recent years, semi-empirical
frameworks to model and predict the evolution of high-energy radiation have been devel-
oped (Tu et al. 2015; Johnstone et al. 2021; Pezzotti et al. 2021). In general terms, these
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frameworks rely on models of stellar rotational evolution which are coupled to empiri-
cal relations between X-ray emission and rotation (e.g. Wright et al. 2011; Reiners et al.
2014) and to relations between UV radiation and X-ray emission (e.g. Sanz-Forcada et al.
2011; Johnstone et al. 2021). These semi-empirical frameworks provide a much needed
input for models of (exo)planetary evolution, which I will discuss next.

5. Concluding remarks: effects of the evolving particle, magnetic and
radiation environments of solar-like stars on (exo)planets

Understanding how the winds of cool stars evolves is key to understand wind effects
on orbiting planets. A few open questions and related studies are listed below:

• How have the solar system planets evolved during the past 4 billion years? There
are indications that Mars lost its atmosphere because of atmospheric erosion due to
a stronger wind of the young sun (Kulikov et al. 2007). Earth, on the other hand, is
believed to have retained its atmosphere because of its strong intrinsic magnetic field
(Blackman & Tarduno 2018), in spite of the fact that its magnetosphere would have
been smaller at earlier ages (Carolan et al. 2019).

• What is the implication of a strong wind on atmospheric evaporation of close-in
exoplanets? The wind environment surrounding close-in exoplanets are harsher than the
environment around planets orbiting far from their host stars (Vidotto et al. 2015). For
unmagnetised planets, this could enhance their atmospheric evaporation (McCann et al.
2019; Hazra et al. 2022, but see also Vidotto & Cleary 2020; Carolan et al. 2020b).
The interaction with a stellar wind can also shape the atmospheric material escaping
from the planet (Bourrier & Lecavelier des Etangs 2013; Debrecht et al. 2019; Villarreal
D’Angelo et al. 2021; Kubyshkina et al. 2022). Even if the effect of winds on erosion is
not significant, it can substantially affect their observational signatures of atmospheric
evaporation through spectroscopic transits (Carolan et al. 2020a,b).

• How strong are the interactions between a close-in planet and the wind of its
planet-hosting star? There are different types of star-planet interactions (Vidotto 2020),
including interactions that are mediated by the stellar wind, such as planetary auroral
radio emission (Kavanagh et al. 2019; Turner et al. 2021) or planet-induced emission
on the host star (Vedantham et al. 2020; Kavanagh et al. 2021). The strength of these
interactions depend on the local (i.e., at the planet’s orbit) conditions of the stellar
wind, which are higher for planets orbiting closer to their host star. For this reason, star-
planet interactions mediated by the wind particles and its magnetic fields are stronger
in closer-in planets (Strugarek 2016).

• Are stellar winds big “cosmic ray filters”? Cosmic rays are ionised, high-energy par-
ticles that permeate the Galaxy (in which case they are known as galactic cosmic rays)
or particles that originate in stellar flares or coronal mass ejections (in which case they
are know as SEPs or stellar energetic particles). Once these particles are inside the stellar
wind, the magnetised wind can modulate them both in momentum and spatial domains
(what I refer above as giant cosmic ray filters). In essence, the wind can push cosmic rays
out, as they are spatially advected, or can allow them in, as they diffuse into the system
(e.g., Potgieter 2013). These processes depend on the properties of stellar winds, which
evolve in time (Cohen et al. 2012; Rodgers-Lee et al. 2020, 2021a,b). Knowing whether
cosmic rays have been more or less suppressed in the past† are important for chemical
modelling of planetary atmospheres: cosmic rays can penetrate atmospheres, providing
an extra source of atmospheric ionisation, driving the formation of prebiotic molecules,
and dissociating molecules (e.g. Rimmer & Helling 2013; Atri 2017; Barth et al. 2021).

† Also around other planetary systems (e.g., Fraschetti et al. 2019; Herbst et al. 2020;
Mesquita et al. 2021, 2022a,b).
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The strength of some star-planet interactions (e.g., planetary auroral emission, the
interplay between an evaporating atmosphere and the stellar wind, cosmic ray suppres-
sion) depends directly on the local and/or global characteristics of the stellar wind.
Therefore, an interesting “by-product” of studying star-planet interactions, in particular
interactions with the stellar wind, is that if such interactions can be observed, they can
help characterise not only the planet but also the stellar wind of cool dwarf stars, which
form the majority of planet hosts known nowadays.

Acknowledgements

I thank the SOC of the IAUS372 for the invitation to participate in this symposium. In
particular, I thank the SOC chairs, Gianna Cauzzi and Ali Tritschler, for their impeccable
organisation of this meeting during very difficult pandemic times. AAV has received
funding from the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement No 817540, ASTROFLOW).

References

Amard, L., Palacios, A., Charbonnel, C., et al. 2019, A&A, 631, A77
Atri, D. 2017, MNRAS, 465, L34
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